JP3520818B2 - H-shaped steel for high-strength support with excellent strain-age aging embrittlement resistance - Google Patents

H-shaped steel for high-strength support with excellent strain-age aging embrittlement resistance

Info

Publication number
JP3520818B2
JP3520818B2 JP28855399A JP28855399A JP3520818B2 JP 3520818 B2 JP3520818 B2 JP 3520818B2 JP 28855399 A JP28855399 A JP 28855399A JP 28855399 A JP28855399 A JP 28855399A JP 3520818 B2 JP3520818 B2 JP 3520818B2
Authority
JP
Japan
Prior art keywords
less
steel
content
strength
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28855399A
Other languages
Japanese (ja)
Other versions
JP2001107174A (en
Inventor
眞司 三田尾
泰康 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP28855399A priority Critical patent/JP3520818B2/en
Publication of JP2001107174A publication Critical patent/JP2001107174A/en
Application granted granted Critical
Publication of JP3520818B2 publication Critical patent/JP3520818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、坑道やトンネル等
の掘削断面を支持する強度部材として用いられる鋼アー
チ支保工用H形鋼に関し、詳しくは、安価に製造可能で
且つ良好な耐歪時効脆化性を有する、降伏強度が440
MPa以上で引張強度が590MPa以上の高強度支保
工用H形鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an H-section steel for steel arch support used as a strength member for supporting an excavated section such as a tunnel or a tunnel. More specifically, it can be manufactured at low cost and has good strain aging resistance. Brittleness, yield strength 440
The present invention relates to a high-strength H-section steel for supporting and supporting, which has a tensile strength of 590 MPa or more at MPa or more.

【0002】[0002]

【従来の技術】坑道やトンネル等の掘削断面を支持する
強度部材として、形鋼をアーチ状に加工した鋼アーチ支
保工が広く用いられている。鋼アーチ支保工用H形鋼に
は、主に良好な延性、良好な冷間加工性、更に良好な溶
接性が求められ、従来から主にJISG3101に定め
られているSS400相当の鋼材が用いられている。し
かし、近年の掘削機器の大型化やトンネル幅の拡大化に
伴い、掘削断面が大型化し、更に扁平化する傾向があ
り、鋼アーチ支保工にも高強度化が求められている。
又、高強度化により支保工用形鋼の断面積が低減できれ
ば、鋼材使用量、運搬費の縮小を図ることが可能であ
り、坑道やトンネル等の掘削構造物の施工コストの削減
に寄与する。
2. Description of the Related Art As a strength member for supporting an excavated cross section such as a tunnel or a tunnel, a steel arch support structure formed by processing a shaped steel into an arch shape is widely used. Steel H-shaped steel for arch support is mainly required to have good ductility, good cold workability, and good weldability. Conventionally, steel materials equivalent to SS400 specified in JISG3101 have been used. ing. However, with the recent increase in the size of excavating equipment and the expansion of the tunnel width, the excavated cross section tends to be enlarged and flattened, and the steel arch support is also required to have high strength.
Also, if the cross-sectional area of the structural steel for supporting work can be reduced by increasing the strength, it is possible to reduce the amount of steel used and the transportation cost, and contribute to the reduction of the construction cost of excavated structures such as tunnels and tunnels. .

【0003】このような要求に応え、590MPa以上
の引張強度を有する高強度支保工用H形鋼に関する技術
が、特開平10−152751号公報、特開平10−1
76240号公報、及び特開平10−195603号公
報等に開示されている。
In response to such demands, a technique relating to a high-strength H-shaped steel for supporting and supporting having a tensile strength of 590 MPa or more is disclosed in JP-A-10-152751 and JP-A-10-1.
No. 76240 and Japanese Patent Laid-Open No. 10-195603.

【0004】ところで、鋼アーチ支保工はH形鋼を冷間
加工によりアーチ状に成形して製造される。従って、基
本的な母材の機械特性に加え、冷間加工後の機械特性が
重要になる。特に、冷間加工後の機械特性の経時変化に
は注意を要する。この冷間加工後の延性及び靭性の経時
変化は、歪時効によって引き起こされる。歪時効は、冷
間加工により鋼材中に導入された転位周辺に、主に鋼中
に固溶しているN原子が時間の経過に伴い拡散して集ま
り、所謂「雰囲気」を形成することにより転位が動き難
くなり、引き起こされる。従って、従来から高強度支保
工用H形鋼においては鋼中のN含有量に対して配慮され
ている。
By the way, the steel arch support is manufactured by forming H-section steel into an arch shape by cold working. Therefore, in addition to the basic mechanical properties of the base metal, the mechanical properties after cold working become important. In particular, attention should be paid to the change with time of mechanical properties after cold working. The temporal change in ductility and toughness after cold working is caused by strain aging. Strain aging is due to the formation of a so-called "atmosphere" where N atoms mainly in solid solution in the steel diffuse and gather around the dislocations introduced into the steel material by cold working and diffuse over time. Dislocations become difficult to move and are triggered. Therefore, in the conventional H-section steel for high-strength support, consideration has been given to the N content in the steel.

【0005】例えば、特開平10−195603号公報
では、N含有量を0.0050重量%(以下、単に
「%」と表示する)以下に規定し、又、特開平10−1
52751号公報では、N含有量を0.0150%以下
とし、且つ下記の(3)式で定義されるNsの値を0.
0030%以下に規定している。ここで、(3)式で定
義されるNs値は鋼中に固溶しているN量を表す指標と
推察される。何故なら、NはTi、V、Nbと反応して
これらとの化合物を形成し、鋼中の固溶N量が低減する
からである。尚、(3)式において%N、%Ti、%
V、%Nbはそれぞれの元素の鋼中含有量を表してい
る。 Ns=[%N]-(10 ×[%Ti]/48+4×[%V]/51+3 ×[%Nb]/93……(3)
For example, in Japanese Unexamined Patent Publication No. 10-195603, the N content is specified to be 0.0050% by weight (hereinafter simply referred to as "%") or less, and in Japanese Unexamined Patent Publication No. 10-1.
In Japanese Patent No. 52751, the N content is 0.0150% or less, and the value of Ns defined by the following formula (3) is 0.
It is specified to be 0030% or less. Here, the Ns value defined by the equation (3) is presumed to be an index representing the amount of N dissolved in steel. This is because N reacts with Ti, V, and Nb to form a compound with them, and the amount of solute N in steel decreases. In the formula (3),% N,% Ti,%
V and% Nb represent the content of each element in steel. Ns = [% N]-(10 × [% Ti] / 48 + 4 × [% V] / 51 + 3 × [% Nb] / 93 …… (3)

【0006】一方、本発明者等の経験では、例えば0.
0150%のNを含有するV添加鋼を考えた場合、V含
有量が0.09%であっても窒化物の析出により十分な
強度を確保しつつ、固溶N量を十分に低減させることが
でき、歪時効後も十分な伸びを確保可能であることを確
認している。しかしながら、この成分系の鋼は上記
(3)式を満足していない。これは、従来、鋼中の固溶
N量の把握が十分になされていないためにN含有量を過
剰に規制していること、或いは、Nを窒化物等で固定す
るためにV等を過剰に添加していることを示唆してお
り、それ故、VNの析出による鋼の強化機構そのものが
過剰に規制されていたと云わざるを得ない。
On the other hand, according to the experience of the present inventors, for example, 0.
Considering a V-added steel containing 0150% N, it is necessary to sufficiently reduce the amount of solute N while securing sufficient strength by precipitation of nitride even if the V content is 0.09%. It has been confirmed that it is possible to secure sufficient elongation even after strain aging. However, the steel of this component system does not satisfy the above formula (3). This is because the amount of solid solution N in steel has not been sufficiently grasped in the past, so the N content is excessively regulated, or V is excessive in order to fix N with nitride or the like. Therefore, it cannot be said that the strengthening mechanism itself of the steel due to the precipitation of VN was excessively regulated.

【0007】形鋼圧延のように、未再結晶領域における
十分な圧下とNb等のマイクロアロイ添加との組合せに
よる強化機構を十分に安定して得難い場合には、バナジ
ウム窒化物(VN)による強化は、圧延ままで安定した
強度を得るための好適な強化方法である。しかし、鋼中
N含有量に関するこれまでの過剰な規制のため、従来、
支保工用H形鋼に対してこの強化方法が十分に活用され
ていなかった。
When it is difficult to obtain a strengthening mechanism by combining a sufficient reduction in an unrecrystallized region and the addition of a microalloy such as Nb in a sufficiently stable manner, as in the case of shaped steel rolling, strengthening by vanadium nitride (VN) Is a suitable strengthening method for obtaining stable strength as rolled. However, because of the excessive regulation of N content in steel,
This strengthening method has not been fully utilized for H-section steel for supporting work.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記事情に鑑
みなされたもので、その目的とするところは、従来、歪
時効を引き起こす元凶とされて過剰に規制されていたN
を安価な強化元素として積極的に活用することで、その
製造コストが安価であり且つ耐歪時効脆化性に優れた、
降伏強度が440MPa以上で引張強度が590MPa
以上の高強度支保工用H形鋼を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to control excessively N which has been conventionally regarded as a cause of causing strain aging.
By positively utilizing as a cheap strengthening element, its manufacturing cost is low and excellent in strain aging embrittlement resistance,
Yield strength of 440 MPa or more and tensile strength of 590 MPa
It is an object of the present invention to provide the above H-shaped steel for high strength support.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明者等は、オーステナイト中のVNの溶解度及
び電解抽出残渣のN分析データを収集して、鋼中の固溶
N量をより正確に把握し、同時に、固溶N量と歪時効後
の鋼材の伸び低下との関係について系統的な研究を行
い、その結果、歪時効後にも十分な伸びを有するN及び
Vの成分範囲が存在することを突き止めた。即ち、歪時
効を引き起こす元凶として、従来過剰に制約されていた
Nを安価な強化元素として積極的に添加しても、適正量
のVを添加することで、歪時効による延性低下を抑制で
きるとの知見を得た。
In order to solve the above-mentioned problems, the present inventors have collected the solubility of VN in austenite and the N analysis data of electrolytic extraction residue to determine the amount of solid solution N in steel. More accurately grasped, and at the same time, systematically studied the relationship between the amount of solute N and the decrease in elongation of steel after strain aging, and as a result, the composition range of N and V that has sufficient elongation even after strain aging. Found out that there is. That is, even if N, which has been conventionally restricted excessively as a cause of causing strain aging, is positively added as an inexpensive strengthening element, it is possible to suppress a decrease in ductility due to strain aging by adding an appropriate amount of V. I got the knowledge of.

【0010】本発明は、上記知見に基づきなされたもの
で、第1の発明は、質量%で、C:0.10〜0.20
%、Si:0.05〜0.65%、Mn:0.9〜1.
8%、N:0.0109〜0.018%、Al:0.0
5%以下、P:0.035%以下、S:0.020%以
下、H:0.0004%以下を含有し、更に、前記N含
有量に応じて下記(1)式の範囲を満足するVを含有
し、残部が実質的にFe及び不可避的不純物からなり、
下記(2)式で定義される炭素当量(Ceq)が0.4
7以下であり、且つフランジ厚みが8mm〜14mmで
あることを特徴とする、降伏強度が440MPa以上で
引張強度が590MPa以上の耐歪時効脆化性に優れた
高強度支保工用H形鋼である。 0.014+3.6*[%N]≦[%V]≦0.044
+3.6*[%N]・・・(1) Ceq=[%C]+[%Mn]/6+[%Si]/24+[%
Cr]/5+[%Mo]/4+[%Ni]/40+[%
V]/14・・・(2)
The present invention has been made based on the above findings. The first invention is C: 0.10 to 0.20 in mass%.
%, Si: 0.05 to 0.65%, Mn: 0.9 to 1.
8%, N: 0.0109 to 0.018% , Al: 0.0
5% or less, P: 0.035% or less, S: 0.020% or less, H: 0.0004% or less, and further satisfy the range of the following formula (1) according to the N content. V, with the balance consisting essentially of Fe and unavoidable impurities,
The carbon equivalent (Ceq) defined by the following formula (2) is 0.4.
A high-strength H-section steel for high-strength supporting work, which has a yield strength of 440 MPa or more and a tensile strength of 590 MPa or more and is excellent in strain aging embrittlement resistance, which is 7 or less and a flange thickness of 8 mm to 14 mm. is there. 0.014 + 3.6 * [% N] ≦ [% V] ≦ 0.044
+3.6 * [% N] ... (1) Ceq = [% C] + [% Mn] / 6 + [% Si] / 24 + [%
Cr] / 5 + [% Mo] / 4 + [% Ni] / 40 + [%
V] / 14 ... (2)

【0011】第2の発明は、質量%で、C:0.10〜
0.20%、Si:0.05〜0.65%、Mn:0.
9〜1.8%、N:0.0108〜0.018%、A
l:0.05%以下、P:0.035%以下、S:0.
020%以下、H:0.0004%以下、更に、Cu:
0.6%以下、Ni:0.6%以下、Cr:0.6%以
下、Mo:0.3%以下、Co:0.6%以下、W:
0.6%以下、Nb:0.1%以下、Ti:0.03%
以下、B:0.0050%以下、Ca:0.0050%
以下、Mg:0.01%以下、REM:0.01%以下
の群から選択された一種または2種以上を含有し、前記
N含有量に応じて下記(1)式の範囲を満足するVを含
有し、残部が実質的にFe及び不可避的不純物からな
り、下記(2)式で定義される炭素当量(Ceq)が
0.47以下であり、且つフランジ厚みが8mm〜14
mmであることを特徴とする、降伏強度が440MPa
以上で引張強度が590MPa以上の耐歪時効脆化性に
優れた高強度支保工用H形鋼である。 0.014+3.6*[%N]≦[%V]≦0.044
+3.6*[%N]・・・(1) Ceq=[%C]+[%Mn]/6+[%Si]/24+[%
Cr]/5+[%Mo]/4+[%Ni]/40+[%
V]/14・・・(2)
The second aspect of the present invention is, in mass%, C: 0.10 to 0.10.
0.20%, Si: 0.05 to 0.65%, Mn: 0.
9-1.8%, N: 0.0108-0.018%, A
1: 0.05% or less, P: 0.035% or less, S: 0.
020% or less, H: 0.0004% or less, and further Cu:
0.6% or less, Ni: 0.6% or less, Cr: 0.6% or less, Mo: 0.3% or less, Co: 0.6% or less, W:
0.6% or less, Nb: 0.1% or less, Ti: 0.03%
Below, B: 0.0050% or less, Ca: 0.0050%
Hereinafter, V containing one or more selected from the group of Mg: 0.01% or less and REM: 0.01% or less and satisfying the range of the following formula (1) according to the N content. And the balance substantially consists of Fe and unavoidable impurities, the carbon equivalent (Ceq) defined by the following formula (2) is 0.47 or less, and the flange thickness is 8 mm to 14 mm.
mm, the yield strength is 440 MPa.
As described above, the H-section steel for high-strength supporting work having a tensile strength of 590 MPa or more and excellent in strain aging embrittlement resistance. 0.014 + 3.6 * [% N] ≦ [% V] ≦ 0.044
+3.6 * [% N] ... (1) Ceq = [% C] + [% Mn] / 6 + [% Si] / 24 + [%
Cr] / 5 + [% Mo] / 4 + [% Ni] / 40 + [%
V] / 14 ... (2)

【0012】以下に、本発明において、降伏強度が44
0MPa以上で引張強度が590MPa以上の高強度を
有し、アーチ状に加工するための優れた冷間加工性、延
性、及び溶接性と、優れた耐歪時効脆化性とを有する鋼
アーチ支保工用H形鋼の化学成分組成を上述したように
限定した理由を、それぞれの作用と共に説明する。
Below, in the present invention, the yield strength is 44.
A steel arch support having a high strength of 0 MPa or more and a tensile strength of 590 MPa or more, and excellent cold workability, ductility, and weldability for processing into an arch shape, and excellent strain aging embrittlement resistance. The reasons for limiting the chemical composition of the H-section steel for industrial use as described above will be explained together with their respective actions.

【0013】C:Cは鋼材の強化には不可欠な元素であ
る。但し、C含有量が0.10%未満では、圧延後放冷
ままでは十分な強度が得られない。一方、0.20%を
越えると延性及び溶接性が低下する。従って、C含有量
は0.10〜0.20%の範囲内に限定しなければなら
ない。
C: C is an essential element for strengthening steel. However, if the C content is less than 0.10%, sufficient strength cannot be obtained by leaving it to cool after rolling. On the other hand, if it exceeds 0.20%, the ductility and weldability deteriorate. Therefore, the C content must be limited to the range of 0.10 to 0.20%.

【0014】Si:Siは脱酸剤として有効であるばか
りでなく、引張強度で590MPa以上の高強度を得る
ための強化元素としても重要な元素である。但し、その
含有量が0.05%未満では、その効果が十分でなく、
一方、0.65%を越えると延性及び溶接性を損なう。
従って、Si含有量は0.05〜0.65%の範囲内に
限定しなければならない。
Si: Si is an element not only effective as a deoxidizing agent, but also an important element as a strengthening element for obtaining a high tensile strength of 590 MPa or more. However, if the content is less than 0.05%, the effect is not sufficient,
On the other hand, if it exceeds 0.65%, ductility and weldability are impaired.
Therefore, the Si content should be limited to the range of 0.05 to 0.65%.

【0015】Mn:Mnは引張強度で590MPa以上
の高強度を得るための強化元素として重要な元素であ
る。しかし、その含有量が0.9%未満では目的とする
強度が得られず、一方、1.8%を越えると溶接性を低
下させる。従って、Mn含有量は0.9〜1.8%の範
囲内に限定しなければならない。
Mn: Mn is an important element as a strengthening element for obtaining a high tensile strength of 590 MPa or more. However, if the content is less than 0.9%, the desired strength cannot be obtained, while if it exceeds 1.8%, the weldability is deteriorated. Therefore, the Mn content should be limited to the range of 0.9 to 1.8%.

【0016】N:本発明では、NはVを析出させて鋼材
を強化するための必須元素である。鋼中の固溶Nが多す
ぎると歪時効脆化を招くが、適度であれば引張試験にお
ける降伏棚を確保し、440MPa以上の降伏強度を得
るために有効な働きをする。また、Vと反応してVNの
形で析出物を形成し、析出強化及び変態組織微細化強化
により、鋼材の強化に大きく寄与する。N含有量が0.
0108%未満(選択元素を含有しない場合は0.01
09%未満)では十分な強化を得ることができない。一
方、0.018%を超えて含有させることは、製鋼操業
上困難であるばかりか、延性を大きく低下させる。従っ
て、N含有量は0.0108%(選択元素を含有しない
場合は0.0109%)〜0.018%に限定しなけれ
ばならない。
N: In the present invention, N is an essential element for precipitating V to strengthen the steel material. If the amount of solute N in the steel is too large, strain aging embrittlement will occur, but if it is appropriate, it acts effectively to secure a yield shelf in a tensile test and obtain a yield strength of 440 MPa or more. Further, it reacts with V to form a precipitate in the form of VN, and contributes greatly to the strengthening of the steel material by the precipitation strengthening and the transformation structure refinement strengthening. N content is 0.
Less than 0108% (0.01% if no selective element is contained)
(Less than 09%) , sufficient reinforcement cannot be obtained. On the other hand, if the content exceeds 0.018%, not only is it difficult in steelmaking operation, but also the ductility is greatly reduced. Therefore, the N content is 0.0108% (does not contain selective elements).
In the case of 0.0109%) to 0.018%.

【0017】V:Vは、鋼中に固溶することによる固溶
強化と、VNを形成することによる析出強化及び変態組
織微細化強化とによって、引張強度で590MPa以上
の高強度を得るための強化元素として必須である。ま
た、VNの形成によりNを消費するため、鋼中の固溶N
を低減させ、耐歪時効脆化性を向上させる作用がある。
本発明のようにNを0.0108(選択元素を含有しな
い場合は0.0109)〜0.018%含む鋼におい
て、VNにより鋼材を強化し且つ固溶Nの低減を図る場
合、以下に説明するように、V含有量が0.014+
3.6*[%N]より少ないと歪時効脆化が大きくな
り、3.5%の予歪を与えた後の250℃で1時間の時
効処理後の常温伸び値を17%以上にすることができな
い。また、Vは添加合金元素として比較的高価であるた
め、0.014+3.6*[%N]を下限値として製鋼
操業上の成分的中立を考慮して定めた0.044+3.
6*[%N]を超えて含有させることは経済的に不利で
あるばかりでなく、延性及び溶接性の低下を招く。従っ
て、V含有量は前述の(1)式の範囲に限定しなければ
ならない。
V: V is for obtaining a high tensile strength of 590 MPa or more by solid solution strengthening by solid solution in steel and precipitation strengthening and transformation structure refinement strengthening by forming VN. It is essential as a strengthening element. Further, since N is consumed by the formation of VN, solid solution N in steel
And has an effect of improving strain aging embrittlement resistance.
As in the present invention, N is 0.0108 (does not contain selective elements).
In the case of steel containing 0.018% to 0.018%, if the steel material is strengthened by VN and the solid solution N is reduced, the V content is 0.014+.
When it is less than 3.6 * [% N], the strain aging embrittlement becomes large, and the room temperature elongation value after aging treatment at 250 ° C for 1 hour after prestraining 3.5% is made 17% or more. I can't. Further, since V is relatively expensive as an additional alloying element, 0.04 + 3.V, which is determined considering the component neutrality in the steelmaking operation, with 0.014 + 3.6 * [% N] as the lower limit value.
Including more than 6 * [% N] is not economically disadvantageous, but also leads to deterioration of ductility and weldability. Therefore, the V content must be limited to the range of the above formula (1).

【0018】以下に、N含有量に応じたV含有量の限定
方法について詳細に説明する。熱間加工中のオーステナ
イトに溶け込むVNの量は溶解度積として知られてい
る。溶解度積は、log 10[%V][%N}=a−b/T
(a、b:常数、T:温度)の形で与えられる。本発明
者等はVNの溶解度積に関する調査を進めると共に、圧
延まま鋼材における固溶N量を電解抽出残渣分析を中心
とした実験及び解析によって解明した。その結果、V及
びNを含有するフランジ厚みが8mm〜14mmである
鋼アーチ支保工用H形鋼の圧延まま鋼材中の固溶N量
は、V含有量及N含有量から下記の(4)式で整理され
ることが分かった。但し、(4)式においてNsoは固溶
N量である。 Nso = [%N]- {([%V]+3.64×[%N])-[([%V]+3.64 ×[%N]) 2 -14.6 ×([%V][%N]- 1.32×10-4)]1/2 }/7.29 ……(4)
The method of limiting the V content according to the N content will be described in detail below. The amount of VN that dissolves in austenite during hot working is known as the solubility product. The solubility product is log 10 [% V] [% N} = ab / T
It is given in the form of (a, b: constant, T: temperature). The present inventors proceeded with the investigation on the solubility product of VN, and clarified the amount of solute N in the as-rolled steel material by experiments and analysis centering on electrolytic extraction residue analysis. As a result, the amount of solid solution N in the as-rolled steel material of the H-section steel for steel arch support having a flange thickness of 8 mm to 14 mm containing V and N is determined by the following (4) from the V content and the N content. It turned out that it was arranged by the formula. However, in the equation (4), Nso is the amount of solid solution N. Nso = [% N]-{([% V] + 3.64 × [% N])-[([% V] + 3.64 × [% N]) 2 -14.6 × ([% V] [% N]- 1.32 × 10 -4 )] 1/2 } /7.29 …… (4)

【0019】この(4)式は、電解抽出残渣中のN分析
値を溶解度積と鋼中のV含有量及びN含有量とから導か
れる二次方程式の解の形で整理した結果から求めたもの
である。尚、フランジ厚みが8mmから14mmまでの
範囲を外れた場合には圧延後の空冷時における冷却速度
が異なるため、上記(4)式が適用できない可能性があ
る。但し、支保工用H形鋼としてフランジ厚みが14m
mを越える形鋼を採用することは、高強度化に基づくS
S400に対する部材軽量化メリットを得ることができ
ない。従って、本発明ではH形鋼のフランジ厚みを8m
m〜14mmに限定した。
This equation (4) was obtained from the result of arranging the N analysis value in the electrolytic extraction residue in the form of a solution of a quadratic equation derived from the solubility product and the V content and N content in steel. It is a thing. When the flange thickness is out of the range of 8 mm to 14 mm, the cooling rate at the time of air cooling after rolling is different, and therefore the above formula (4) may not be applicable. However, as H-shaped steel for supporting work, the flange thickness is 14m.
The adoption of shaped steel exceeding m is due to the strengthening of S
It is not possible to obtain the merit of reducing the weight of members with respect to S400. Therefore, in the present invention, the flange thickness of the H-section steel is 8 m.
It was limited to m to 14 mm.

【0020】一方、歪時効後の伸び値について広範な実
験及び解析を実施した。その結果、圧延まま鋼材の伸び
値と歪時効後の伸び値との差(ΔEl)と、固溶N量
(Nso)との間には明瞭な相関があることを見出した。
即ち、N含有量が0.002〜0.018%の範囲にお
いて、圧延まま鋼材の伸び値と歪時効後の伸び値との差
(ΔEl)と、固溶N量(Nso)との関係は下記の
(5)式で整理されることを確認した。尚、歪時効条件
として予歪を3.5%とし、250℃で1時間の時効処
理を採用した。この予歪の値は、ウェブ高さ(H)が1
50mm、フランジ幅(B)が150mmの鋼アーチ支
保工の冷間加工における最小曲げ半径の目安である曲げ
半径2.2mの加工に相当する歪量である。又、フラン
ジ厚みが8mmから14mmのH形鋼の引張特性は、J
ISZ2201に推奨されているように、通常JIS1
A号試験片にて評価するため、この試験片を用いて引張
試験を実施した。 ΔEl = 26+8.5 ×log 10Nso ……(5)
On the other hand, extensive experiments and analyzes were carried out on the elongation value after strain aging. As a result, it was found that there is a clear correlation between the difference (ΔEl) between the elongation value of the as-rolled steel material and the elongation value after strain aging and the amount of dissolved N (Nso).
That is, when the N content is in the range of 0.002 to 0.018%, the relationship between the difference (ΔEl) between the elongation value of the as-rolled steel and the elongation value after strain aging and the amount of solid solution N (Nso) is It was confirmed that the equation (5) below was used. As the strain aging condition, prestrain was 3.5% and aging treatment at 250 ° C. for 1 hour was adopted. The value of this pre-strain is such that the web height (H) is 1
It is a strain amount corresponding to a bending radius of 2.2 m, which is a standard of the minimum bending radius in cold working of a steel arch support work having a 50 mm flange width (B) of 150 mm. The tensile properties of H-section steel with a flange thickness of 8 mm to 14 mm are J
Normally JIS1 as recommended by ISZ2201
In order to evaluate the No. A test piece, a tensile test was performed using this test piece. ΔEl = 26 + 8.5 × log 10 Nso …… (5)

【0021】従って、歪時効後の伸び値に対して、従
来、鋼アーチ支保工に用いられているSS400鋼材の
当該鋼材厚さ(8〜14mm)に対するJISG310
1に規定される伸び値(17%)と同程度の伸びを保証
する場合、圧延まま鋼材の伸び値(El)から前記
(5)式により定まるΔElを差し引いた値である歪時
効後の伸び値(ElSA)値は17%以上でなければなら
ない。即ち、下記の(6)式を満足しなければならな
い。 ElSA = El - (26+8.5 ×log 10Nso) ≧ 17 ……(6)
Therefore, with respect to the elongation value after strain aging, JISG310 for the steel material thickness (8 to 14 mm) of SS400 steel material conventionally used for steel arch support work.
In order to guarantee the same elongation as the elongation value (17%) specified in 1, the elongation after strain aging, which is the value obtained by subtracting ΔEl determined by the above equation (5) from the elongation value (El) of the as-rolled steel material Value (El SA ) Value must be above 17%. That is, the following expression (6) must be satisfied. El SA = El-(26 + 8.5 × log 10 Nso) ≧ 17 …… (6)

【0022】圧延まま鋼材の伸び値(El)は合金組成
によって異なるが、降伏強度で440〜540MPa、
引張強度で590〜670MPaを満たす板厚8mmか
ら14mmの鋼材の伸びは22%以上の値で分布した。
従って、圧延まま鋼材の伸び値(El)を22%とし
て、前記(4)式及び前記(6)式を考慮することによ
り、歪時効後の伸び値17%を得るための必要最低限の
V含有量が求められる。具体的には圧延まま鋼材の伸び
値(El)を22%として(6)式に代入し、求めた固
溶N量(Nso)を(4)に代入して解析すれば、N含有
量とV含有量との関係を下記の(7)式、即ち(1)式
左辺の不等式として定めることができる。 0.014+3.6 ×[%N]≦[%V]……(7)
The elongation value (El) of the as-rolled steel material varies depending on the alloy composition, but the yield strength is 440 to 540 MPa,
The elongation of the steel material having a plate thickness of 8 mm to 14 mm satisfying the tensile strength of 590 to 670 MPa was distributed at a value of 22% or more.
Therefore, the elongation value (El) of the as-rolled steel is set to 22%, and by considering the above equations (4) and (6), the minimum required V for obtaining the elongation value after strain aging of 17% is obtained. The content is required. Specifically, if the elongation value (El) of the as-rolled steel is set to 22%, it is substituted into the equation (6), and the obtained solid solution N amount (Nso) is substituted into (4) to analyze it. The relationship with the V content can be defined as the following equation (7), that is, the inequality on the left side of the equation (1). 0.014 + 3.6 × [% N] ≦ [% V] …… (7)

【0023】(7)式で定まるV含有量は必要最低限の
量であり、製鋼操業上の成分的中率を考慮して±0.0
15%の成分レンジ幅とすると、上限は(1)式右辺の
不等式となる。前述したように、これ以上のVの添加は
経済的にも、又、材質的にも不利となる。図1に本発明
におけるN含有量及びV含有量の成分範囲を示す。
The V content determined by the equation (7) is the minimum necessary amount, and is ± 0.0 in consideration of the component ratio in the steelmaking operation.
If the component range width is 15%, the upper limit is the inequality on the right side of Expression (1). As described above, the addition of more V is disadvantageous both economically and in terms of material. FIG. 1 shows the component ranges of N content and V content in the present invention.

【0024】Al:Alは脱酸材として重要な元素であ
るが、その含有量が0.05%を越えるとAlNを多量
に形成して、VNの析出による強化能を低減させる。従
って、Al含有量は0.05%以下に限定しなければな
らない。
Al: Al is an important element as a deoxidizing agent, but if its content exceeds 0.05%, a large amount of AlN is formed and the strengthening ability due to the precipitation of VN is reduced. Therefore, the Al content must be limited to 0.05% or less.

【0025】P:Pは不純物として含まれ、その含有量
が0.035%を越えると靭性を大幅に損ねる。従っ
て、P含有量は0.035%以下に限定しなければなら
ない。
P: P is contained as an impurity, and if its content exceeds 0.035%, the toughness is significantly impaired. Therefore, the P content must be limited to 0.035% or less.

【0026】S:Sは不純物として含まれ、その含有量
が0.020%を越えると延性及び靭性を大幅に損ね
る。従って、S含有量は0.020%以下に限定しなけ
ればならない。
S: S is contained as an impurity, and if its content exceeds 0.020%, ductility and toughness are significantly impaired. Therefore, the S content must be limited to 0.020% or less.

【0027】H:Hは遅れ破壊を引き起こす元素であ
り、特に高強度鋼においては厳密に管理・規制すべき元
素である。従って、遅れ破壊を抑止する観点から、H含
有量は0.0004%以下に限定しなければならない。
H: H is an element that causes delayed fracture, and is an element that should be strictly controlled and regulated particularly in high strength steel. Therefore, from the viewpoint of suppressing delayed fracture, the H content must be limited to 0.0004% or less.

【0028】炭素当量(Ceq):上記の(2)式で定義
した炭素当量(Ceq)が0.47を越えると溶接割れが
発生し、支保工用H形鋼としては適さない。従って、炭
素当量(Ceq)は0.47以下に限定しなければならな
い。
Carbon equivalent (Ceq): When the carbon equivalent (Ceq) defined by the above formula (2) exceeds 0.47, weld cracking occurs and it is not suitable as an H-section steel for supporting work. Therefore, the carbon equivalent (Ceq) must be limited to 0.47 or less.

【0029】本発明では上記の合金元素の外に、H形鋼
の強度特性に応じて、Cu、Ni、Cr、Mo、Co、
W、Nb、Ti、B、Ca、Mg、REMの群から選択
された1種又は2種以上を含有させることができる。以
下にその成分の限定理由を述べる。
In the present invention, in addition to the above alloying elements, Cu, Ni, Cr, Mo, Co,
One or more selected from the group consisting of W, Nb, Ti, B, Ca, Mg and REM can be contained. The reasons for limiting the components will be described below.

【0030】Cu:Cuは引張強度で590MPa以上
の高強度を得るための強化元素として重要な元素である
ばかりでなく、耐候性を向上させる効果がある。但し、
その含有量が0.6%を越えると、圧延における表面疵
の発生が著しくなり、圧延や精整等の生産性に支障を来
す。従って、Cu含有量は0.6%以下に限定しなけれ
ばならない。
Cu: Cu is not only an important element as a strengthening element for obtaining a high tensile strength of 590 MPa or more, but also has an effect of improving weather resistance. However,
If the content exceeds 0.6%, the occurrence of surface flaws during rolling becomes remarkable, which impairs productivity such as rolling and finishing. Therefore, the Cu content must be limited to 0.6% or less.

【0031】Ni:Niは主に鋼中に固溶して存在し、
固溶強化と共に焼入性を向上させて鋼の強化に寄与す
る。又、Cu添加に伴い生ずる表面疵の発生を抑える効
果があり、Cuを添加する場合にはCu含有量の1/2
以上を含有させることが好ましい。一方で、添加元素と
しては高価であり、必要以上の添加は経済的にも好まし
くないばかりか、溶接性の低下を来す。従って、Ni含
有量は0.6%以下に限定しなければならない。
Ni: Ni exists mainly as a solid solution in steel,
It contributes to the strengthening of steel by improving hardenability together with solid solution strengthening. Further, it has an effect of suppressing the generation of surface defects caused by the addition of Cu, and when Cu is added, the content of Cu is 1/2
It is preferable to contain the above. On the other hand, it is expensive as an additive element, and addition of more than necessary is not economically preferable and also causes deterioration of weldability. Therefore, the Ni content must be limited to 0.6% or less.

【0032】Cr:Crも主に鋼中に固溶して存在し、
固溶強化と共に焼入性を向上させて鋼の強化に寄与す
る。又、Cuと共に耐候性を向上させる効果がある。但
し、添加元素としては高価であり、必要以上の添加は経
済的にも好ましくないばかりか、溶接性の低下を来す。
従って、Cr含有量は0.6%以下に限定しなければな
らない。
Cr: Cr is also present mainly as a solid solution in steel,
It contributes to the strengthening of steel by improving hardenability together with solid solution strengthening. Further, it has an effect of improving weather resistance together with Cu. However, it is expensive as an additional element, and addition of more than necessary is not economically preferable, and also causes deterioration of weldability.
Therefore, the Cr content must be limited to 0.6% or less.

【0033】Mo:Moは固溶強化、更に焼入性の向上
による強度の上昇に寄与する。又、高温での強度を上昇
させる効果があるため、耐火性能(高温強度)が要求さ
れる場合には有効な元素である。しかし、その含有量が
0.3%を越えると溶接性を阻害するばかりでなく、ベ
イナイト組織分率の大幅な上昇を招き、引張試験におけ
る降伏棚を消滅させる結果、降伏強度を低下させてしま
う。従って、Mo含有量は0.3%以下に限定しなけれ
ばならない。
Mo: Mo contributes to solid solution strengthening and strength increase due to improvement of hardenability. Further, since it has the effect of increasing the strength at high temperatures, it is an effective element when fire resistance performance (high temperature strength) is required. However, if the content exceeds 0.3%, not only the weldability is impaired, but also the bainite structure fraction is significantly increased, and the yield shelf is eliminated in the tensile test, resulting in a decrease in yield strength. . Therefore, the Mo content must be limited to 0.3% or less.

【0034】Co:Coも主に鋼中に固溶して存在し、
固溶強化と共に焼入性を向上させて鋼の強化に寄与す
る。但し、添加元素としては高価であり、必要以上の添
加は経済的にも好ましくないばかりか、溶接性の低下を
来す。従って、Co含有量は0.6%以下に限定しなけ
ればならない。
Co: Co is also mainly present as a solid solution in steel,
It contributes to the strengthening of steel by improving hardenability together with solid solution strengthening. However, it is expensive as an additional element, and addition of more than necessary is not economically preferable, and also causes deterioration of weldability. Therefore, the Co content must be limited to 0.6% or less.

【0035】W:Wは鋼の強度を向上させる元素であ
る。但し、添加元素としては高価であり、必要以上の添
加は経済的にも好ましくないばかりか、溶接性の低下を
来す。従って、W含有量は0.6%以下に限定しなけれ
ばならない。
W: W is an element that improves the strength of steel. However, it is expensive as an additional element, and addition of more than necessary is not economically preferable, and also causes deterioration of weldability. Therefore, the W content must be limited to 0.6% or less.

【0036】Nb:鋼の強化元素として有効な元素であ
る。しかし、Nb含有量が0.1%を越えると延性の低
下が顕著になるので、Nb含有量は0.1%以下に限定
しなければならない。
Nb: an element effective as a strengthening element for steel. However, if the Nb content exceeds 0.1%, the ductility is markedly reduced, so the Nb content must be limited to 0.1% or less.

【0037】Ti:鋼の強化元素として作用する元素で
ある。しかし、Ti含有量が0.03%を越えるとTi
Nを多量に形成してNを消費する結果、VNの析出によ
る強化能を著しく低減させるばかりか、ベイナイト組織
分率を増加させ、引張試験における降伏棚を消滅させる
結果、440MPa以上の降伏強度が得られなくなる。
従って、Ti含有量は0.03%以下に限定しなければ
ならない。
Ti: An element that acts as a strengthening element for steel. However, if the Ti content exceeds 0.03%, Ti
As a result of consuming a large amount of N and consuming N, not only the strengthening ability due to the precipitation of VN is significantly reduced, but also the bainite structure fraction is increased and the yield shelf disappears in the tensile test, resulting in a yield strength of 440 MPa or more. You won't get it.
Therefore, the Ti content must be limited to 0.03% or less.

【0038】B:Bは熱間圧延中のオーステナイト粒界
に偏析して存在する傾向があり、焼入性を向上させて鋼
の強化に寄与する。但し、その含有量が0.0050%
を越えると溶接性を著しく劣化させる。従って、B含有
量は0.0050%以下に限定しなければならない。
B: B tends to segregate and exist in the austenite grain boundaries during hot rolling, which improves hardenability and contributes to strengthening of steel. However, its content is 0.0050%
If it exceeds the range, the weldability is significantly deteriorated. Therefore, the B content must be limited to 0.0050% or less.

【0039】Ca:CaはSと反応して化合物を形成
し、不純物として鋼中に存在するSを固定して、機械的
性質に及ぼすSの悪影響を軽減する働きがある。但し、
その含有量が0.0050%を越えると粗大化合物を形
成し、延性及び靭性を劣化させる。従って、Ca含有量
は0.0050%以下に限定しなければならない。
Ca: Ca reacts with S to form a compound, which fixes S existing in the steel as an impurity and reduces the adverse effect of S on mechanical properties. However,
If its content exceeds 0.0050%, a coarse compound is formed and ductility and toughness are deteriorated. Therefore, the Ca content must be limited to 0.0050% or less.

【0040】Mg、REM:MgやREMはOやSと結
びついて化合物を形成し、延性を向上させる。但し、そ
の含有量が0.01%を越えると粗大化合物を形成し、
延性及び靭性を低下させる。従って、Mg含有量及びR
EM含有量は0.01%以下に限定しなければならな
い。
Mg, REM: Mg and REM combine with O and S to form a compound and improve ductility. However, if its content exceeds 0.01%, a coarse compound is formed,
Reduces ductility and toughness. Therefore, the Mg content and R
The EM content should be limited to 0.01% or less.

【0041】[0041]

【発明の実施の形態】転炉や電気炉又はこれら精錬炉と
RH真空脱ガス装置等の二次精錬炉との組み合せによ
り、上記化学成分組成に溶製された溶鋼を普通造塊法又
は連続鋳造法にて凝固させ、所定の形状の鋼片又は鋳片
を得る。その後、熱間圧延によりH形鋼に加工する。
BEST MODE FOR CARRYING OUT THE INVENTION A converter, an electric furnace, or a combination of these refining furnaces and a secondary refining furnace such as an RH vacuum degassing apparatus is used for ordinary ingot casting or continuous casting of molten steel melted to the above chemical composition. Solidification is performed by a casting method to obtain a steel piece or a cast piece having a predetermined shape. After that, H-shaped steel is processed by hot rolling.

【0042】熱間圧延の際、鋼片又は鋳片の加熱温度
は、圧延による造形で十分な寸法精度が得られるだけの
高温であれば良く、例えば、通常行われている1150
℃以上とすれば良い。そして、熱間圧延によりフランジ
厚みが8mm〜14mmのH形鋼に圧延する。圧延終了
温度についても特段の配慮は必要とせず、通常行われて
いるおおよそ800℃程度の温度で終了すれば良い。圧
延終了後も特段の加速冷却の必要はなく、放冷によって
所望の特性を得ることができる。
In the hot rolling, the heating temperature of the steel slab or the cast slab may be a high temperature at which sufficient dimensional accuracy can be obtained by shaping by rolling, for example, 1150 which is usually performed.
It may be set at ℃ or higher. Then, the H-shaped steel having a flange thickness of 8 mm to 14 mm is rolled by hot rolling. No particular consideration is required for the rolling end temperature, and the rolling may be completed at a temperature of about 800 ° C. which is usually performed. Even after the rolling is finished, there is no need for special accelerated cooling, and the desired characteristics can be obtained by cooling.

【0043】支保工用H形鋼をこのように適正な合金元
素を添加しつつ炭素当量(Ceq)を規制して製造するこ
とにより、従来歪時効脆化の元凶として過剰に規制され
てきたNを強化元素として積極的に添加しつつ、同時に
固溶N量を十分に低減させることが可能となり、圧延ま
まで降伏強度が440MPa以上で引張強度が590M
Pa以上の高強度と良好な溶接性とを有し、且つ、優れ
た耐歪時効脆化特性を有する鋼アーチ支保工用H形鋼を
安価に安定して製造することが可能となる。
By manufacturing the H-section steel for supporting work by controlling the carbon equivalent (Ceq) while adding an appropriate alloying element as described above, N has been excessively controlled as a source of the conventional strain aging embrittlement. While being positively added as a strengthening element, it is possible to reduce the amount of solute N at the same time sufficiently. As-rolled, the yield strength is 440 MPa or more and the tensile strength is 590M.
It becomes possible to inexpensively and stably manufacture an H-section steel for steel arch support having high strength of Pa or more and good weldability, and having excellent strain aging embrittlement resistance.

【0044】[0044]

【実施例】[実施例1]21種類の化学成分組成の鋼を
転炉とRH真空脱ガス装置との組み合わせにより溶製
し、次いで、連続鋳造機にてブルーム鋳片とした後、こ
の鋳片を1250℃に加熱して熱間圧延によりH形鋼と
した。熱間圧延は概ね850〜900℃で終了し、圧延
後は空冷した。表1に21種類(鋼No.A1〜A21)
の各供試鋼の化学成分組成及び炭素当量(Ceq)を示
す。表1のアンダーラインを付与した数値は本発明鋼の
範囲外であることを示している。
[Example] [Example 1] Steel of 21 kinds of chemical composition was melted by a combination of a converter and an RH vacuum degassing device, and then a continuous caster was used to form a bloom slab, which was then cast. The piece was heated to 1250 ° C. and hot rolled into an H-section steel. The hot rolling was completed at about 850 to 900 ° C., and after the rolling was air cooled. 21 types in Table 1 (Steel No. A1 to A21)
The chemical composition and carbon equivalent (Ceq) of each of the sample steels are shown. The underlined values in Table 1 indicate that the values are outside the range of the steel of the present invention.

【0045】[0045]

【表1】 [Table 1]

【0046】圧延して得られたH形鋼のフランジ幅方向
1/4の位置から長手方向に沿って、JISZ2201
に定められたJIS1A号試験片を採取し、圧延まま鋼
材としての引張試験に供すると共に、3.5%の曲げ加
工を施した後に250℃で1時間の時効処理を施し、引
張試験に供して歪時効後の引張特性を評価した。合否の
判定基準は、降伏強度が440MPa以上、引張強度が
590MPa以上、伸びが17%以上を合格とした。
又、H形鋼端部とつなぎ板とをT字継手溶接により接合
し、溶接割れの有無を調査し、溶接割れのないものを合
格とした。評価試験の結果を表2に示す。尚、表2には
H形鋼の寸法をウェブ高さ(H)、フランジ幅(B)、
ウェブ厚み(t1)、フランジ厚み(t2)として合わ
せて表示した。表2のアンダーラインを付与した数値は
不合格であることを示している。
JIS Z2201 is rolled along the longitudinal direction from the position 1/4 in the flange width direction of the H-section steel obtained by rolling.
The JIS No. 1A test piece specified in No. 1 was sampled and subjected to a tensile test as a steel material as it was rolled, subjected to 3.5% bending and then subjected to an aging treatment at 250 ° C. for 1 hour, and then subjected to a tensile test. The tensile properties after strain aging were evaluated. The pass / fail judgment criteria were that the yield strength was 440 MPa or more, the tensile strength was 590 MPa or more, and the elongation was 17% or more.
Further, the H-shaped steel end portion and the tie plate were joined by T-joint welding, and the presence or absence of weld cracks was examined. The results of the evaluation test are shown in Table 2. In Table 2, the dimensions of the H-section steel are web height (H), flange width (B),
The web thickness (t1) and the flange thickness (t2) are also shown. The underlined values in Table 2 indicate failure.

【0047】[0047]

【表2】 [Table 2]

【0048】表2から明らかなように、本発明鋼である
鋼No.A1〜A5及びA14〜A21は、圧延まま鋼材
の引張特性及び歪時効後の引張特性共に降伏強度、引張
強度、伸びの何れもが合格し、且つ溶接割れも発生しな
かった。これに対して、比較鋼である鋼No.A6〜A1
3では、上記の特性の何れかが満足されなかった。
As is clear from Table 2, the steel Nos. A1 to A5 and A14 to A21, which are the steels of the present invention, have a yield strength, a tensile strength and an elongation which are the tensile properties of the as-rolled steel and the tensile properties after strain aging. All passed, and welding cracks did not occur. On the other hand, comparative steels No. A6 to A1
In No. 3, any of the above characteristics was not satisfied.

【0049】即ち、N含有量とV含有量との関係が本発
明を満足しない鋼No.A6〜A8では、歪時効後の伸び
が17%に達しなかった。又、C含有量若しくはMn含
有量が本発明を満足しない鋼No.A9〜A12では圧延
ままの特性が合格範囲を満足しないか、或いは炭素当量
が0.47を越えて溶接割れが発生した。N含有量が本
発明より少ない鋼No.A13では引張強度が不足した。
That is, in steel Nos. A6 to A8 in which the relationship between the N content and the V content did not satisfy the present invention, the elongation after strain aging did not reach 17%. Further, in steel Nos. A9 to A12 in which the C content or the Mn content did not satisfy the present invention, the as-rolled characteristics did not satisfy the acceptable range, or the carbon equivalent exceeded 0.47 and weld cracking occurred. Steel No. A13 having a lower N content than the present invention lacked in tensile strength.

【0050】[実施例2]5種類の化学成分組成の鋼を
転炉とRH真空脱ガス装置との組み合わせにより溶製
し、次いで、連続鋳造機にてブルーム鋳片とした後、こ
の鋳片を1250℃に加熱して熱間圧延によりH形鋼と
した。圧延したH形鋼の寸法はウェブ高さ(H)×フラ
ンジ幅(B)×ウェブ厚み(t1)×フランジ厚み(t
2)の順に、154mm×151mm×8mm×12m
m及び150mm×150mm×7mm×10mmの2
種類である。熱間圧延は概ね850〜900℃で終了
し、圧延後は空冷した。表3に5種類(鋼No.B1〜B
5)の各供試鋼の化学成分組成及び炭素当量(Ceq)を
示す。表3のアンダーラインを付与した数値は本発明鋼
の範囲外であることを示している。
[Example 2] Steels of five kinds of chemical composition were melted by a combination of a converter and an RH vacuum degassing device, and then made into bloom cast pieces by a continuous casting machine. Was heated to 1250 ° C. and hot rolled into H-section steel. The dimensions of the rolled H-section steel are web height (H) x flange width (B) x web thickness (t1) x flange thickness (t
In the order of 2), 154 mm x 151 mm x 8 mm x 12 m
m and 150 mm × 150 mm × 7 mm × 10 mm 2
It is a kind. The hot rolling was completed at about 850 to 900 ° C., and after the rolling was air cooled. Table 3 shows 5 types (steel No. B1 to B
The chemical composition and carbon equivalent (Ceq) of each sample steel of 5) are shown. The underlined values in Table 3 indicate that the value is outside the range of the steel of the present invention.

【0051】[0051]

【表3】 [Table 3]

【0052】圧延して得られたH形鋼のフランジ幅方向
1/4の位置から長手方向に沿って、JISZ2201
に定められたJIS1A号試験片を採取し、圧延まま鋼
材としての引張試験に供した。又、冷間で曲げ半径2.
2mの曲げ加工を施して鋼アーチ支保工とし、その一部
から試験片を採取して250℃で1時間の時効処理を施
し、その後JIS1A号試験片による引張特性調査を実
施した。合否の判定基準は、降伏強度が440MPa以
上、引張強度が590MPa以上、伸びが17%以上を
合格とした。評価試験の結果を表4に示す。尚、表4に
はH形鋼のウェブ高さ(H)、フランジ幅(B)、ウェ
ブ厚み(t1)、フランジ厚み(t2)を合わせて表示
した。表4のアンダーラインを付与した数値は不合格で
あることを示している。
JIS Z2201 is rolled along the longitudinal direction from the position 1/4 in the flange width direction of the H-section steel obtained by rolling.
The JIS No. 1A test piece specified in 1. was sampled and subjected to a tensile test as a rolled steel material. Also, the bending radius is 2.
A steel arch supporting work was performed by bending for 2 m, and a test piece was sampled from a part of the steel arch support and subjected to an aging treatment at 250 ° C. for 1 hour, and then a tensile property investigation was performed using JIS No. 1A test piece. The pass / fail judgment criteria were that the yield strength was 440 MPa or more, the tensile strength was 590 MPa or more, and the elongation was 17% or more. Table 4 shows the results of the evaluation test. In Table 4, the web height (H), the flange width (B), the web thickness (t1), and the flange thickness (t2) of the H-section steel are also shown. The underlined values in Table 4 indicate that the test was rejected.

【0053】[0053]

【表4】 [Table 4]

【0054】表4から明らかなように、本発明鋼である
鋼No.B1〜B3は、何れの寸法においても圧延まま鋼
材の引張特性及び歪時効後の引張特性共に降伏強度、引
張強度、伸びの全てが合格した。これに対して、N含有
量とV含有量との関係が本発明を満足しない鋼No.B
4、B5では、圧延まま鋼材では合否判定基準を越えて
いたが、曲げ加工−時効による伸びの低下が大きく、歪
時効後の伸びが17%を下回る値となった。
As is clear from Table 4, the steels No. B1 to B3, which are the steels of the present invention, have a yield strength, a tensile strength and an elongation which are the same as the tensile properties of the as-rolled steel and the tensile properties after strain aging at any size. All passed. On the other hand, steel No. B whose relationship between the N content and the V content does not satisfy the present invention.
In Nos. 4 and B5, the as-rolled steel material exceeded the acceptance criteria, but the elongation after bending-aging was large, and the elongation after strain aging was less than 17%.

【0055】[0055]

【発明の効果】本発明では、従来、歪時効脆化の元凶と
して過剰に規制されてきたNを安価な強化元素として積
極的に添加しつつ、鋼中の固溶N量を十分に低減させる
ので、圧延ままで降伏強度が440MPa以上、引張強
度が590MPa以上の高強度と良好な溶接性とを有
し、且つ優れた耐歪時効脆化性を有する鋼アーチ支保工
用H形鋼を安価に安定して製造することができ、産業上
有益な効果がもたらされる。
EFFECTS OF THE INVENTION According to the present invention, the amount of solute N in steel is sufficiently reduced, while N, which has been conventionally regulated excessively as a source of strain aging embrittlement, is positively added as an inexpensive strengthening element. Therefore, the H-shaped steel for steel arch support, which has a high yield strength of 440 MPa or more and a tensile strength of 590 MPa or more and good weldability and has excellent strain aging embrittlement resistance in an as-rolled state, is inexpensive. It can be manufactured in a stable manner, and has an industrially beneficial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるN含有量及びV含有量の成分範
囲を示す図である。
FIG. 1 is a diagram showing component ranges of N content and V content in the present invention.

フロントページの続き (56)参考文献 特開 平11−131188(JP,A) 特開 平10−152751(JP,A) 特開 平10−195603(JP,A) 特開 平10−176240(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 Continuation of the front page (56) References JP-A-11-131188 (JP, A) JP-A-10-152751 (JP, A) JP-A-10-195603 (JP, A) JP-A-10-176240 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、C:0.10〜0.20%、
Si:0.05〜0.65%、Mn:0.9〜1.8
%、N:0.0109〜0.018%、Al:0.05
%以下、P:0.035%以下、S:0.020%以
下、H:0.0004%以下を含有し、更に、前記N含
有量に応じて下記(1)式の範囲を満足するVを含有
し、残部が実質的にFe及び不可避的不純物からなり、
下記(2)式で定義される炭素当量(Ceq)が0.4
7以下であり、且つフランジ厚みが8mm〜14mmで
あることを特徴とする、降伏強度が440MPa以上で
引張強度が590MPa以上の耐歪時効脆化性に優れた
高強度支保工用H形鋼。 0.014+3.6*[%N]≦[%V]≦0.044
+3.6*[%N]・・・(1) Ceq=[%C]+[%Mn]/6+[%Si]/24+[%
Cr]/5+[%Mo]/4+[%Ni]/40+[%
V]/14・・・(2)
1. In mass% , C: 0.10 to 0.20%,
Si: 0.05 to 0.65%, Mn: 0.9 to 1.8
%, N: 0.0109 to 0.018% , Al: 0.05
% Or less, P: 0.035% or less, S: 0.020% or less, H: 0.0004% or less, and V satisfying the range of the following formula (1) according to the N content. And the balance consists essentially of Fe and unavoidable impurities,
The carbon equivalent (Ceq) defined by the following formula (2) is 0.4.
A high-strength H-section steel for supporting work, which has a yield strength of 440 MPa or more and a tensile strength of 590 MPa or more and is excellent in strain aging embrittlement resistance, which is 7 or less and a flange thickness of 8 mm to 14 mm. 0.014 + 3.6 * [% N] ≦ [% V] ≦ 0.044
+3.6 * [% N] ... (1) Ceq = [% C] + [% Mn] / 6 + [% Si] / 24 + [%
Cr] / 5 + [% Mo] / 4 + [% Ni] / 40 + [%
V] / 14 ... (2)
【請求項2】質量%で、C:0.10〜0.20%、S
i:0.05〜0.65%、Mn:0.9〜1.8%、
N:0.0108〜0.018%、Al:0.05%以
下、P:0.035%以下、S:0.020%以下、
H:0.0004%以下、更に、Cu:0.6%以下、
Ni:0.6%以下、Cr:0.6%以下、Mo:0.
3%以下、Co:0.6%以下、W:0.6%以下、N
b:0.1%以下、Ti:0.03%以下、B:0.0
050%以下、Ca:0.0050%以下、Mg:0.
01%以下、REM:0.01%以下の群から選択され
た一種または2種以上を含有し、前記N含有量に応じて
下記(1)式の範囲を満足するVを含有し、残部が実質
的にFe及び不可避的不純物からなり、下記(2)式で
定義される炭素当量(Ceq)が0.47以下であり、
且つフランジ厚みが8mm〜14mmであることを特徴
とする、降伏強度が440MPa以上で引張強度が59
0MPa以上の耐歪時効脆化性に優れた高強度支保工用
H形鋼。 0.014+3.6*[%N]≦[%V]≦0.044
+3.6*[%N]・・・(1) Ceq=[%C]+[%Mn]/6+[%Si]/24+[%
Cr]/5+[%Mo]/4+[%Ni]/40+[%
V]/14・・・(2)
2. C: 0.10 to 0.20% by mass% and S
i: 0.05 to 0.65%, Mn: 0.9 to 1.8%,
N: 0.0108 to 0.018%, Al: 0.05% or less
Below, P: 0.035% or less, S: 0.020% or less,
H: 0.0004% or less, further Cu: 0.6% or less,
Ni: 0.6% or less, Cr: 0.6% or less, Mo: 0.
3% or less, Co: 0.6% or less, W: 0.6% or less, N
b: 0.1% or less, Ti: 0.03% or less, B: 0.0
050% or less, Ca: 0.0050% or less, Mg: 0.
01% or less, REM: 0.01% or less, one or more kinds selected from the group are contained, V containing the range of the following formula (1) is contained according to the N content, and the balance is Substantially Fe and unavoidable impurities, the carbon equivalent (Ceq) defined by the following formula (2) is 0.47 or less,
Further, the flange thickness is 8 mm to 14 mm, the yield strength is 440 MPa or more and the tensile strength is 59.
H-shaped steel for high-strength support with excellent strain aging embrittlement resistance of 0 MPa or more. 0.014 + 3.6 * [% N] ≦ [% V] ≦ 0.044
+3.6 * [% N] ... (1) Ceq = [% C] + [% Mn] / 6 + [% Si] / 24 + [%
Cr] / 5 + [% Mo] / 4 + [% Ni] / 40 + [%
V] / 14 ... (2)
JP28855399A 1999-10-08 1999-10-08 H-shaped steel for high-strength support with excellent strain-age aging embrittlement resistance Expired - Fee Related JP3520818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28855399A JP3520818B2 (en) 1999-10-08 1999-10-08 H-shaped steel for high-strength support with excellent strain-age aging embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28855399A JP3520818B2 (en) 1999-10-08 1999-10-08 H-shaped steel for high-strength support with excellent strain-age aging embrittlement resistance

Publications (2)

Publication Number Publication Date
JP2001107174A JP2001107174A (en) 2001-04-17
JP3520818B2 true JP3520818B2 (en) 2004-04-19

Family

ID=17731746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28855399A Expired - Fee Related JP3520818B2 (en) 1999-10-08 1999-10-08 H-shaped steel for high-strength support with excellent strain-age aging embrittlement resistance

Country Status (1)

Country Link
JP (1) JP3520818B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181630A1 (en) * 2016-04-19 2017-10-26 江阴兴澄特种钢铁有限公司 Pressure vessel steel plate resistant against hydrogen-induced cracking and manufacturing method thereof
WO2017185677A1 (en) * 2016-04-28 2017-11-02 江阴兴澄特种钢铁有限公司 Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2388845A (en) * 2002-05-23 2003-11-26 Corus Uk Ltd Fire resistant steel
CN102517494B (en) * 2012-01-12 2014-05-14 承德建龙特殊钢有限公司 Rolled steel for wind-power flange and preparation method thereof
CN103031500B (en) * 2012-12-21 2014-12-10 无锡市华尔泰机械制造有限公司 Large-diameter flange and preparation process thereof
CN103103453B (en) * 2013-02-18 2015-02-04 无锡市派克重型铸锻有限公司 Nuclear power pipe fittings material forging and manufacture process
CN108893675B (en) * 2018-06-19 2020-02-18 山东钢铁股份有限公司 Thick-specification hot-rolled H-shaped steel with yield strength of 500MPa and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181630A1 (en) * 2016-04-19 2017-10-26 江阴兴澄特种钢铁有限公司 Pressure vessel steel plate resistant against hydrogen-induced cracking and manufacturing method thereof
WO2017185677A1 (en) * 2016-04-28 2017-11-02 江阴兴澄特种钢铁有限公司 Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor

Also Published As

Publication number Publication date
JP2001107174A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
EP2272994B1 (en) High-tensile strength steel and manufacturing method thereof
KR101846759B1 (en) Steel plate and method for manufacturing same
US6007644A (en) Heavy-wall H-shaped steel having high toughness and yield strength and process for making steel
EP0761824B1 (en) Heavy-wall structural steel and method
JP5092481B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP3433614B2 (en) Extra-thick H-section steel excellent in strength, toughness, weldability and earthquake resistance and method for producing the same
EP3178954B1 (en) Cold-rolled steel sheet having excellent spot weldability, and manufacturing method therefor
JP3520818B2 (en) H-shaped steel for high-strength support with excellent strain-age aging embrittlement resistance
JPH0657375A (en) Ultrahigh tensile strength cold-rolled steel sheet and its production
JP4196810B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5447292B2 (en) Rolled material steel and method of manufacturing rolled steel using the same
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JP2017057483A (en) H-shaped steel and production method therefor
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
JP3440710B2 (en) H-section steel excellent in toughness of fillet portion and method for producing the same
JP2002294391A (en) Steel for building structure and production method therefor
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JPH08197102A (en) Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
US20040003876A1 (en) Structural Fe-Cr steel sheet, manufacturing method thereof, and structural shaped steel
JP3975882B2 (en) High corrosion resistance low strength stainless steel with excellent workability and toughness of welds and its welded joints
JP3425288B2 (en) 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP2001020032A (en) Wide flange beam for timbering, excellent in refractoriness and atmospheric corrosion resistance
JPH08197104A (en) Manufacture of extremely thick wide-flange steel excellent in strength and toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees