JP3820639B2 - Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness - Google Patents

Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness Download PDF

Info

Publication number
JP3820639B2
JP3820639B2 JP22391796A JP22391796A JP3820639B2 JP 3820639 B2 JP3820639 B2 JP 3820639B2 JP 22391796 A JP22391796 A JP 22391796A JP 22391796 A JP22391796 A JP 22391796A JP 3820639 B2 JP3820639 B2 JP 3820639B2
Authority
JP
Japan
Prior art keywords
steel
less
toughness
yield ratio
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22391796A
Other languages
Japanese (ja)
Other versions
JPH1068017A (en
Inventor
浩 壱岐
一志 大西
秀一 鈴木
昌彦 濱田
威 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22391796A priority Critical patent/JP3820639B2/en
Publication of JPH1068017A publication Critical patent/JPH1068017A/en
Application granted granted Critical
Publication of JP3820639B2 publication Critical patent/JP3820639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築、土木、造船などの分野において用いられ、エレクトロスラグ溶接などの大入熱溶接 (溶接入熱 500〜1500KJ/mm)による溶接熱影響部靱性が優れた600 N/mm2 級の低降伏比鋼材の製造法に関する。
【0002】
【従来の技術】
近年、建築、土木分野では建物の高層化、大スパン化により600 N/mm2 級の高強度鋼材を使用する動きが強まり、耐震設計上、鋼材の塑性変形能が重視されるため降伏比を80%程度以下にした高張力鋼板が要求されている。なお、本明細書において鋼材として鋼板をもって以下説明する。
【0003】
また、造船分野でも鋼材の軽量化の観点から高張力化の要望があるものの、アンモニアタンクなど応力腐食割れが懸念される鋼板に対して、降伏応力の上限規定がなされているため実質的に低降伏比高張力鋼板が要求されるようになってきた。通常これらの鋼板はフェライトの生成により低降伏比化を図るため、所定の強度を確保するには成分の組成割合を高める必要があり、従来より溶接性がやや劣るという問題があった。一方、特に溶接施工の合理化を図るにはエレクトロスラグ溶接などの大入熱溶接を行う必要があり、この場合、上述のような鋼種では継手靱性が著しく劣化する。
【0004】
従来より、鋼板の溶接部靱性には、▲1▼オーステナイト (以下γと呼ぶ) 結晶粒径、▲2▼変態組織、▲3▼微細な硬化相の析出状態、および▲4▼鋼板中の固溶N量が大きな影響を及ぼすことが知られており、溶接部靱性改善にはそのような観点から種々の対策が提案されている。
【0005】
例えば、▲1▼および▲2▼に関しては、Tiを微量添加し鋼中にTiN を微細析出させてγ結晶粒の粗大化を抑制する方法 (昭和54年6月発行の「鉄と鋼」第65巻8号1232頁) 、Caを微量添加してCaS およびCaO を生成させ、γ結晶粒の微細化とCaS 、CaO を核とした粒内フェライト (以下αと呼ぶ) の析出とにより組織を微細化する方法 (昭和58年2月発行の「溶接学会誌」第52巻第2号49頁) 、希土類元素 (以下REM と呼ぶ) の酸化物により同様に結晶粒を微細化する方法 (特開昭64−15320 号公報) 、Ti酸化物粒子を核生成サイトとして粒内αを生成させて組織を微細化する方法 (特開昭57−51243 号公報および特開昭61−79745 号公報) 、さらにVとTiを複合添加することにより冷却過程において析出するVNをαの変態核とする方法 (特開平5−186848号公報) 等が提案されている。
【0006】
▲3▼に関しては、低炭素当量化や、SiおよびAlを低減することにより硬化相の析出を抑制する方法 (特開平2−190423号公報) 等が提案されている。また、▲4▼に関しては鋼に含まれるN量を下げる方法、過剰のAlを添加することによりAlN としてNを固定する方法等が提案されている。
【0007】
以上のような方策において、TiN は1400℃以上に加熱される部分では大部分が母材に溶解するとされており、特に大入熱溶接の場合のHAZ 溶融線近傍におけるγ結晶粒の粗大化を免れ得ない。さらに、加熱過程で溶解したTiN は冷却過程において再析出しない。すなわち、TiN が溶解した部分では、冷却過程における粒内でのα変態が起こらず、さらには固溶Nの増加をも招き、HAZ 靱性の劣化を避け得ないという欠点がある。
【0008】
一方、酸化物粒子の利用については、特開昭57−51243 号公報および特開昭61−79745 号公報に、微細に分散させたTiO およびTi2O3 粒子を核として粒内フェライトを生成し組織を微細化する方法が開示されている。Ti酸化物はTiN のように母材に固溶することがないため溶融線近傍のように高温に加熱された領域においてもその効果を持続する点において優れている。しかし、TiO やTi2O3 の分散のみによる靱性改善効果だけでは十分な効果を得ることが困難であり、他の析出粒子との複合利用による靱性改善効果の向上が模索されている。例えば、特開昭62−1842号公報には酸化物とMnS およびTi窒化物の複合利用による靱性改善方法が開示されている。
【0009】
特開平5−78740 号公報ではTi酸化物を微細に分散した鋼は溶融線近傍のγ粒が粗大化した領域 (粗粒域HAZ: 1400 ℃以上に加熱された領域) のHAZ 組織を微細化する効果は大きいが、γ粒径がやや大きい領域 (亜粗粒域:1200〜1350℃に加熱された領域) では、その効果が小さいとの指摘がなされ、Ce酸化物の利用による粒内フェライトの析出促進が提案されている。しかし、Ce酸化物粒子を微細に安定した状態で溶製時に鋼中に均一分散させることは困難であり、実操業的な面で問題が残る。CaやREM についてもCe同様、これらの酸化物を鋼中に微細分散させることは非常に困難であり実操業的に問題が多い。特開平7−278736号公報ではAl−Mn酸化物粒子の分散により溶接熱影響部靱性を改善する方法が開示されている。そこに開示されたAl−Mn酸化物は比較的容易に鋼中に微細分散させ得るが、その組成範囲が狭く精錬条件の許容範囲が小さいという問題がある。
【0010】
低炭素当量化や低Si化、低Al化といった方法による微細硬化相の析出形態制御や固溶N量の低減等の技術は、上述の窒化物もしくは酸化物による靱性改善技術との相乗効果を狙ったものであり、単独でのHAZ 靱性改善効果には自ずと限界があった。
【0011】
また、特開平6−10043 号公報においては低C、B無添加とTi酸化物、Cuの析出硬化を利用した大入熱溶接の場合の溶接熱影響部の靱性に優れた建築用低降伏比600 N/mm2 級鋼板を提案しているが、この場合、確かにFL部の大入熱溶接時の継手靱性は改善されるが上述したようにFLより若干離れたγ粒がやや大きい亜粗粒域では靱性の劣化がおこり、継手全体の靱性向上という問題は未解決のままであった。
【0012】
【発明が解決しようとする課題】
以上のような現状に鑑み、本発明の目的とするところは、大入熱溶接においてHAZ 全域にわたって溶接熱影響部の靱性に優れた600 N/mm2 級の低降伏比鋼材の製造法を提供することにある。
【0013】
より具体的には、本発明の目的は、各ノッチ位置でのシャルピー吸収エネルギー vE0≧47J である溶接熱影響部の靱性に優れた600 N/mm2 級の低降伏比鋼材の製造法を提供することにある。
【0014】
【課題を解決するための手段】
本発明者らは酸化物利用による粒内フェライトの析出促進作用による溶接熱影響部の靱性改善機構を詳細に検討するため、種々の組成の酸化物粒子を分散させた鋼材を実験室規模で溶解し分散した酸化物粒子と粒内フェライトの析出状況について基礎的な検討を行った。その結果、大入熱溶接熱サイクルの冷却途中に多量の粒内フェライトを生成する鋼中には、Mn、Al、Tiを主成分とする複合酸化物粒子が存在することを知見した。また、粒内フェライトの生成核となっている複合酸化物粒子中には種々の組成比率を有するMn−Ti−Al酸化物相が複雑に複合して存在する。
【0015】
ここに、特定組成のAl、Mn、Tiからなる複合酸化物粒子 (以下、単に酸化物粒子という)を微細に分散させることにより、粒内フェライトの析出を促進し大入熱溶接時のHAZ における低温靱性を改善できることを知り、本発明を完成した。本発明は、上記知見に基づきなされてものであり、その要旨は次の通りである。
【0016】
(1) 質量%として
C:0.05〜0.20%、Si:0.02〜0.50%、Mn:0.60〜2.00%、
S:0.030 %以下、Nb:0.005 〜0.05%、Al:0.020 %以下、
Ti:0.020 %以下、O:0.001 〜0.010 %、N:0.010 %以下、
残部がFeおよび不可避的不純物
から成る鋼組成を有し、かつ、下記(1)および(2)式を満たす組成相を有する大きさが1〜10μmの酸化物粒子が平均分散密度1mmあたり4個以上分散した鋼片を、
(1) Mn : 5 〜50at%
(2) (Al+Ti):50〜95at%
ただし、酸化物を構成する全金属元素に対するMn、Al、Tiの原子比率
1000℃から1200℃の温度域に加熱後、Ar点以上で圧延を終了し、その後、鋼材表面温度が Ar−40℃から Ar−100 ℃の間にある温度域から3℃/秒以上の冷却速度で400 ℃以下の温度まで冷却した後、冷却を停止することを特徴とする溶接熱影響部靱性の優れた降伏比 80 %以下の引張強さ 600N/mm 2 以上の低降伏比鋼材の製造法。
【0017】
(2) 前記鋼組成が、強度改善元素群として、質量%で、
Cu:0.05〜0.5 %、Ni:0.05〜0.5 %、
Cr:0.05〜0.5 %、V:0.02〜0.1 %
の1種または2種以上を含有する請求項1記載の溶接熱影響部靱性の優れた低降伏比鋼材の製造法。
【0018】
【発明の実施の形態】
次に、本発明において鋼組成および酸化物粒子の組成、分散状態、さらには熱処理条件を上述のように限定した理由をその作用とともに説明する。
【0019】
本発明によれば、分散した酸化物粒子がMn:5〜50at%、(Al+Ti):50〜95at%の組成域を有していることから溶接後の冷却中に粒内フェライトの析出核となるのである。本発明者らの詳細な実験の結果によれば、分散した酸化物粒子の組成のMnが5at%より小さい場合や50at%より大きい場合、さらに (Al+Ti)が50at%より小さい場合や95at%より大きい場合には、酸化物粒子はフェライトの析出サイトとして機能せず、Mn:5〜50at%、(Al+Ti):50〜95at%の組成のとき初めて析出サイトとして機能する。好ましくはそれぞれMn:20〜35at%、(Al+Ti):60〜70at%である。
【0020】
酸化物粒子の組成調整は、精錬条件、例えば脱酸元素の種類、添加時期、順序、スラグ組成等を種々変えることによって行うことができる。
このような組成相を備えた酸化物粒子はフェライトとの結晶整合性が高いためフェライトの析出サイトとして機能しやすいのではないかと思われる。
【0021】
さらに上記の組成を満たす酸化物粒子が存在する鋼材において、大きさ1〜10μmの粒子が1mm2 あたり4個以上分散していることが必要である。ここに、粒子の「大きさ」とは、分散粒子の平均径 (=粒径の和/粒子数) を言う。
【0022】
粒子の大きさおよび数は、精錬後の凝固過程、特に凝固時の冷却条件を調整することで変更することができる。
本発明者らの詳細な実験結果によれば、酸化物粒子の大きさが1μm未満ではフェライトの析出サイトとしては小さすぎ、逆に10μmより大きい場合は大きすぎていずれもフェライトの析出サイトとして機能しない。
【0023】
また、そのような酸化物粒子の分散数が1mm2 あたり4個未満の場合には組織改善作用が十分に現れずHAZ 靱性が改善されないため個数の下限を4個に限定した。上限は特に制限はなく、通常の条件下では、80個以下程度となる。
【0024】
次に、本発明において鋼組成を上記のように限定した理由について述べる。なお、鋼組成を規定する「%」は、上記の酸化物粒子の場合と異なり、「質量%」である。
【0025】
C:
Cは強度確保のために添加される。このため、0.05%未満ではその効果不足となる。しかし過剰に添加すると溶接熱影響部にマルテンサイト (α')や疑似パーライト (α/Fe3C)を生成してHAZ 靱性を劣化させるとともに母材の靱性および溶接性にも悪影響を及ぼす。そこで、上限を0.20%とする。好ましくは、0.08〜0.15%である。
【0026】
Si:
Siは強度確保の点から有効な元素であり、このため鋼中に0.02%以上の添加が必要である。一方、Siはセメンタイト中に固溶しないため、多量に添加されると未変態γがαとセメンタイトに分解するのを阻害し、微細な硬化組織である島状マルテンサイトの生成を助長しHAZ 靱性を劣化させる。このためその上限を0.50%とする。好ましくは、0.15〜0.30%である。
【0027】
Mn:
Mnは溶鋼の脱酸に有効な元素であり、本発明においてはフェライト析出核となる複合酸化物の構成元素としても必須の元素である。また、強度靱性の確保にも有効な元素である。このため、0.60%以上の添加が必要である。しかし、2.00%を超えた過剰な添加は焼入性をまして溶接性およびHAZ 靱性を劣化させる。好ましくは、1.00〜1.70%である。
【0028】
S:
SもPと同様に鋼に不可避的に含有される不純物元素であるが、特にSが多量に存在する場合、MnS 等の溶接割れ起点となる析出物を形成する。このためSの含有量は低いほど好ましいが、経済的観点を考慮して0.030 %を上限とした。さらに母材靱性、HAZ 靱性を向上させ、スラブ中心偏析も低減するには、0.01%以下とすることが望ましい。
【0029】
Nb:
Nbは結晶粒微細化作用を有し、析出強化により強度を高める元素である。その効果を得るためには、0.005 %以上の添加が必要であるが0.05%を超えて添加すると溶接性、靱性を劣化させるため0.005 〜0.05%の範囲とする。好ましくは、0.010 〜0.030 %である。
【0030】
Al:
Alは本発明においてフェライト析出核となる複合酸化物の構成元素としても必須の元素である。ただし、複合酸化物形成に必要なAl量は計算上では0.0001%程度で十分機能しうるが、この値は分析精度の限界に近いことから特に下限は限定しない。好ましい下限は0.0001%である。一方、Alの過剰な添加は複合酸化物の形成を困難にし、また溶接熱影響部における島状マルテンサイトの増加を招くことからその上限を0.020 %とした。好ましくは、0.01%以下である。
【0031】
Ti:
TiもAl同様、複合酸化物の構成元素として必須である。ただし、Alと同様に複合酸化物形成に必要なTi量は分析限界値に近く特に下限は限定しない。一方、過剰なTiの添加は粗大なTiC の単独析出を招きHAZ 、母材の靱性に有害であるため上限を0.020 %とする。好ましくは、0.015 %以下である。
【0032】
N:
Nは不可避的に鋼に含有される不純物元素であり、過剰に存在すると靱性を低下させる。本発明においても0.01%以下であればその影響が少ないため、上限を0.010 %とした。
【0033】
O:
Oはフェライト析出核となる複合酸化物生成のために最低0.001 %は必要である。しかし、鋼中に過剰にOが存在する場合には母材靱性に悪影響を及ぼすため上限を0.010 %とした。
【0034】
本発明の対象とする低降伏比鋼の基本成分は以上のとおりであり、それにより十分に目的を達成できるが、さらにその特性を高めるため、以下に述べる強度改善元素、すなわちCu、Ni、Cr、Vを選択的に添加すると強度、元素によってはさらに靱性の向上について一層好ましい結果が得られる。
【0035】
V:0.02〜0.1 %
Vは少量の添加により、焼入れ性を増し、焼戻し軟化抵抗を高める元素であり、その効果を得るためには、0.02%以上の添加が必要であるが、0.1 %を超えて添加すると溶接性を害する。したがってV含有量は0.02〜0.1 %の範囲とする。
【0036】
Ni:0.05〜0.5 %
Niは溶接性、HAZ 靱性に悪影響を及ぼすことなく、母材の強度、靱性を向上させるが、0.05%未満では効果が薄く、0.5 %超の添加は建築用鋼材として極めて高価になるため経済性を失うので、上限は0.5 %とした。
【0037】
Cu:0.05〜0.5 %
CuはNiとほぼ同様な効果を持つほか、Cu析出物による高温強度の増加や耐食性、耐候性の向上にも効果を有する。しかし、Cuが0.5 %を超えると熱間圧延時にCu割れが発生し製造が困難になり、0.05%未満では効果がないのでCu量は0.05〜0.5 %と限定する。
【0038】
Cr:0.05〜0.5 %
Crは母材および溶接部の強度を高める元素であり、耐候性の向上にも効果があるが、0.5 %を超えると溶接性やHAZ 靱性を劣化させ、一方、0.05%未満では効果が薄い。従って、Cr量は0.05〜0.5 %とする。
【0039】
次に、本発明によれば、特にそれだけに制限されないが、まず、上記成分系の鋼を転炉、電気炉等で溶製し、連続鋳造あるいは造塊・分塊法により鋼片を鋳造する。鋼片の鋳造にあたっては冷却速度が速い方が複合酸化物粒子の微細分散の観点からは好ましく、鋳造方法は連続鋳造法の方が好ましい。また、同様の理由から連続鋳造におけるスラブ厚は薄い方が、より好ましい。
【0040】
このようにして調製した本発明にかかる鋼組成および酸化物粒子を分散させた鋼片は、熱間圧延を行い、さらに必要により冷間加工を行って最終形状の鋼材として用いられるが、その際に、前述のような粒内フェライトの析出作用、Nb添加による結晶粒微細化の効果を最大限に発揮するには、本発明によれば、厚板加熱、熱間圧延を行い、次いで加速冷却を施し所定の厚みの鋼板を製造するが、その際に最終の熱間圧延の加熱条件、その後の冷却条件を次のように規定する。
【0041】
まず、最終圧延前の加熱温度は添加した元素の固溶のため1000℃以上とする。しかし、1200℃を超えるとオーステナイト粒が粗大化しすぎて圧延により細粒化を図ることが困難になるため1200℃以下とする。
【0042】
これに続く熱間圧延にあっては、圧延終了温度をAr3 以上の高温とする。その理由はAr3 の温度未満の圧延によりフェライト粒が微細化すると、常温の降伏点、YRが大きくなるためである。
【0043】
熱間圧延後の冷却条件は、鋼板表面温度が Ar3−40から Ar3−100 ℃の間にあるときから3℃/秒以上の冷却速度で400 ℃以下の温度まで冷却した後、冷却を停止する必要がある。鋼材の低降伏比化を図るために、適量の初析フェライトを生成させるのである。一方、この場合、強度確保のため3℃/秒以上、好ましくは7℃/秒以上の冷却速度が必要となる。なお、このときの冷却条件の上限は特に規定されないが、通常の処理条件によれば、25℃/秒以下となる。
【0044】
水冷開始、停止温度の限定理由は水冷開始が Ar3−40℃超ではフェライトの生成量が少なく一方、 Ar3−100 ℃未満では逆にフェライトの生成量が多く強度低下が起こるためである。また、400 ℃より停止温度が高いと強度不足となる。
【0045】
【実施例】
表1および表2に示す母材鋼組成、分散酸化物粒子の分散密度および組成を有する供試鋼を実験室規模の真空精錬炉を用いて作製した。分散粒子の酸化物組成を変化させるため、脱酸元素の添加時期、順序を種々変化させた。
鋳造は造塊・分塊法により行い、得られた鋳片を表3に示す条件で熱間圧延し、次いで冷却して鋼板とした。
【0046】
このようにして得られた鋼板について、大きさ1〜10μmの酸化物粒子の分散密度、酸化物粒子組成を調査した。酸化物粒子の平均分散密度は500 倍の光学顕微鏡にてミクロ試料の表面を観察し計測した。
【0047】
酸化物粒子中の本発明が規定する組成の酸化物相の存在の有無は、分散した酸化物粒子をSEM-EDX 装置にて観察し、組成比率を各相ごとに同定することにより確認した。これらの結果は同じく表1、2に示す。
【0048】
このようにして得られた鋼板母材の強度・靱性を調査し、エレクトロスラグ溶接を行い、t/4 よりF.L 、F.L+1mm、F.L+3mmのノッチ位置よりJIS4号シャルピー試験片を加工して衝撃試験に供した。但し、t:板厚、F.L : Fusion Line である。結果は表4にまとめて示す。
【0049】
分散した酸化物粒子の組成変化による母材性能および継手靱性を調査するため、同一の精錬条件で精錬した溶鋼を凝固させるにあたって鋳型寸法を変更することにより、酸化物粒子の分散密度を変化させた。精錬条件を同一とした結果、酸化物粒子の組成はほぼ同一のものが得られた。
【0050】
本発明が規定する組成領域にある組成相を有し、さらに本発明が規定する分散密度を満たしている場合、優れた母材靱性を有するとともに再現溶接熱サイクル条件においても優れた靱性を示した。一方、酸化物粒子の分散数の少ない鋼では、母材の強度および靱性については本発明例と同等の性能を示すが再現HAZ 靱性が著しく劣化することが明らかである。鋼中のS量を低減させてMnS の影響を検討した実施例ではMnS の析出はほとんど観察されなかったが、再現HAZ 靱性は良好な値を示した (本発明例No.8) 。
【0051】
本発明に対応する実施例ではいずれも鋼も本発明の規定する1〜10μmの大きさの酸化物粒子を含有しており、500 〜1500 KJ/mmの大入熱 (エレクトロスラグ溶接) においても安定して高いHAZ 靱性を示す。
【0052】
【表1】

Figure 0003820639
【0053】
【表2】
Figure 0003820639
【0054】
【表3】
Figure 0003820639
【0055】
【表4】
Figure 0003820639
【0056】
【発明の効果】
このように、本発明によれば、溶接入熱500KJ/cm以上の大入熱溶接においてHAZ 全域にわたってシャルピー吸収エネルギー vE0≧47J である溶接熱影響部の靱性に優れた600 N/mm2 級の低降伏比鋼材が容易に製造できることが分かる。
したがって、今日特に求められている溶接熱影響部の靱性に優れた低降伏比鋼材を建築、土木、造船などの各産業分野に効率的に供給できるという優れた作用効果が発揮される。[0001]
BACKGROUND OF THE INVENTION
The present invention is used in the fields of architecture, civil engineering, shipbuilding, and the like, and has a 600 N / mm 2 class excellent in heat-affected zone toughness by high heat input welding (welding heat input 500-1500 KJ / mm) such as electroslag welding. The present invention relates to a method for producing a low yield ratio steel material.
[0002]
[Prior art]
Recently, building, high-rise buildings in civil engineering, intensified movement to use the 600 N / mm 2 class high strength steel by the large spanned, seismic design, the yield ratio for plastic deformability of the steel material is emphasized There is a demand for high-tensile steel sheets that are about 80% or less. In the present specification, a steel plate will be described below as a steel material.
[0003]
Even in the shipbuilding field, there is a demand for higher tension from the viewpoint of weight reduction of steel materials, but the upper limit of the yield stress is made for steel plates that are concerned about stress corrosion cracking, such as ammonia tanks, so it is substantially low. Yield ratio high strength steel sheets have been required. Usually, these steel sheets have a low yield ratio due to the formation of ferrite, so that it is necessary to increase the composition ratio of the components in order to ensure a predetermined strength, and there is a problem that weldability is slightly inferior to the conventional one. On the other hand, in particular, in order to rationalize the welding work, it is necessary to perform high heat input welding such as electroslag welding. In this case, the joint toughness deteriorates remarkably in the above steel types.
[0004]
Conventionally, the weld zone toughness of a steel sheet includes (1) austenite (hereinafter referred to as γ) crystal grain size, (2) transformation structure, (3) precipitation state of fine hardened phase, and (4) solidity in the steel sheet. It is known that the amount of dissolved N has a great effect, and various measures have been proposed for improving the toughness of welds from such a viewpoint.
[0005]
For example, for (1) and (2), a method of suppressing the coarsening of γ crystal grains by adding a small amount of Ti to finely precipitate TiN in the steel (“Iron and Steel” published in June 1979) Vol. 65, No. 8, p. 1232), CaS and CaO are produced by adding a small amount of Ca, and the structure is reduced by refining γ grains and precipitation of intragranular ferrite (hereinafter referred to as α) with CaS and CaO as nuclei. Refinement method (Journal of Welding Society, Journal of Welding Society, Vol.52, No.2, p.49), Method of refinement of crystal grains in the same way by oxides of rare earth elements (hereinafter referred to as REM) (Japanese Unexamined Patent Publication No. 64-15320), and a method for refining the structure by generating intragranular α using Ti oxide particles as nucleation sites (Japanese Unexamined Patent Publication Nos. 57-51243 and 61-79745). Further, there has been proposed a method in which VN that precipitates in the cooling process by adding V and Ti in combination is used as an α transformation nucleus (Japanese Patent Laid-Open No. 5-186848). That.
[0006]
Regarding (3), a method of suppressing the precipitation of the hardened phase by reducing the carbon equivalent or reducing Si and Al (Japanese Patent Laid-Open No. 2-190423) has been proposed. Regarding (4), a method of reducing the amount of N contained in steel, a method of fixing N as AlN by adding excess Al, and the like have been proposed.
[0007]
In the measures described above, TiN is said to be mostly dissolved in the base metal when heated to 1400 ° C or higher, especially in the vicinity of the HAZ melting line in the case of high heat input welding. I can't escape. Furthermore, TiN dissolved in the heating process does not reprecipitate in the cooling process. That is, in the portion where TiN is dissolved, α transformation in the grains during the cooling process does not occur, and further, the solid solution N increases, and there is a disadvantage that deterioration of HAZ toughness cannot be avoided.
[0008]
On the other hand, regarding the use of oxide particles, JP-A-57-51243 and JP-A-61-79745 describe the production of intragranular ferrite with finely dispersed TiO and Ti 2 O 3 particles as nuclei. A method for refining the tissue is disclosed. Since Ti oxide does not dissolve in the base material like TiN, it is excellent in that the effect is maintained even in a region heated to a high temperature such as in the vicinity of the melting line. However, it is difficult to obtain a sufficient effect only by the effect of improving the toughness only by the dispersion of TiO 2 or Ti 2 O 3 , and the improvement of the toughness improving effect by the combined use with other precipitated particles is being sought. For example, JP-A-62-1842 discloses a method for improving toughness by the combined use of oxide, MnS and Ti nitride.
[0009]
According to Japanese Patent Laid-Open No. 5-78740, the steel in which Ti oxide is finely dispersed refines the HAZ structure in the region where the γ grains near the melting line are coarsened (coarse region HAZ: region heated to 1400 ° C or higher). However, in the region where the γ grain size is slightly large (sub-coarse grain region: region heated to 1200 to 1350 ° C), it is pointed out that the effect is small, and intragranular ferrite by using Ce oxide Acceleration of precipitation is proposed. However, it is difficult to uniformly disperse the Ce oxide particles in the steel at the time of melting in a fine and stable state, and problems remain in practical operation. Regarding Ca and REM, like Ce, it is very difficult to finely disperse these oxides in steel, and there are many practical problems. Japanese Patent Application Laid-Open No. 7-278736 discloses a method for improving the weld heat affected zone toughness by dispersing Al-Mn oxide particles. Although the Al-Mn oxide disclosed therein can be finely dispersed in steel relatively easily, there is a problem that the composition range is narrow and the allowable range of refining conditions is small.
[0010]
Technologies such as the control of the precipitation form of the fine hardening phase and the reduction of the amount of solid solution N by methods such as low carbon equivalent, low Si, and low Al have a synergistic effect with the above-mentioned toughness improvement technology using nitride or oxide. It was aimed, and the HAZ toughness improvement effect by itself was naturally limited.
[0011]
Japanese Patent Laid-Open No. 6-10043 discloses a low yield ratio for construction which is excellent in toughness of the weld heat affected zone in the case of large heat input welding using low C, B additive and Ti oxide, Cu precipitation hardening. Although a 600 N / mm grade 2 steel plate has been proposed, in this case, the joint toughness during large heat input welding of the FL part is certainly improved, but as described above, the γ grains slightly apart from the FL are slightly larger. In the coarse grain region, the toughness deteriorated, and the problem of improving the toughness of the entire joint remained unsolved.
[0012]
[Problems to be solved by the invention]
In view of the current situation as described above, the object of the present invention is to provide a method for producing a 600 N / mm 2 class low yield ratio steel material with excellent toughness of the weld heat affected zone over the entire HAZ in high heat input welding. There is to do.
[0013]
More specifically, the object of the present invention is to produce a 600 N / mm 2 class low yield ratio steel material with excellent toughness of the weld heat affected zone where Charpy absorbed energy vE 0 ≧ 47 J at each notch position. It is to provide.
[0014]
[Means for Solving the Problems]
In order to investigate in detail the toughness improvement mechanism of the weld heat-affected zone due to the precipitation promoting effect of intragranular ferrite by using oxides, the present inventors dissolved steel materials in which oxide particles of various compositions are dispersed on a laboratory scale. A basic study was conducted on the precipitation of dispersed oxide particles and intragranular ferrite. As a result, it was found that composite oxide particles mainly composed of Mn, Al, and Ti exist in steel that generates a large amount of intragranular ferrite during the cooling of the high heat input welding heat cycle. In addition, complex oxide particles having various composition ratios are complexly present in complex oxide particles serving as nuclei for intragranular ferrite.
[0015]
Here, composite oxide particles composed of Al, Mn, and Ti with a specific composition (hereinafter simply referred to as oxide particles) are finely dispersed to promote precipitation of intragranular ferrite, and in HAZ during high heat input welding Knowing that low temperature toughness can be improved, the present invention has been completed. This invention is made | formed based on the said knowledge, The summary is as follows.
[0016]
(1) As mass% C: 0.05-0.20%, Si: 0.02-0.50%, Mn: 0.60-2.00%,
S: 0.030% or less, Nb: 0.005 to 0.05%, Al: 0.020% or less,
Ti: 0.020% or less, O: 0.001 to 0.010%, N: 0.010% or less,
Oxide particles with a size of 1 to 10 μm having a steel composition consisting of Fe and inevitable impurities and having a composition phase satisfying the following formulas (1) and (2) are 4 per 1 mm 2 of average dispersion density: Steel pieces dispersed more than one piece,
(1) Mn: 5-50at%
(2) (Al + Ti): 50-95at%
However, the atomic ratio of Mn, Al, Ti to all metal elements constituting the oxide
After heating from 1000 ° C. to a temperature range of 1200 ° C., and ends the rolling at Ar 3 point or more, then, the temperature range where the steel material surface temperature is between the Ar 3 -100 ° C. from Ar 3 -40 ° C. 3 ° C. / sec Excellent yield ratio of weld heat-affected zone toughness with a tensile strength of 80 % or less , low yield ratio of 600N / mm 2 or more, characterized by cooling to 400 ° C or less at the above cooling rate Steel manufacturing method.
[0017]
(2) The steel composition is in mass% as a strength improving element group,
Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%,
Cr: 0.05-0.5%, V: 0.02-0.1%
The method for producing a low yield ratio steel material having excellent weld heat affected zone toughness according to claim 1, comprising one or more of the above.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the steel composition and the composition of oxide particles, the dispersion state, and the heat treatment conditions are limited as described above in the present invention will be described together with the operation thereof.
[0019]
According to the present invention, since the dispersed oxide particles have a composition range of Mn: 5 to 50 at% and (Al + Ti): 50 to 95 at%, precipitation of intragranular ferrite during cooling after welding. It will be the nucleus. According to the results of detailed experiments by the present inventors, when the Mn of the composition of the dispersed oxide particles is smaller than 5 at% or larger than 50 at%, (Al + Ti) is smaller than 50 at% or 95 at%. When it is larger than%, the oxide particles do not function as ferrite precipitation sites, and function as precipitation sites only when the composition is Mn: 5 to 50 at% and (Al + Ti): 50 to 95 at%. Preferably, Mn: 20 to 35 at% and (Al + Ti): 60 to 70 at%, respectively.
[0020]
The composition adjustment of the oxide particles can be performed by variously changing the refining conditions, for example, the type of deoxidation element, the addition timing, the order, the slag composition, and the like.
It seems that oxide particles having such a composition phase are likely to function as ferrite precipitation sites because of their high crystal matching with ferrite.
[0021]
Furthermore, in the steel material in which oxide particles satisfying the above composition are present, it is necessary that 4 or more particles having a size of 1 to 10 μm are dispersed per 1 mm 2 . Here, the “size” of the particles refers to the average diameter of dispersed particles (= sum of particle diameters / number of particles).
[0022]
The size and number of particles can be changed by adjusting the solidification process after refining, particularly the cooling conditions during solidification.
According to the detailed experimental results of the present inventors, if the size of the oxide particles is less than 1 μm, it is too small as a ferrite precipitation site, and conversely if it is larger than 10 μm, both are too large to function as ferrite precipitation sites. do not do.
[0023]
In addition, when the number of dispersed oxide particles is less than 4 per 1 mm 2 , the structure improving action does not sufficiently appear and the HAZ toughness is not improved, so the lower limit of the number is limited to 4. The upper limit is not particularly limited, and is about 80 or less under normal conditions.
[0024]
Next, the reason why the steel composition is limited as described above in the present invention will be described. Note that “%” defining the steel composition is “ mass% ”, unlike the case of the above oxide particles.
[0025]
C:
C is added to ensure strength. For this reason, if it is less than 0.05%, the effect is insufficient. However, if added excessively, martensite (α ') and pseudo pearlite (α / Fe 3 C) are generated in the weld heat affected zone to deteriorate the HAZ toughness and adversely affect the toughness and weldability of the base metal. Therefore, the upper limit is made 0.20%. Preferably, it is 0.08 to 0.15%.
[0026]
Si:
Si is an effective element from the viewpoint of securing strength, and for this reason, it is necessary to add 0.02% or more to the steel. On the other hand, since Si does not dissolve in cementite, when added in a large amount, it inhibits the decomposition of untransformed γ into α and cementite, and promotes the formation of island-like martensite, which is a fine hardened structure. Deteriorate. Therefore, the upper limit is 0.50%. Preferably, it is 0.15-0.30%.
[0027]
Mn:
Mn is an element effective for deoxidation of molten steel, and in the present invention, Mn is an essential element as a constituent element of the composite oxide serving as a ferrite precipitation nucleus. It is also an effective element for securing strength toughness. For this reason, addition of 0.60% or more is necessary. However, excessive addition exceeding 2.00% improves hardenability and deteriorates weldability and HAZ toughness. Preferably, it is 1.00 to 1.70%.
[0028]
S:
S is also an impurity element inevitably contained in steel like P, but particularly when a large amount of S is present, precipitates such as MnS and the like that form weld cracks are formed. For this reason, the lower the S content, the better. However, considering the economic viewpoint, the upper limit was made 0.030%. Furthermore, in order to improve the base metal toughness and HAZ toughness and reduce slab center segregation, it is desirable to make it 0.01% or less.
[0029]
Nb:
Nb is an element having a crystal grain refining effect and increasing strength by precipitation strengthening. In order to obtain the effect, addition of 0.005% or more is necessary. However, if over 0.05% is added, the weldability and toughness are deteriorated, so the range is 0.005 to 0.05%. Preferably, it is 0.010 to 0.030%.
[0030]
Al:
In the present invention, Al is an essential element as a constituent element of the composite oxide that becomes a ferrite precipitation nucleus. However, although the amount of Al necessary for forming the complex oxide can function satisfactorily at about 0.0001% in calculation, this value is close to the limit of analysis accuracy, so the lower limit is not particularly limited. A preferred lower limit is 0.0001%. On the other hand, excessive addition of Al makes it difficult to form complex oxides and causes an increase in island martensite in the weld heat affected zone, so the upper limit was made 0.020%. Preferably, it is 0.01% or less.
[0031]
Ti:
Ti, like Al, is essential as a constituent element of the complex oxide. However, as with Al, the amount of Ti required for complex oxide formation is close to the analysis limit value, and the lower limit is not particularly limited. On the other hand, excessive addition of Ti leads to coarse precipitation of TiC, which is harmful to the toughness of HAZ and the base metal, so the upper limit is made 0.020%. Preferably, it is 0.015% or less.
[0032]
N:
N is an impurity element inevitably contained in the steel, and if it exists in excess, toughness is reduced. In the present invention, the effect is small if it is 0.01% or less, so the upper limit was made 0.010%.
[0033]
O:
O is required to be at least 0.001% in order to form a composite oxide that becomes ferrite precipitation nuclei. However, if excessive O is present in the steel, the toughness of the base metal is adversely affected, so the upper limit was made 0.010%.
[0034]
The basic components of the low yield ratio steel that is the object of the present invention are as described above, and thereby the object can be sufficiently achieved, but in order to further enhance its properties, the following strength improving elements, namely Cu, Ni, Cr When V is selectively added, a more preferable result can be obtained in terms of further improving toughness depending on strength and elements.
[0035]
V: 0.02 to 0.1%
V is an element that increases hardenability and enhances temper softening resistance by adding a small amount. To obtain the effect, 0.02% or more is necessary to be added, but if added over 0.1%, weldability is improved. Harm. Therefore, the V content is in the range of 0.02 to 0.1%.
[0036]
Ni: 0.05-0.5%
Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, but the effect is low at less than 0.05%, and the addition of more than 0.5% is extremely expensive as a steel for construction. The upper limit was made 0.5%.
[0037]
Cu: 0.05-0.5%
Cu has almost the same effect as Ni, and also has the effect of increasing high-temperature strength, corrosion resistance, and weather resistance due to Cu precipitates. However, if Cu exceeds 0.5%, Cu cracking occurs during hot rolling, making the production difficult, and if it is less than 0.05%, there is no effect, so the Cu amount is limited to 0.05 to 0.5%.
[0038]
Cr: 0.05-0.5%
Cr is an element that enhances the strength of the base metal and the weld and is effective in improving the weather resistance. However, if it exceeds 0.5%, it degrades the weldability and HAZ toughness, while it is less effective if it is less than 0.05%. Therefore, the Cr content is 0.05 to 0.5%.
[0039]
Next, according to the present invention, although not particularly limited thereto, first, the above-described component steel is melted in a converter, an electric furnace, or the like, and a steel slab is cast by continuous casting or ingot-and-bundling method. In casting a steel slab, a faster cooling rate is preferable from the viewpoint of fine dispersion of composite oxide particles, and a continuous casting method is more preferable as a casting method. For the same reason, it is more preferable that the slab thickness in continuous casting is thinner.
[0040]
The steel slab in which the steel composition and oxide particles according to the present invention thus prepared are dispersed is hot-rolled and further cold-worked as necessary to be used as the final shape steel material. In addition, in order to maximize the effect of precipitation of intragranular ferrite as described above and the effect of grain refinement by adding Nb, according to the present invention, thick plate heating and hot rolling are performed, followed by accelerated cooling. In this case, the final hot rolling heating conditions and the subsequent cooling conditions are defined as follows.
[0041]
First, the heating temperature before the final rolling is set to 1000 ° C. or higher because of the solid solution of the added element. However, if the temperature exceeds 1200 ° C., the austenite grains become too coarse and it is difficult to reduce the size by rolling.
[0042]
In the subsequent hot rolling, the rolling end temperature is set to a high temperature of Ar 3 or higher. The reason is that when the ferrite grains are refined by rolling below the temperature of Ar 3 , the yield point and YR at room temperature increase.
[0043]
Cooling conditions after hot rolling, after the steel sheet surface temperature was cooled from Ar 3 -40 to a temperature of 400 ° C. or less at 3 ° C. / sec or more cooling rate from the time which is between the Ar 3 -100 ° C., cooling I need to stop. An appropriate amount of pro-eutectoid ferrite is generated in order to reduce the yield ratio of steel. On the other hand, in this case, a cooling rate of 3 ° C./second or more, preferably 7 ° C./second or more is required to ensure strength. In addition, although the upper limit of the cooling conditions at this time is not particularly defined, it is 25 ° C./second or less according to normal processing conditions.
[0044]
The reason for limiting the water cooling start and stop temperature is that when the water cooling start is above Ar 3 −40 ° C., the amount of ferrite produced is small, whereas when it is below Ar 3 −100 ° C., the amount of ferrite produced is large and the strength is lowered. Also, if the stop temperature is higher than 400 ° C, the strength is insufficient.
[0045]
【Example】
Test steels having the base steel composition, dispersion oxide particle dispersion density and composition shown in Tables 1 and 2 were prepared using a laboratory-scale vacuum refining furnace. In order to change the oxide composition of the dispersed particles, the addition timing and order of the deoxidizing elements were variously changed.
Casting was performed by the ingot-making / splitting method, and the obtained slab was hot-rolled under the conditions shown in Table 3, and then cooled to obtain a steel plate.
[0046]
The steel sheet thus obtained was examined for the dispersion density and oxide particle composition of oxide particles having a size of 1 to 10 μm. The average dispersion density of the oxide particles was measured by observing the surface of the micro sample with a 500 × optical microscope.
[0047]
The presence or absence of the oxide phase having the composition defined by the present invention in the oxide particles was confirmed by observing the dispersed oxide particles with a SEM-EDX apparatus and identifying the composition ratio for each phase. These results are also shown in Tables 1 and 2.
[0048]
The strength and toughness of the steel plate base material obtained in this way was investigated, electroslag welding was carried out, and JIS No. 4 Charpy test piece from FL, F.L + 1mm, F.L + 3mm notch positions from t / 4. Was subjected to an impact test. Where t: thickness, FL: Fusion Line. The results are summarized in Table 4.
[0049]
In order to investigate the base metal performance and joint toughness due to the composition change of dispersed oxide particles, the dispersion density of oxide particles was changed by changing the mold dimensions when solidifying molten steel refined under the same refining conditions . As a result of making the refining conditions the same, oxide particles having almost the same composition were obtained.
[0050]
When having a composition phase in the composition region defined by the present invention and further satisfying the dispersion density defined by the present invention, it exhibited excellent base material toughness and excellent toughness even under reproducible welding heat cycle conditions. . On the other hand, it is clear that steel with a small number of dispersed oxide particles shows the same strength and toughness of the base material as the example of the present invention, but the reproduced HAZ toughness is significantly deteriorated. In the example in which the effect of MnS was examined by reducing the amount of S in the steel, almost no precipitation of MnS was observed, but the reproduced HAZ toughness showed a good value (Invention Example No. 8).
[0051]
In all of the examples corresponding to the present invention, the steel contains oxide particles having a size of 1 to 10 μm as defined in the present invention, and even at a large heat input (electroslag welding) of 500 to 1500 KJ / mm. Stable and high HAZ toughness.
[0052]
[Table 1]
Figure 0003820639
[0053]
[Table 2]
Figure 0003820639
[0054]
[Table 3]
Figure 0003820639
[0055]
[Table 4]
Figure 0003820639
[0056]
【The invention's effect】
Thus, according to the present invention, 600 N / mm class 2 excellent in the toughness of the weld heat affected zone having Charpy absorbed energy vE 0 ≧ 47 J over the entire HAZ in high heat input welding with a heat input of 500 KJ / cm or more. It can be seen that a low yield ratio steel can be easily manufactured.
Therefore, the excellent effect of being able to efficiently supply the low yield ratio steel material excellent in toughness of the weld heat affected zone, which is particularly required today, to various industrial fields such as construction, civil engineering, shipbuilding, etc. is exhibited.

Claims (2)

質量%として
C:0.05〜0.20%、Si:0.02〜0.50%、Mn:0.60〜2.00%、
S:0.030 %以下、Nb:0.005 〜0.05%、Al:0.020 %以下、
Ti:0.020 %以下、O:0.001 〜0.010 %、N:0.010 %以下、
残部がFeおよび不可避的不純物
から成る鋼組成を有し、かつ、下記(1)および(2)式を満たす組成相を有する大きさが1〜10μmの酸化物粒子が平均分散密度1mmあたり4個以上分散した鋼片を、
(1) Mn : 5 〜50at%
(2) (Al+Ti):50〜95at%
ただし、酸化物を構成する全金属元素に対するMn、Al、Tiの原子比率
1000℃から1200℃の温度域に加熱後、Ar点以上で圧延を終了し、その後、鋼材表面温度が Ar−40℃から Ar−100 ℃の間にある温度域から3℃/秒以上の冷却速度で400 ℃以下の温度まで冷却した後、冷却を停止することを特徴とする溶接熱影響部靱性の優れた降伏比 80 %以下の引張強さ 600N/mm 2 以上の低降伏比鋼材の製造法。
As mass% C: 0.05-0.20%, Si: 0.02-0.50%, Mn: 0.60-2.00%,
S: 0.030% or less, Nb: 0.005 to 0.05%, Al: 0.020% or less,
Ti: 0.020% or less, O: 0.001 to 0.010%, N: 0.010% or less,
Oxide particles with a size of 1 to 10 μm having a steel composition consisting of Fe and inevitable impurities and having a composition phase satisfying the following formulas (1) and (2) are 4 per 1 mm 2 of average dispersion density: Steel pieces dispersed more than one piece,
(1) Mn: 5-50at%
(2) (Al + Ti): 50-95at%
However, the atomic ratio of Mn, Al, Ti to all metal elements constituting the oxide
After heating from 1000 ° C. to a temperature range of 1200 ° C., and ends the rolling at Ar 3 point or more, then, the temperature range where the steel material surface temperature is between the Ar 3 -100 ° C. from Ar 3 -40 ° C. 3 ° C. / sec Excellent yield ratio of weld heat-affected zone toughness with a tensile strength of 80 % or less , low yield ratio of 600N / mm 2 or more, characterized by cooling to 400 ° C or less at the above cooling rate Steel manufacturing method.
前記鋼組成が、強度改善元素群として、質量%で、
Cu:0.05〜0.5 %、Ni:0.05〜0.5 %、
Cr:0.05〜0.5 %、V:0.02〜0.1 %
の1種または2種以上を含有する請求項1記載の溶接熱影響部靱性の優れた低降伏比鋼材の製造法。
The steel composition is, as a strength improving element group, in mass% ,
Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%,
Cr: 0.05-0.5%, V: 0.02-0.1%
The method for producing a low yield ratio steel material having excellent weld heat affected zone toughness according to claim 1, comprising one or more of the above.
JP22391796A 1996-08-26 1996-08-26 Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness Expired - Fee Related JP3820639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22391796A JP3820639B2 (en) 1996-08-26 1996-08-26 Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22391796A JP3820639B2 (en) 1996-08-26 1996-08-26 Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness

Publications (2)

Publication Number Publication Date
JPH1068017A JPH1068017A (en) 1998-03-10
JP3820639B2 true JP3820639B2 (en) 2006-09-13

Family

ID=16805746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22391796A Expired - Fee Related JP3820639B2 (en) 1996-08-26 1996-08-26 Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness

Country Status (1)

Country Link
JP (1) JP3820639B2 (en)

Also Published As

Publication number Publication date
JPH1068017A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
EP2434027B1 (en) Steel material for high heat input welding
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP5172391B2 (en) Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
JPWO2010013358A1 (en) High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-section steel and methods for producing them
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP2014198866A (en) Low yield ratio high tensile steel sheet excellent in heat affected zone toughness and method of producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2011208213A (en) Low-yield ratio high-tensile strength thick steel plate having excellent weld crack resistance and weld heat-affected zone toughness
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness
JP3820639B2 (en) Manufacturing method of low yield ratio steel with excellent weld heat affected zone toughness
WO2013128650A1 (en) Steel material for high-heat-input welding
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2004162076A (en) Steel plate excellent in weldability and earthquake resistance, and its production method
JP2005060836A (en) High-strength steel sheet superior in toughness of weld heat-affected zone, and manufacturing method therefor
JP2002317242A (en) High tensile strength steel for welding structure used under low temperature having excellent weld heat affected zone toughness
JP2004003012A (en) High-strength steel sheet superior in toughness of weld heat-affected zone, and manufacturing method therefor
JP4356156B2 (en) Steel plate for welded structure with excellent toughness of heat affected zone

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees