JP3522647B2 - Thick 600MPa grade steel with excellent toughness in the heat affected zone - Google Patents

Thick 600MPa grade steel with excellent toughness in the heat affected zone

Info

Publication number
JP3522647B2
JP3522647B2 JP2000136106A JP2000136106A JP3522647B2 JP 3522647 B2 JP3522647 B2 JP 3522647B2 JP 2000136106 A JP2000136106 A JP 2000136106A JP 2000136106 A JP2000136106 A JP 2000136106A JP 3522647 B2 JP3522647 B2 JP 3522647B2
Authority
JP
Japan
Prior art keywords
haz
steel
toughness
less
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000136106A
Other languages
Japanese (ja)
Other versions
JP2001316758A (en
Inventor
明彦 児島
好男 寺田
健一 吉井
明人 清瀬
譲 吉田
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000136106A priority Critical patent/JP3522647B2/en
Publication of JP2001316758A publication Critical patent/JP2001316758A/en
Application granted granted Critical
Publication of JP3522647B2 publication Critical patent/JP3522647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は大入熱溶接を適用し
たときの溶接熱影響部(Heat Affected
Zone:HAZ)の靭性が優れた引張強度が600M
Pa級の鋼材であり、建築や橋梁をはじめとする各種の
溶接鋼構造物に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat affected zone (Heat Affected) when high heat input welding is applied.
Zone: HAZ) with excellent toughness and tensile strength of 600M
It is a Pa class steel material and is used for various welded steel structures such as buildings and bridges.

【0002】本発明はエレクトロスラグ溶接が適用され
る60〜100mmの板厚を有する600MPa級鋼材
へ適用できることが特徴である。
The present invention is characterized in that it can be applied to a 600 MPa class steel material having a plate thickness of 60 to 100 mm to which electroslag welding is applied.

【0003】[0003]

【従来の技術】HAZにおいては溶融線に近づくほど溶
接時の加熱温度は高くなり、特に溶融線近傍の1400
℃以上に加熱される領域では加熱オーステナイト(γ)
が著しく粗大化してしまい、冷却後のHAZ組織が粗大
化して靭性が劣化する。エレクトロガス溶接やエレクト
ロスラグ溶接などの溶接入熱量の大きな高能率溶接を適
用するほどHAZ組織は粗大化し、HAZの脆化は顕著
となる。加えて、引張強度が600MPa級の鋼成分に
おいては、成分的な焼入性に起因して上部ベイナイト主
体のHAZ組織が形成される。上部ベイナイトは局部的
な脆化相であるMA(Martensite−Aust
enite Constituent:島状マルテンサ
イトと呼ばれる場合もある)を多く含有するため、靭性
の劣る組織であることがよく知られている。つまり、6
00MPa級鋼材に大入熱溶接を適用すると粗大な上部
ベイナイトによってHAZ組織が構成され、HAZ靭性
が著しく劣化する。
2. Description of the Related Art In HAZ, the heating temperature during welding becomes higher as it gets closer to the melting line.
Heating austenite (γ) in the region heated above ℃
Is significantly coarsened, and the HAZ structure after cooling is coarsened and the toughness deteriorates. The HAZ structure becomes coarser and the HAZ becomes more brittle as the high-efficiency welding having a large heat input such as electrogas welding and electroslag welding is applied. In addition, in a steel component having a tensile strength of 600 MPa, a HAZ structure mainly composed of upper bainite is formed due to the hardenability of the component. The upper bainite is a local embrittlement phase MA (Martensite-Aust).
It is well known that the structure is poor in toughness because it contains a large amount of (enite Constituent: sometimes called island martensite). That is, 6
When high heat input welding is applied to a 00 MPa class steel material, the HAZ structure is constituted by the coarse upper bainite, and the HAZ toughness is significantly deteriorated.

【0004】600MPa級鋼のエレクトロスラグ溶接
HAZ靭性を改善する技術として、R&D神戸製鋼技
法、Vol.46、No.3(Dec.1996)、
p.9〜12に下記の2つが記載されている。 鋼成分を低Ceq化することでHAZ組織の種類を上
部ベイナイト主体からフェライト主体へと変化させる。 Ti添加によってHAZ組織を微細化する。
As a technique for improving electroslag welding HAZ toughness of 600 MPa grade steel, R & D Kobe Steel Making Technique, Vol. 46, No. 3 (Dec. 1996),
p. The following two are described in 9-12. The type of HAZ structure is changed from a main body of upper bainite to a main body of ferrite by reducing the Ceq of the steel component. The HAZ structure is refined by adding Ti.

【0005】上記技術で達成可能な600MPa級鋼材
の仕様は、板厚が60mm以下、溶接入熱量が70kJ
/mm以下、溶融線(FL、ボンド)における0℃での
シャルピー吸収エネルギー(vE(0℃))の平均値が
70J/cm2程度、と上記の文献から読みとれる。し
かしながら、高層建築のボックス柱用600MPa級鋼
板には100mm程度までの厚手材が使用されているの
が実状である。また、ボックス柱ダイヤフラム溶接部の
溶接入熱量は、ダイヤフラム厚みが60〜80mmのと
きには100kJ/mmに達する場合がある。最脆化部
である溶融線近傍HAZ靭性はさらに高位であることが
耐破壊性の観点から好ましく、例えば0℃でのシャルピ
ー吸収エネルギーが100J/cm2以上であることが
望まれる。このような、厚手化、大入熱溶接化、高HA
Z靭性化を高い次元でバランスさせた600MPa級鋼
材は開発されていない。
The specifications of the 600 MPa class steel material that can be achieved by the above technology are that the plate thickness is 60 mm or less and the welding heat input is 70 kJ.
/ Mm or less, the average value of the Charpy absorbed energy (vE (0 ° C)) at 0 ° C at the fusion line (FL, bond) is about 70 J / cm 2 , which can be read from the above-mentioned literature. However, as a matter of fact, a thick material up to about 100 mm is used for a 600 MPa class steel plate for a box pillar of a high-rise building. Further, the welding heat input amount of the box pillar diaphragm welded portion may reach 100 kJ / mm when the diaphragm thickness is 60 to 80 mm. From the viewpoint of fracture resistance, it is preferable that the HAZ toughness in the vicinity of the fusion line, which is the most embrittled portion, is higher. For example, Charpy absorbed energy at 0 ° C. is desired to be 100 J / cm 2 or more. Such thickening, high heat input welding, high HA
A 600 MPa class steel material that balances Z toughness at a high level has not been developed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、最大板厚が
100mmで引張強度が600MPa級であり、溶接入
熱量が100kJ/mmのときに溶融線近傍HAZ靭性
が0℃でのシャルピー吸収エネルギー平均値で100J
/cm2以上である鋼材を提供することである。
DISCLOSURE OF THE INVENTION The present invention has a maximum plate thickness of 100 mm, a tensile strength of 600 MPa class, a welding heat input of 100 kJ / mm, and a HAZ toughness near the melting line at 0 ° C. Charpy absorbed energy. 100J on average
It is to provide a steel material having a density of at least 1 / cm 2 .

【0007】[0007]

【課題を解決するための手段】本発明は、質量%で、
C:0.08〜0.15%、Si:0.4%以下、M
n:1.0〜1.8%、P:0.015%以下、S:
0.006%以下、Nb:0.005〜0.05%、A
l:0.001〜0.05%、Ti:0.007〜0.
025%、Mg:0.0003〜0.005%、B:
0.0003〜0.003%、O:0.001〜0.0
04%、N:0.001〜0.005%を含有し、さら
にTiとNの質量%の比であるTi/Nが3〜6であ
り、必要に応じて、Ca:0.0003〜0.004
%、REM:0.0003〜0.01%、Zr:0.0
003〜0.01%、V:0.005〜0.1%、C
u:0.05〜0.5%、Ni:0.05〜0.5%、
Cr:0.05〜0.5%、Mo:0.05〜0.5%
の1種以上を含有し、かつ、質量%を用いて(1)式で
計算される合金成分の和Tcが0.5%未満であり、残
部が鉄および不可避的不純物からなる化学成分を有し、
MgとAlからなる酸化物を内包する0.01〜0.5
μmのTiNが10000個/mm2以上存在する溶接
熱影響部靭性の優れた600MPa級鋼材である。 Tc=Cu+Ni+Cr+Mo ・ ・ ・(1)
The present invention, in% by mass,
C: 0.08 to 0.15%, Si: 0.4% or less, M
n: 1.0 to 1.8%, P: 0.015% or less, S:
0.006% or less, Nb: 0.005 to 0.05%, A
1: 0.001-0.05%, Ti: 0.007-0.
025%, Mg: 0.0003 to 0.005%, B:
0.0003 to 0.003%, O: 0.001 to 0.0
04%, N: 0.001 to 0.005%, Ti / N, which is the ratio of the mass% of Ti to N, is 3 to 6, and Ca: 0.0003 to 0, if necessary. .004
%, REM: 0.0003 to 0.01%, Zr: 0.0
003-0.01%, V: 0.005-0.1%, C
u: 0.05 to 0.5%, Ni: 0.05 to 0.5%,
Cr: 0.05-0.5%, Mo: 0.05-0.5%
The total Tc of the alloy components calculated by the formula (1) using mass% is less than 0.5%, and the balance has a chemical component consisting of iron and unavoidable impurities. Then
0.01 to 0.5 containing an oxide composed of Mg and Al
It is a 600 MPa grade steel material having excellent weld heat-affected zone toughness, in which 1 μm of TiN is present at 10000 pieces / mm 2 or more. Tc = Cu + Ni + Cr + Mo ... (1)

【0008】[0008]

【発明の実施の形態】600MPa級鋼のHAZ靭性を
改善する指針は既述したように下記の二点に尽きる。 (1)HAZ組織の種類をMAを多く含む上部ベイナイ
ト主体からMAを含まないフェライト主体へ変化させ
る。 (2)HAZ組織を微細化させる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the guidelines for improving the HAZ toughness of 600 MPa class steel are limited to the following two points. (1) The type of HAZ structure is changed from an upper bainite-based material containing a large amount of MA to a ferrite-based material containing no MA. (2) The HAZ structure is refined.

【0009】板厚100mmの母材強度を確保しつつ、
溶接入熱量100kJ/mmの溶融線近傍HAZにおい
て上記指針をいかなる手段で達成するかが本発明のポイ
ントである。本発明では下記の三つの手段を駆使して上
記の2つの指針を達成する。 Cu、Ni、Cr、Moの添加量を極力低減すること
で(1)を達成する。 Bを添加することで(1)と(2)を達成し、同時に
母材強度を確保する。 Mgを添加することで(2)を達成する。
While securing the strength of the base material with a plate thickness of 100 mm,
The point of the present invention is how to achieve the above guideline in the HAZ near the melting line with a welding heat input of 100 kJ / mm. The present invention achieves the above two guidelines by making full use of the following three means. (1) is achieved by reducing the addition amounts of Cu, Ni, Cr, and Mo as much as possible. By adding B, (1) and (2) are achieved, and at the same time, the base metal strength is secured. (2) is achieved by adding Mg.

【0010】まず、指針(1)を達成する手段について
説明する。様々な鋼成分を有する600MPa鋼の超大
入熱HAZを検討した結果、100kJ/mm相当の溶
融線近傍HAZの熱履歴において(1)を達成するため
にはCu、Ni、Cr、Moが非常に有害であることを
見いだした。このような溶融線近傍HAZをフェライト
主体組織にするためには、Cu、Ni、Cr、Moの質
量%の和を少なくとも0.5%未満に抑えなくてはなら
ない。これらの合金成分を極力削減することは、経済性
や省資源の観点からも好ましい。
First, the means for achieving the guideline (1) will be described. As a result of studying the ultra-high heat input HAZ of 600 MPa steel having various steel components, Cu, Ni, Cr, and Mo were very much needed to achieve (1) in the thermal history of the HAZ near the fusion line of 100 kJ / mm. I found it to be harmful. In order to make such a HAZ near the melting line a ferrite-based structure, the sum of the mass% of Cu, Ni, Cr, and Mo must be suppressed to at least less than 0.5%. It is preferable to reduce these alloy components as much as possible from the viewpoint of economy and resource saving.

【0011】さらに、このような超大入熱HAZでフェ
ライト変態を促進する手段として、B添加が極めて有効
であることを発見した。溶接加熱時にγ中に固溶したB
が溶接冷却時にγ粒界に偏析するが、100kJ/mm
のような超大入熱溶接を適用したHAZでの冷却速度は
極めて遅いため、粒界偏析したBの多くが鉄炭硼化物と
して析出してしまい、溶融線近傍HAZの焼入性を効果
的に低下させることを発見した。このとき、C量が低す
ぎると肝心の鉄炭硼化物が析出しにくくなって焼入性が
上昇し、上部ベイナイト組織が形成されてしまうので、
C量を後述する範囲に確保しなければならない。Bは母
材強度の観点からも本発明に必須の元素である。その理
由は、Cu、Ni、Cr、Moを添加せずに板厚100
mmで600MPa級の母材強度を確保するためには、
Bに頼って母材を造り込まなげればならないからであ
る。この場合のBはγ粒界に固溶状態で偏析して焼入性
を高める必要があり、HAZで目指すBの存在形態とは
全く異なる。このような固溶状態のBを母材造り込み時
に確保するために、Tiを添加してNをTiNとして固
定し、BがNと結びつくことを防止する必要がある。直
接焼入や再加熱焼入で母材を造り込む場合、その冷却速
度は超大入熱HAZに比して大きいため、鉄炭硼化物は
生成しにくい。従って、母材でBを利用する場合は鉄炭
硼化物よりもBNの析出に注意を払う必要がある。
Further, it has been discovered that addition of B is extremely effective as a means for accelerating ferrite transformation in such an extremely high heat input HAZ. B dissolved in γ during welding heating
Segregates at the γ grain boundary during welding cooling, but 100 kJ / mm
Since the cooling rate in the HAZ applied with ultra-high heat input welding is extremely slow, most of the grain boundary segregated B precipitates as iron carbon boride, effectively improving the hardenability of the HAZ near the melting line. I found to lower it. At this time, if the amount of C is too low, the important iron carbon boride is less likely to precipitate, the hardenability is increased, and the upper bainite structure is formed,
The amount of C must be secured within the range described below. B is an essential element in the present invention from the viewpoint of base material strength. The reason is that the plate thickness is 100 without adding Cu, Ni, Cr and Mo.
To secure the base metal strength of 600 MPa class in mm,
This is because it is necessary to build on the base metal by relying on B. In this case, it is necessary to segregate B in the γ grain boundary in a solid solution state to enhance the hardenability, which is completely different from the form of B present in HAZ. In order to secure such B in a solid solution state at the time of assembling the base material, it is necessary to add Ti and fix N as TiN to prevent B from binding with N. When the base material is formed by direct quenching or reheating quenching, the cooling rate thereof is higher than that of the ultra-high heat input HAZ, so iron carbide boride is less likely to be formed. Therefore, when B is used as the base material, it is necessary to pay more attention to precipitation of BN rather than iron carbide boride.

【0012】次ぎに指針(2)を達成する手段について
説明する。上述の手段によって(1)を達成しても、溶
融線近傍HAZは粗大なγ粒の粒界に沿って長径が数1
00μmに及ぶ粒界フェライトが生成し、これが靭性の
向上を阻む。従って、(1)の達成に加えて溶融線近傍
HAZでのγ粒成長を抑制(ピン止め)することが必須
である。鋭意検討の結果、Mgを添加することで数10
nmの大きさのMgとAlを含む超微細酸化物が多量に
生成し、それらがTiNの析出核となり、このような複
合析出粒子が1400℃を超えるような溶融線近傍HA
Zでγ粒成長を強力にピン止めすることを発見した。こ
のような微細複合粒子が10000個/mm2以上存在
すると、溶接入熱量が100kJ/mmの溶融線HAZ
でもγ粒が十分に細粒化して微細なフェライト組織が生
成し、0℃でのシャルピー吸収エネルギーが100J/
cm2以上に達する。小さなγ粒の粒界に沿って粒界フ
ェライトが生成することでその長径が微細化され、溶融
線近傍HAZの靭性が向上するのである。この新たな知
見によって指針(2)が達成される。また、溶融線近傍
HAZのγ粒内に析出した鉄炭硼化物は、フェライト変
態の核として機能するため、γ粒内に生成するフェライ
トの微細化に効果的であり、指針(2)の達成に寄与す
る。
Next, means for achieving the guideline (2) will be described. Even if (1) is achieved by the above means, the HAZ near the fusion line has a major axis of several 1 along the grain boundary of coarse γ grains.
Grain boundary ferrite having a grain size of 00 μm is generated, which prevents improvement in toughness. Therefore, in addition to achieving (1), it is essential to suppress (pin) the γ grain growth in the HAZ near the fusion line. As a result of diligent study, addition of Mg results in several tens.
A large amount of ultrafine oxide containing Mg and Al with a size of nm is generated, and these become TiN precipitation nuclei, and such a composite precipitation particle exceeds 1400 ° C. HA near the melting line
It was discovered that Z strongly pinned gamma grain growth. If such fine composite particles are present at 10000 particles / mm 2 or more, the welding line HAZ with a welding heat input of 100 kJ / mm
However, the γ grains are sufficiently fine-grained to form a fine ferrite structure, and the Charpy absorbed energy at 0 ° C is 100 J /
Reach more than cm 2 . The generation of grain boundary ferrite along the grain boundaries of small γ grains makes the major axis finer and improves the toughness of the HAZ near the fusion line. The guideline (2) is achieved by this new finding. Further, the iron carbon boride precipitated in the γ grains of the HAZ near the melting line functions as a nucleus of ferrite transformation, and is therefore effective in refining the ferrite generated in the γ grains, achieving the guideline (2). Contribute to.

【0013】次に各々の化学成分の限定理由について説
明する。
Next, the reasons for limiting each chemical component will be described.

【0014】Cは超大入熱HAZで鉄炭硼化物が析出す
るために0.08%以上必要である。Cが0.08%未
満では超大入熱HAZにおいてBが鉄炭硼化物として析
出せずに固溶状態となるため、焼入性が高まって上部ベ
イナイト主体組織が形成されてHAZ靭性が劣化する。
しかし、Cが多すぎると母材及びHAZの靭性が低下す
るとともに溶接性が劣化するため、その上限を0.15
%とする。
C is required to be 0.08% or more in order to deposit an iron carbon boride at a super-high heat input HAZ. When C is less than 0.08%, B does not precipitate as iron carbon boride in the super-high heat input HAZ but becomes a solid solution state, so that the hardenability is increased and the upper bainite-based structure is formed to deteriorate the HAZ toughness. .
However, if the amount of C is too large, the toughness of the base metal and HAZ decreases and the weldability deteriorates, so the upper limit is set to 0.15.
%.

【0015】Siは脱酸のために鋼に含有されるが、多
すぎると溶接性およびHAZ靭性が劣化するため、上限
を0.4%とする。AlやTiやMgによっても脱酸は
可能であるから、Siを低減しても問題はない。むし
ろ、良好なHAZ靭性を得るためにはSiを0.3%以
下にすることが望ましい。
Si is contained in steel for deoxidation, but if it is too much, the weldability and HAZ toughness deteriorate, so the upper limit is made 0.4%. Since deoxidation is possible with Al, Ti, and Mg, there is no problem even if Si is reduced. Rather, in order to obtain good HAZ toughness, it is desirable that Si be 0.3% or less.

【0016】Mnは母材及び溶接部の強度、靭性の確保
に不可欠であるから1.0%以上必要である。しかし、
Mnが多すぎるとHAZ靭性の劣化、スラブ中心偏析の
助長、溶接性の劣化、などが生じるため上限を1.8%
とする。
Since Mn is indispensable for securing the strength and toughness of the base material and the welded portion, 1.0% or more is necessary. But,
If the amount of Mn is too large, the HAZ toughness deteriorates, the slab center segregation is promoted, and the weldability deteriorates. Therefore, the upper limit is 1.8%.
And

【0017】PとSは本発明において不純物元素であ
り、良好な母材とHAZの材質を確保するためにはそれ
ぞれ0.015%以下、0.006%以下に低減する必
要がある。
P and S are impurity elements in the present invention, and it is necessary to reduce them to 0.015% or less and 0.006% or less, respectively, in order to secure a good base material and HAZ material.

【0018】Nbは母材組織の微細化に有効な元素であ
り、母材の強度、靭性を向上させる。また、超大入熱H
AZ組織をフェライト主体に制御する場合、HAZ軟化
が懸念されるが、Nbによる析出強化によってHAZ軟
化を相殺することができる。以上の効果を発揮するため
には0.005%以上のNbが必要である。しかし、N
bが多すぎるとHAZ硬化が著しくなり靭性が劣化する
ため、その上限を0.05%とする。
Nb is an element effective for refining the base material structure and improves the strength and toughness of the base material. Also, super heat input H
When the AZ structure is controlled mainly by ferrite, HAZ softening is feared, but the precipitation strengthening by Nb can offset the HAZ softening. In order to exert the above effects, 0.005% or more of Nb is necessary. But N
If the content of b is too large, HAZ will be significantly hardened and the toughness will deteriorate, so the upper limit is made 0.05%.

【0019】Alは脱酸剤として作用するとともに、M
gと共に数10nmの超微細酸化物を構成してHAZで
のピン止め効果を担う。そのためには0.001%以上
のAlが必要である。Alが0.001%未満になると
10000個/mm2以上の超微細酸化物を確保するこ
とできず、100kJ/mmの溶融線近傍HAZでγ粒
のピン止めが不十分となり、HAZ靭性の向上が困難と
なる。しかし、Alが多すぎるとAl系酸化物が凝集合
体して粗大化し、母材やHAZの材質に悪影響を及ぼす
恐れがあるため、その上限を0.05%とする。
Al acts as a deoxidizer, and at the same time M
Along with g, an ultrafine oxide of several tens of nm is formed and has a pinning effect in the HAZ. For that purpose, 0.001% or more of Al is required. When Al is less than 0.001%, it is not possible to secure an ultrafine oxide of 10,000 pieces / mm 2 or more, and pinning of γ grains becomes insufficient at a HAZ near the fusion line of 100 kJ / mm, improving HAZ toughness. Will be difficult. However, if the amount of Al is too large, the Al-based oxide aggregates and coarsens, which may adversely affect the material of the base material and HAZ. Therefore, the upper limit is made 0.05%.

【0020】TiはNと結びついてTiNを生成するこ
とでNを固定する。このことによって、母材造り込み時
のBがBNとして析出することを防止し、固溶状態のB
を確保することで焼入性を高め、母材の強度と靭性を向
上させる。また、TiNは数10nmの超微細な(M
g,Al)酸化物を核に0.01〜0.5μmの大きさ
に複合析出して溶融線近傍HAZで強力なピン止め力を
発現し、HAZ靭性を向上させる。このようなTiNの
効果を発揮するためには0.007%以上のTiが必要
である。しかし、Tiが多すぎるとTiCが析出して著
しいHAZ脆化を生じるため、Tiの上限は0.025
%である。SiやAlやMgが低い場合はTiが脱酸剤
として作用することもできる。
Ti is fixed to N by forming TiN in combination with N. This prevents B from precipitating as BN at the time of assembling the base material, and prevents B in the solid solution state.
To improve hardenability and improve the strength and toughness of the base metal. In addition, TiN has an ultra-fine (M
g, Al) oxide is compound-precipitated in a size of 0.01 to 0.5 μm with nuclei as the core to develop a strong pinning force in the HAZ near the fusion line and improve the HAZ toughness. In order to exert such an effect of TiN, 0.007% or more of Ti is required. However, if the amount of Ti is too large, TiC precipitates and causes significant HAZ embrittlement, so the upper limit of Ti is 0.025.
%. When Si, Al and Mg are low, Ti can also act as a deoxidizing agent.

【0021】Mgは本発明で非常に重要な役割を担う。
MgはAlと共に超微細酸化物を構成してHAZでのピ
ン止め効果を担う。そのためには0.0003%以上の
Mgが必要である。Mgが0.0003%未満になると
10000個/mm2以上の超微細酸化物を確保するこ
とできず、100kJ/mmの溶融線近傍HAZでγ粒
のピン止めが不十分となり、HAZ靭性の向上が困難と
なる。しかし、Mgが0.004%を超えても超微細酸
化物の個数は飽和するため、その上限を0.005%と
する。
Mg plays a very important role in the present invention.
Mg constitutes an ultrafine oxide together with Al and has a pinning effect in the HAZ. For that purpose, 0.0003% or more of Mg is required. If the Mg content is less than 0.0003%, it is not possible to secure 10,000 or more ultrafine oxides per mm 2 , and pinning of γ grains becomes insufficient at a HAZ near the fusion line of 100 kJ / mm, improving HAZ toughness. Will be difficult. However, even if Mg exceeds 0.004%, the number of ultrafine oxides is saturated, so the upper limit is made 0.005%.

【0022】BはMgと共に本発明の特徴的な元素であ
る。Bは母材とHAZで焼入性に対して相反する効果を
担う。つまり、母材造り込み時には固溶Bとして焼入性
を高めて厚手材の強度と靭性を向上させる。一方、超大
入熱溶接時には鉄炭硼化物として析出してHAZの焼入
性を低下させ、フェライト変態を促すことでHAZ靭性
の向上に寄与する。母材でのB活用にはTi添加による
N固定が必要であり、HAZでのB活用にはBと結びつ
くCを確保する必要がある。以上の効果を発揮するため
には0.0003%以上のBが必要である。しかし、B
が多すぎると母材とHAZでその効果を両立することが
困難となるため、その上限は0.003%である。
B is a characteristic element of the present invention together with Mg. B plays a contradictory effect on the hardenability between the base metal and HAZ. That is, at the time of assembling the base material, it becomes a solid solution B to enhance the hardenability and improve the strength and toughness of the thick material. On the other hand, during super-high heat input welding, it precipitates as iron carbide boride to reduce the hardenability of HAZ and promote ferrite transformation, which contributes to the improvement of HAZ toughness. To use B in the base metal, it is necessary to fix N by adding Ti, and to use B in HAZ, it is necessary to secure C that is linked to B. In order to exert the above effects, 0.0003% or more of B is necessary. But B
If it is too large, it becomes difficult to achieve both the effects of the base material and HAZ, so the upper limit is 0.003%.

【0023】Oは超微細な(Mg,Al)酸化物を構成
してHAZでのピン止め効果を担う。そのためには0.
001%以上のOが必要である。Oが0.001%未満
になると10000個/mm2以上の超微細酸化物を確
保することできず、100kJ/mmの溶融線近傍HA
Zでγ粒のピン止めが不十分となり、HAZ靭性の向上
が困難となる。しかし、Oが多すぎると数μmの大きな
酸化物が増えて脆性破壊の発生起点として作用する恐れ
があるため、その上限を0.004%とする。
O constitutes an ultrafine (Mg, Al) oxide and has a pinning effect in the HAZ. For that, 0.
O of 001% or more is required. When O is less than 0.001%, it is not possible to secure more than 10000 / mm 2 ultrafine oxides, and HA near the fusion line of 100 kJ / mm.
Z pinning of γ grains becomes insufficient and it becomes difficult to improve the HAZ toughness. However, if the amount of O is too large, large oxides of several μm increase and may act as a starting point of brittle fracture, so the upper limit is made 0.004%.

【0024】NはTiNを生成して超微細な(Mg,A
l)酸化物に複合析出し、HAZでのピン止め効果を担
う。そのためには0.001%以上のNが必要である。
Nが0.001%未満になると10000個/mm2
上のピン止め粒子を確保することできず、100kJ/
mmの溶融線近傍HAZでγ粒のピン止めが不十分とな
り、HAZ靭性の向上が困難となる。しかし、Nが多す
ぎると母材造り込み時にBNが析出しやすくなったり、
固溶Nが増えて脆化が助長される恐れがあるため、その
上限を0.005%とする。
N produces TiN to produce ultrafine (Mg, A
l) It is complexly precipitated in the oxide and has a pinning effect in the HAZ. For that purpose, 0.001% or more of N is necessary.
When N is less than 0.001%, it is not possible to secure 10,000 or more pinning particles / mm 2 and 100 kJ /
In the HAZ near the fusion line of mm, pinning of γ grains becomes insufficient, and it becomes difficult to improve the HAZ toughness. However, if the amount of N is too large, BN tends to precipitate when the base material is built,
Since the amount of solid solution N increases and embrittlement may be promoted, the upper limit is set to 0.005%.

【0025】さらに、TiとNの比であるTi/Nを3
〜6に制御する必要がある。Ti/Nが3未満であると
Tiに対してNが過剰であり、TiNを生成して残った
NがBと結びついてBNを析出し、母材造り込み時の焼
入性を低下させて母材の強度と靭性を劣化させる。ま
た、HAZで固溶Nが増加すると脆化を起こす。一方、
Ti/Nが6を超えるとNに対してTiが過剰であり、
TiNを生成して残ったTiがTiCとして析出し、母
材およびHAZを著しく脆化させる。Ti/Nが3〜6
のときに母材とHAZの材質をバランスよく両立でき
る。
Furthermore, Ti / N, which is the ratio of Ti and N, is 3
It is necessary to control to ~ 6. When Ti / N is less than 3, the amount of N is excessive with respect to Ti, and TiN is formed and the remaining N bonds with B to precipitate BN, which deteriorates the hardenability at the time of assembling the base material. It deteriorates the strength and toughness of the base material. In addition, when solid solution N increases in HAZ, embrittlement occurs. on the other hand,
When Ti / N exceeds 6, Ti is excessive with respect to N,
The Ti remaining after forming TiN precipitates as TiC, and makes the base material and HAZ extremely brittle. Ti / N is 3-6
At this time, the base material and the HAZ material can be well balanced.

【0026】次ぎに選択元素の規定理由を説明する。Next, the reasons for defining the selective element will be described.

【0027】Ca、REM、Zrは脱酸剤として作用す
ることや、Sと結びついて硫化物の形態を制御すること
で、母材およびHAZの材質の改善に寄与できる。これ
らの効果を発揮するためには、いずれの元素も0.00
03%以上必要である。しかし、これらの元素が多すぎ
ると酸化物や硫化物が凝集合体して粗大化し、母材やH
AZの材質を劣化させる恐れがあるため、それぞれの上
限を0.004%、0.01%、0.01%とする。こ
こでのREMとは、La、Ceなどのランタノイド系の
元素をさし、これらの元素が混在したミッシュメタルを
添加しても上述の効果は得られる。
Ca, REM, and Zr can contribute to the improvement of the materials of the base material and HAZ by acting as a deoxidizer and controlling the form of sulfide in combination with S. In order to exert these effects, all the elements are 0.00
03% or more is required. However, if these elements are too much, the oxides and sulfides agglomerate and coarsen, and the base metal and H
Since the material of AZ may be deteriorated, the respective upper limits are made 0.004%, 0.01%, and 0.01%. Here, REM refers to a lanthanoid-based element such as La or Ce, and the above effect can be obtained even if a misch metal containing these elements is added.

【0028】Vは析出強化によって母材およびHAZの
強度向上に有効である。そのためには0.005%以上
必要である。しかし、Vが多すぎると溶接性やHAZ靭
性が劣化するため、その上限を0.1%とする。
V is effective in improving the strength of the base material and HAZ by precipitation strengthening. For that purpose, 0.005% or more is necessary. However, if V is too large, the weldability and HAZ toughness deteriorate, so the upper limit is made 0.1%.

【0029】Cu、Ni、Cr、Moは母材の強度、靭
性、耐食性や溶接性を向上させることに有効であり、そ
のめにはいずれの元素も0.05%以上必要である。し
かし、これらの元素は超大入熱HAZの焼入性を高めて
上部ベイナイトの生成を促すため、これらの元素の上限
をそれぞれ0.5%以下とし、これらの元素の質量%の
和を0.5%以下に抑える必要がある。これらの元素の
和が0.5%を超えると超大入熱HAZ靭性が劣化す
る。
Cu, Ni, Cr, and Mo are effective in improving the strength, toughness, corrosion resistance, and weldability of the base material, and for that purpose, each element requires 0.05% or more. However, these elements enhance the hardenability of the super-high heat input HAZ and promote the formation of upper bainite. Therefore, the upper limits of these elements are each 0.5% or less, and the sum of the mass% of these elements is 0. It is necessary to keep it below 5%. If the sum of these elements exceeds 0.5%, the ultra-high heat input HAZ toughness deteriorates.

【0030】本発明鋼材は、鉄鋼業の製鋼工程において
所定の化学成分に調整し、連続鋳造した鋳片を再加熱し
て圧延、冷却、熱処理の各工程を様々に制御して厚板あ
るいはH形鋼として製造される。板厚100mmの母材
において600MPa級の強度を得るためには、圧延後
の直接焼入や加速冷却、あるいは再加熱焼入などの製造
プロセスが有効である。建築用鋼として低降伏比が要求
される場合は、さらにγ/α二相域熱処理を施せばよ
い。さらに、焼き戻しによって強度と靭性を調整でき
る。鋳片を再加熱することなくホットチャージ圧延する
ことも可能である。HAZ靭性は鋼成分とピン止め粒子
の分散状態できまる。ピン止め粒子の分散状態は母材の
製造過程で大きく変化しない。従って、超大入熱HAZ
靭性は母材の製造工程に大きく依存することはない。
The steel material of the present invention is adjusted to a predetermined chemical composition in the steelmaking process of the steel industry, and the continuously cast slab is reheated to variously control each process of rolling, cooling and heat treatment to obtain a thick plate or H plate. Manufactured as shaped steel. In order to obtain a strength of 600 MPa class in a base material having a plate thickness of 100 mm, a manufacturing process such as direct quenching after rolling, accelerated cooling, or reheating quenching is effective. When a low yield ratio is required for building steel, it is sufficient to further subject the γ / α two-phase heat treatment. Further, tempering can adjust strength and toughness. It is also possible to carry out hot charge rolling without reheating the slab. HAZ toughness depends on the dispersion state of the steel components and pinning particles. The dispersed state of the pinned particles does not change significantly during the manufacturing process of the base material. Therefore, super large heat input HAZ
The toughness does not largely depend on the manufacturing process of the base material.

【0031】本発明で規定した介在物の分散状態は、例
えば以下のような方法で定量的に測定される。MgとA
lからなる酸化物を内包する0.01〜0.5μmのT
iNの個数は、母材鋼板の任意の場所から抽出してレプ
リカ試料を作製し、これを透過電子顕微鏡(TEM)を
用いて10000〜50000倍の倍率で少なくとも1
000μm2以上の面積にわたって観察し、対象となる
大きさのTiNの個数を測定し、これを単位面積当たり
の個数に換算する。このとき、(Mg,Al)酸化物と
TiNの同定は、TEMに付属のエネルギー分散型X線
分光法(EDS)による組成分析と、TEMによる電子
線回折像の結晶構造解析によって行われる。このような
同定を測定するすべての複合介在物に対して行うことが
煩雑な場合、簡易的には次の手順による。まず、四角い
形状の介在物をTiNとみなし、対象となる大きさのT
iNの内部に介在物が存在するものの個数を測定する。
次に、このような方法で個数を測定した複合析出TiN
のうち、少なくとも10個以上について上記の要領で詳
細な同定を行い、(Mg,Al)酸化物とTiNが複合
的に存在している割合を算出する。そして、はじめに測
定された複合析出TiNの個数にこの割合を掛け合わせ
る。鋼中の炭化物が以上のTEM観察を邪魔する場合、
500℃以下の熱処理によって炭化物を凝集・粗大化さ
せ、対象となる複合介在物の観察を容易にすることがで
きる。
The dispersed state of the inclusions defined in the present invention is quantitatively measured by the following method, for example. Mg and A
0.01 to 0.5 μm T containing an oxide of 1
The number of iN is at least 1 at a magnification of 10,000 to 50,000 times using a transmission electron microscope (TEM) by making a replica sample by extracting it from an arbitrary place on the base material steel plate.
Observing over an area of 000 μm 2 or more, the number of TiN having a target size is measured, and this is converted into the number per unit area. At this time, the (Mg, Al) oxide and TiN are identified by composition analysis by energy dispersive X-ray spectroscopy (EDS) attached to the TEM and crystal structure analysis of an electron diffraction image by the TEM. When it is complicated to perform such identification for all complex inclusions to be measured, the following procedure is simply performed. First, the square inclusion is regarded as TiN, and the target T
The number of inclusions existing inside the iN is measured.
Next, composite precipitated TiN whose number was measured by such a method
Of these, at least 10 or more are identified in detail in the above manner, and the ratio of (Mg, Al) oxide and TiN present in a complex manner is calculated. Then, this ratio is multiplied by the number of composite precipitated TiN measured at the beginning. If the carbide in the steel interferes with the above TEM observation,
By heat treatment at 500 ° C. or less, the carbide can be aggregated and coarsened, and the observation of the target composite inclusion can be facilitated.

【0032】[0032]

【実施例】表1に連続鋳造した鋼の化学成分ならびに
0.01〜0.5μmの複合析出TiN(ピン止め粒
子)の個数を、表2に鋼板の板厚、母材製造法、母材材
質、HAZ靭性を示す。
EXAMPLES Table 1 shows the chemical composition of continuously cast steel and the number of 0.01-0.5 μm composite precipitated TiN (pinning particles), and Table 2 shows the plate thickness of the steel plate, the base metal manufacturing method, and the base metal. Indicates material and HAZ toughness.

【0033】本発明鋼は板厚が80〜120mmであ
り、母材TSが635〜700MPaであり、母材vT
rsが−50℃以下であり、溶接入熱量が80〜120
kJ/mmのエレクトロスラグ溶接部のボンド部のシャ
ルピー吸収エネルギーが100J/cm2を超えてい
る。
The steel of the present invention has a plate thickness of 80 to 120 mm, a base material TS of 635 to 700 MPa, and a base material vT.
rs is -50 ° C or lower, and the welding heat input is 80 to 120
The Charpy absorbed energy of the bond portion of the electroslag welded portion of kJ / mm exceeds 100 J / cm 2 .

【0034】一方、比較鋼は化学成分が適正でないため
に、母材あるいはHAZの材質が劣っている。鋼7はC
が少なすぎるために超大入熱HAZでBが鉄炭硼化物と
して析出できず、HAZ組織が上部ベイナイト主体とな
ってHAZ靭性が劣る。鋼8はNbが少なすぎるために
母材組織が粗大化して靭性が劣る。鋼9はAlが少なす
ぎるために超微細な(Mg,Al)酸化物の生成個数が
少なく、HAZ組織が微細化されずに靭性が劣る。鋼1
0はTiが少なすぎるために、鋼15はNが多すぎるた
めに、Ti/Nが小さすぎてN過剰となり、母材ではB
が焼入性に無効になり、HAZでは固溶N脆化が生じ、
母材とHAZの両方で材質が劣る。鋼11はTiが多す
ぎるために、鋼14はNが少なすぎるために、Ti/N
が大きすぎてTi過剰となり、TiC析出によって母材
とHAZが脆化する。鋼12はMgが少なすぎるために
超微細な(Mg,Al)酸化物の生成個数が少なく、H
AZ組織が微細化されずに靭性が劣る。鋼13はBが少
なすぎるために、母材とHAZの材質が劣る。鋼16と
鋼17はTi/Nが適当でないために母材あるいはHA
Zの材質が劣る。鋼18はCuとNiの和が多すぎるた
めに、HAZが上部ベイナイト主体組織になってHAZ
靭性が劣る。
On the other hand, the comparative steel is inferior in the material of the base metal or HAZ because the chemical composition is not appropriate. Steel 7 is C
Is too small, B cannot be precipitated as an iron carbon boride in the superheat HAZ, and the HAZ structure is mainly composed of upper bainite, resulting in poor HAZ toughness. Since Steel 8 has too little Nb, the base metal structure becomes coarse and the toughness is poor. Steel 9 has a small amount of ultrafine (Mg, Al) oxides generated because of too little Al, and the HAZ structure is not refined and the toughness is poor. Steel 1
0 is too little Ti, and steel 15 has too much N, so Ti / N is too small and N is excessive.
Becomes ineffective for hardenability and HAZ causes solid solution N embrittlement,
The material is inferior in both the base metal and HAZ. Steel 11 has too much Ti, and Steel 14 has too little N.
Is too large and Ti becomes excessive, and the base material and HAZ become brittle due to TiC precipitation. Steel 12 contains too little Mg, so the number of ultrafine (Mg, Al) oxides produced is small, and H
The AZ structure is not refined and the toughness is poor. Steel 13 is inferior in the material of the base material and HAZ because B is too small. Steel 16 and Steel 17 are base metal or HA because Ti / N is not appropriate.
The material of Z is inferior. Steel 18 contains too much Cu and Ni, so HAZ becomes the upper bainite-based structure and HAZ
Inferior toughness.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明によって超大入熱溶接を施しても
良好なHAZ靭性を有する極厚の600MPa級鋼材が
提供可能となり、溶接能率と溶接継ぎ手耐破壊性とが高
い次元で両立可能となった。その結果、溶接施工コスト
を大幅に低減できるようになり、溶接構造物の安全性も
格段に進歩した。
According to the present invention, it is possible to provide a very thick 600 MPa class steel material having good HAZ toughness even if super-heat-input welding is performed, and welding efficiency and weld joint fracture resistance can be compatible at a high level. It was As a result, the welding construction cost can be significantly reduced, and the safety of the welded structure has been remarkably improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清瀬 明人 君津市君津1番地 新日本製鐵株式会社 君津製鐵所内 (72)発明者 吉田 譲 君津市君津1番地 新日本製鐵株式会社 君津製鐵所内 (72)発明者 植森 龍治 富津市新富20−1 新日本製鐵株式会社 技術開発本部内 (56)参考文献 特開2000−80436(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akito Kiyose 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation Kimitsu Steel Works (72) Inventor Yu Yoshida 1 Kimitsu, Kimitsu-shi Kimitsu Co., Ltd. Ironworks (72) Inventor Ryuji Uemori 20-1 Shintomi, Futtsu-shi Shin Nippon Steel Co., Ltd. Technology Development Headquarters (56) Reference JP 2000-80436 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、C:0.08〜0.15%、
Si:0.4%以下、Mn:1.0〜1.8%、P:
0.015%以下、S:0.006%以下、Nb:0.
005〜0.05%、Al:0.001〜0.05%、
Ti:0.007〜0.025%、Mg:0.0003
〜0.005%、B:0.0003〜0.003%、
O:0.001〜0.004%、N:0.001〜0.
005%を含有し、さらにTiとNの質量%の比である
Ti/Nが3〜6であり、残部が鉄および不可避的不純
物からなる化学成分を有し、MgとAlからなる酸化物
を内包する0.01〜0.5μmのTiNが10000
個/mm2以上存在する溶接熱影響部靭性の優れた厚手
600MPa級鋼材。
1. C: 0.08 to 0.15% by mass%,
Si: 0.4% or less, Mn: 1.0 to 1.8%, P:
0.015% or less, S: 0.006% or less, Nb: 0.
005-0.05%, Al: 0.001-0.05%,
Ti: 0.007 to 0.025%, Mg: 0.0003
~ 0.005%, B: 0.0003 to 0.003%,
O: 0.001 to 0.004%, N: 0.001 to 0.
Containing 0.005%, Ti / N, which is the ratio of the mass% of Ti and N, is 3 to 6, and the balance has a chemical component of iron and inevitable impurities, and an oxide of Mg and Al. 0.01-0.5 μm TiN included is 10,000
Thick 600 MPa class steel with excellent weld heat-affected zone toughness that is present in the number of pieces / mm 2 or more.
【請求項2】 質量%で、さらに、Ca:0.0003
〜0.004%、REM:0.0003〜0.01%、
Zr:0.0003〜0.01%、V:0.005〜
0.1%、Cu:0.05〜0.5%、Ni:0.05
〜0.5%、Cr:0.05〜0.5%、Mo:0.0
5〜0.5%の1種以上を含有し、かつ、質量%を用い
て(1)式で計算される合金成分の和Tcが0.5%未
満であることを特徴とする請求項1記載の溶接熱影響部
靭性の優れた厚手600MPa級鋼材。 Tc=Cu+Ni+Cr+Mo ・ ・ ・(1)
2. In mass%, further Ca: 0.0003
~ 0.004%, REM: 0.0003-0.01%,
Zr: 0.0003 to 0.01%, V: 0.005 to
0.1%, Cu: 0.05 to 0.5%, Ni: 0.05
~ 0.5%, Cr: 0.05-0.5%, Mo: 0.0
5. The total Tc of alloy components containing at least one of 5 to 0.5% and calculated by the formula (1) using mass% is less than 0.5%. Thick 600 MPa class steel with excellent weld heat affected zone toughness. Tc = Cu + Ni + Cr + Mo ... (1)
JP2000136106A 2000-05-09 2000-05-09 Thick 600MPa grade steel with excellent toughness in the heat affected zone Expired - Fee Related JP3522647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136106A JP3522647B2 (en) 2000-05-09 2000-05-09 Thick 600MPa grade steel with excellent toughness in the heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136106A JP3522647B2 (en) 2000-05-09 2000-05-09 Thick 600MPa grade steel with excellent toughness in the heat affected zone

Publications (2)

Publication Number Publication Date
JP2001316758A JP2001316758A (en) 2001-11-16
JP3522647B2 true JP3522647B2 (en) 2004-04-26

Family

ID=18644099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136106A Expired - Fee Related JP3522647B2 (en) 2000-05-09 2000-05-09 Thick 600MPa grade steel with excellent toughness in the heat affected zone

Country Status (1)

Country Link
JP (1) JP3522647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695777B (en) * 2013-12-20 2016-06-22 宝山钢铁股份有限公司 The steel plate of a kind of welding heat influence area toughness excellence and manufacture method thereof
CN105131788B (en) * 2015-09-21 2017-05-31 盐城市昶桦户外用品股份有限公司 A kind of outdoor tent support bar and production technology
WO2018030171A1 (en) * 2016-08-09 2018-02-15 Jfeスチール株式会社 High-strength thick steel plate and production method therefor

Also Published As

Publication number Publication date
JP2001316758A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP5950045B2 (en) Steel sheet and manufacturing method thereof
JP3699657B2 (en) Thick steel plate with yield strength of 460 MPa or more with excellent CTOD characteristics of the heat affected zone
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
TWI589708B (en) Steel material for high heat input welding
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
WO2016060141A1 (en) Steel for high-energy-input welding
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP5297692B2 (en) High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof
JP3522647B2 (en) Thick 600MPa grade steel with excellent toughness in the heat affected zone
JP3898842B2 (en) Steel sheet with excellent low temperature toughness in the heat affected zone
JP3711249B2 (en) Thick steel plate with yield strength of 500-550MPa class with excellent CTOD characteristics of weld heat affected zone
JP2002371338A (en) Steel superior in toughness at laser weld
JP2020204091A (en) High strength steel sheet for high heat input welding
WO2013128650A1 (en) Steel material for high-heat-input welding
JP4132928B2 (en) Steel with excellent high heat input weld properties and low yield ratio
JP3825728B2 (en) Steel with excellent weld heat-affected zone toughness
JP7205618B2 (en) steel
JP4356156B2 (en) Steel plate for welded structure with excellent toughness of heat affected zone
JP3502842B2 (en) 600MPa class steel with excellent low YR characteristics and super high heat input weld joint toughness
JP3502851B2 (en) 600MPa class steel with excellent weldability and weld joint toughness
JP3837083B2 (en) One-pass large heat input welding method with excellent weld heat-affected zone toughness
JP3820639B2 (en) Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

R151 Written notification of patent or utility model registration

Ref document number: 3522647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees