JP3520589B2 - Method for producing biaxially oriented polyamide film - Google Patents

Method for producing biaxially oriented polyamide film

Info

Publication number
JP3520589B2
JP3520589B2 JP928595A JP928595A JP3520589B2 JP 3520589 B2 JP3520589 B2 JP 3520589B2 JP 928595 A JP928595 A JP 928595A JP 928595 A JP928595 A JP 928595A JP 3520589 B2 JP3520589 B2 JP 3520589B2
Authority
JP
Japan
Prior art keywords
stretching
film
polyamide
temperature
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP928595A
Other languages
Japanese (ja)
Other versions
JPH08197619A (en
Inventor
伸二 藤田
照基 白枝
正 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP928595A priority Critical patent/JP3520589B2/en
Publication of JPH08197619A publication Critical patent/JPH08197619A/en
Application granted granted Critical
Publication of JP3520589B2 publication Critical patent/JP3520589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、縦横逐次2軸延伸方法
による2軸配向ポリアミドフィルムの製造方法に関す
る。さらに詳しくは、幅方向に均一な物理的、化学的及
び物理化学的性質を有する2軸配向ポリアミドフィルム
の製造方法に関するものである。 【0002】 【従来の技術】従来より2軸配向ポリアミドフィルム
は、強靱性、高ガスバリヤー性、対ピンホール性、透明
性、易印刷性などの諸特性が優れているため、スープ、
こんにゃく、ハンバーグ、みそ、ハムなどを始めとする
液状食品、水物食品、冷凍食品、レトルト食品、ペース
ト状食品、畜肉水産食品などの袋包装用材料として広く
用いられている。一般に、2軸配向フィルムの製造方法
として、縦横逐次2軸延伸法が知られており、ポリアミ
ドフィルムに関してもこれが利用されている。 【0003】 【発明が解決しようとする課題】しかしながら、縦横逐
次2軸延伸法は、フィルム幅方向の物性にバラツキが生
じ易いことが知られている。この理由は、横延伸工程の
テンター内で、横延伸による縦方向の応力と熱によって
縦方向の収縮応力が生じる。ところで、フィルムの両端
部はクリップに把持され拘束されているのに対し、フィ
ルムの中央部は把持手段の影響力が弱く、拘束力が弱く
なっている。従って、上記した応力の影響によってクリ
ップで把持されている両端部に対してフィルム中央部分
の走行速度が両端部に比べて遅れるため、幅方向に物性
のバラツキが生じる。袋包装用材料に供されるポリアミ
ドフィルムは、幅方向に物性、例えば沸水収縮率の斜め
差等のバラツキが大きいと、製袋後の加熱処理等におい
て、捻れ現象の原因となり、重大なトラブルとなる。 【0004】この問題を回避しようとすれば、縦延伸の
倍率を下げ、上記した応力を低減することが有効である
が、縦方向の強度を損なうという別の問題が発生するの
みならず、生産速度の低下につながり、工業生産上好ま
しくない。 【0005】本発明の目的は、逐次2軸延伸法におけ
る、横延伸工程で発生するフィルムの幅方向の物性のバ
ラツキを低減する2軸配向ポリアミドフィルムの製造方
法を提供することにある。詳しくは、縦延伸倍率を下げ
ることなく、厚み斑や沸水収縮率の斜め差等の物性のフ
ィルム幅方向のバラツキを低減する2軸延伸によるポリ
アミドフィルムの製造方法を提供することにある。 【0006】 【課題を解決するための手段】上記課題に鑑み本発明者
らが鋭意研究を行なった結果、本発明に到達した。すな
わち本発明は、実質的に未配向のポリアミドシートを縦
方向に延伸し、ついで横方向に延伸して得られるポリア
ミドフィルムの逐次2軸延伸方法において、縦延伸を
〔ポリアミドのガラス転移温度(Tg)+20〕℃以
上、〔ポリアミドの低温結晶化温度(Tc)+20〕℃
以下の温度で、前段と後段の2段階に分けて総合縦延伸
倍率3倍以上になるように行い、かつ後段の縦延伸はロ
ール粗さRa≦0.2のセラミックロールを用いること
を特徴とする2軸配向ポリアミドフィルムの製造方法に
関する。 【0007】本発明の方法は、ポリアミドフィルムの製
造に適用され、特にナイロン6を主成分とするポリアミ
ドから2軸配向フィルムを製造するのに好適である。該
ポリアミドとして、例えばナイロン6、ナイロン6にナ
イロン塩などを少量共重合させた共重合体、ナイロン6
とナイロン塩などとのブレンドなどが挙げられる。ナイ
ロン塩としては、ヘキサメチレンジアミンとアジピン酸
またはイソフタル酸とのナイロン塩、メタキシリレンジ
アミンとアジピン酸とのナイロン塩などが挙げられる。
上記ポリアミドにはその性質を損なわない範囲で、少量
の各種耐ブロッキング剤、帯電防止剤、安定剤など公知
の添加剤を含有させてもよい。 【0008】本発明によれば、実質的に未配向のポリア
ミドシートを縦に2段延伸し、続いて横延伸し、更に熱
固定することによって2軸配向ポリアミドフィルムを得
る。さらに詳しく言えば、実質的に未配向のポリアミド
シートを縦延伸するにあたり、第1段目の延伸を行い、
引続きロール粗さRa≦0.2のセラミックロールを用
いて第2段目の延伸を行う。ついで横延伸し、更に熱固
定する。 【0009】すなわち、上記ポリアミド原料を乾燥した
のち、押出機により溶融押出し、口金より回転ドラム上
にキャストして急冷固化しポリアミドシートを得る。こ
のポリアミドシートは、実質的に未配向状態である。こ
のシートをまず〔原料ポリアミドのガラス転移温度(T
g)+20〕℃以上、〔原料ポリアミドの低温結晶化温
度(Tc)+20〕℃以下の温度で、第1段目の縦延伸
を行なう。ここで低温結晶化温度(Tc)とは、ガラス
状態から加熱により起こる結晶化温度である。該縦延伸
を(原料ポリアミドのTg+20)℃未満の温度で行な
うと、ネッキングを生じ厚み斑が増大しやすくなる。一
方、(原料ポリアミドのTc+20)℃を越える温度で
延伸を行なうと、熱結晶化が進行し、横延伸で破断しや
すくなり好ましくない。より好ましい延伸温度は、(原
料ポリアミドのTg+30)℃〜(原料ポリアミドのT
c+10)℃である。この第1段目の縦延伸での延伸倍
率(延伸後のフィルムの走行速度/延伸前のフィルムの
走行速度)が低すぎると延伸効果が得られず、逆に高す
ぎると配向結晶化が進行しすぎて、後述する第2段目延
伸での延伸応力が高くなりすぎ破断したり、あるいは横
延伸での破断につながることになる。この観点から、第
1段目の縦延伸での延伸倍率は1.1〜2.9倍が好ま
しい。より好ましい延伸倍率は、1.5〜2.5倍であ
る。第1段目縦延伸には、熱ロール延伸、赤外線輻射延
伸など公知の延伸方法を用いることができる。 【0010】第1段目縦延伸後、引続いて第2段目縦延
伸を行なう。第2段目縦延伸には、熱ロール延伸を用い
る。第2段目縦延伸で粗さRa≦0.2のセラミックロ
ールを用いることが、本発明の特徴の1つである。Ra
>0.2のロールを用いると、ロール上をフィルムが滑
った状態で延伸が行われるため、フィルム表面に擦傷が
生じ好ましくない。またロール上での延伸開始点が幅方
向で不均一となり、かつ該延伸開始点が脈動を打つの
で、フィルム流れの縦方向と横方向に厚み斑が生じ好ま
しくない。より好ましくは、Ra≦0.05のセラミッ
クロールを用いることである。すなわち、第2段目縦延
伸では、第1段目縦延伸を行なったフィルムの幅方向の
厚みプロファイルにかかわらず、ロール上で幅方向に直
線的に密着させられた状態で延伸されることとなり、幅
方向に均一な加熱延伸が可能となる。ここでRaとは、
中心線平均粗さのことで平均的な凹凸の高さ(単位=μ
m)であり、JIS B 0601で規定される値であ
る。第2段目縦延伸倍率は、総合縦延伸倍率が3.0倍
以上となるように行なう。3.0倍未満であると2軸配
向フィルムの幅方向の物性のバラツキは小さくなるもの
の、縦方向の強度が小さくなる。縦延伸倍率が大きくな
りすぎると、2軸配向フィルムの幅方向の物性のバラツ
キを低減させる効果が発現しない場合もでてくる。これ
を考慮すると、好ましい総合縦延伸倍率は、3.0〜
3.8倍であり、より好ましくは、3.3〜3.6倍で
ある。第2段目縦延伸での延伸温度も、(原料ポリアミ
ドのTg+20)℃〜(原料ポリアミドのTc+20)
℃である。該延伸温度が(原料ポリアミドのTg+2
0)℃未満では延伸応力が高くなり横延伸で破断しやす
くなり、(原料ポリアミドのTc+20)℃を越えると
厚み斑が大きくなる。より好ましくは、(原料ポリアミ
ドのTg+25)℃〜(原料ポリアミドのTc+10)
℃である。 【0011】このようにして得られた1軸配向フィルム
は、次にステンターを用いて横方向に延伸される。ここ
で、横延伸温度が低すぎると、横延伸性が悪化(破断発
生)する場合があり、一方高すぎると厚み斑が大きくな
る傾向がある。このような点から、横延伸温度は100
℃から融点未満が好ましく、100℃〜180℃がより
好ましい。また、横方向の強度を確保する点から、延伸
倍率は3.0倍以上が好ましく、3.5倍以上がさらに
好ましい。このようにして延伸された2軸配向フィルム
は、熱固定され、巻取られる。 【0012】上記したように、本発明の方法によれば、
縦延伸を2段階に分けて行い、かつ第2段目延伸をロー
ル粗さRa≦0.2のセラミックロールを用いて行うこ
とによって、幅方向の物性のバラツキの小さい2軸配向
ポリアミドフィルムを得ることができる。その理由は、
縦延伸を2段階に分けることによる延伸応力の削減効果
が得られるのみならず、第2段目延伸にロール粗さRa
≦0.2のセラミックロールを用いて、フィルムをロー
ルに密着させた状態で延伸されるので、フィルムがロー
ル上でフィルム幅方向に均一に加熱されることを可能に
する。その結果、幅方向に直線的な延伸開始点を得るこ
とができ、1軸配向フィルムの配向が幅方向に均一とな
る。かつ、ロール密着過程での第1段目延伸後シート配
向緩和作用で横延伸前の1軸配向フィルムの構造を緩や
かなものとしたため、横延伸時に発現する横配向の形成
が容易になり、しかも横延伸応力低減により延伸性が向
上したためと考えられる。 【0013】 【実施例】以下、実施例に基づき詳細に説明するが、本
発明が下記実施例に限定されないことはいうまでもな
い。なお、実施例、比較例中に用いられるフィルム温
度、物性値及び特性は、以下のように測定され、かつ定
義される。 【0014】ガラス転移温度(Tg)及び低温結晶化温
度(Tc) 未配向ポリアミドシートを液体窒素中で凍結し、減圧解
凍後にセイコー電子製DSCを用い、昇温速度10℃/
分で測定した。 【0015】フィルム温度(延伸温度) 縦延伸における温度は、ミノルタ(株)製放射温度計I
R−004を用いフィルムの温度を測定した。横延伸に
おける温度は、レイテック・ジャパン(株)製の放射温
度計RHP3を用いフィルムの温度を測定した。 【0016】厚み斑 2軸配向ポリアミドフィルムを縦方向、横方向にそれぞ
れ1m×5cmの短冊状に切断し、安立電気(株)製厚
さ計K306Cを用い厚み形状を測定する。下記式によ
り1m当たりの厚み斑を算出し、これを5回繰り返し、
平均値を厚み斑とした。 【0017】 【数1】 【0018】沸水収縮率斜め差 2軸配向ポリアミドフィルムを全幅の中央から左右に全
幅の40%の位置(端部)から、それぞれ21cm角に
切り出しサンプルとする。各々のサンプルの中央を中心
とする直径20cmの円を描き、縦方向を0°としたと
きの45°及び135°方向に円の中心を通る直線を引
き、各方向の直径を測定し、処理前の長さとする。この
サンプルを沸騰水中で30分間加熱処理したのち取り出
して、表面に付着した水分を除去、風乾する。風乾後、
各方向の直径を測定し、処理後の長さとする。下記式を
用い沸水収縮率を算出する。 【0019】 【数2】 【0020】縦方向を0°としたときの45°と135
°方向の沸水収縮率の差の絶対値を求め、両端部の平均
値を沸水収縮率斜め差とした。 【0021】吸湿図柄歪み ロール状に巻取られた2軸配向ポリアミドフィルムの表
層部を除去し、内部より全幅の試料を切り出し、直ちに
30℃×1.0mmHg以下に調整された真空乾燥機を
用いて、6時間以上試料を乾燥した。それを取り出し、
直ちにデシケーターを用いて、20℃×30%RHの環
境下で24時間以上調整した後、全幅の中央から左右に
全幅の40%の位置(端部)に直径20cmの円のマー
クを描き、縦方向を0°としたときの0°、45°、9
0°及び135°方向に円の中心を通る直線を引き、各
方向の直径を測定し、処理前の長さとする。その後、試
料を30℃×80%RHの環境下で24時間調整した
後、そのマークの各方向の直径を測定し、処理後の長さ
とする。下記式を用いて吸湿伸び率を算出する。 【0022】 【数3】 【0023】縦方向を0°としたときの0°と90°方
向の吸湿伸び率の差の絶対値と45°と135°方向の
吸湿伸び率の差の絶対値を各々求め、両端部の5回の平
均値を各々吸湿伸び率垂直差と斜め差とした。吸湿伸び
率垂直差、斜め差ともに0.5%未満を4点、0.5%
以上1.0%未満を3点、1.0%以上1.5%未満を
2点、1.5%以上を1点とし、合計点数が8点で◎、
6〜7点で○、4〜5点で△、2〜3点で×と4段階で
評価し、この評価を吸湿図柄歪みと定義した。 【0024】製膜状況 2時間、実施例1に記載した条件と同一条件でフィルム
を逐次2軸延伸した。その間フィルムが破断するとすぐ
に製膜、延伸し、破断回数を調べた。 【0025】実施例1 ナイロン6ペレット〔相対粘度(RV)=2.8〕を真
空乾燥した後、これを押出し機に供給し260℃で溶融
し、T型ダイよりシート状に押し出し、直流高電圧を印
可して冷却ロール上に静電気的に密着させ、冷却固化せ
しめて厚さ200μmの未配向シートを得た。このシー
トのTgは40℃、Tcは68℃であった。このシート
をまず50℃の温度で予熱処理し、ついで延伸温度75
℃、延伸倍率1.7倍で第1段目の縦延伸を行なった。
次いで、延伸温度70℃で総合延伸倍率が3.4倍とな
るように、ロール粗さRa=0.05のセラミックロー
ルを用いて第2段目の縦延伸を行った。引続きこのシー
トを連続的にステンターに導き、130℃で4倍に横延
伸し、210℃で熱固定および5%の横弛緩処理を施し
た後に冷却し、両縁部を裁断除去して、2軸配向ポリア
ミドフィルムを得た。このときの製膜状況、フィルムの
物性および特性を表1に示す。 【0026】実施例2 縦延伸の第1段目延伸温度を85℃にした以外はすべて
実施例1と同様にして2軸配向ポリアミドフィルムを得
た。 【0027】実施例3 縦延伸の第2段目延伸温度を80℃にした以外はすべて
実施例1と同様にして2軸配向ポリアミドフィルムを得
た。 【0028】実施例4 第2段目の縦延伸に使用するロールを、ロール粗さRa
=0.1のセラミックロールとした以外はすべて実施例
1と同様にして2軸配向ポリアミドフィルムを得た。 【0029】比較例1 第2段目の縦延伸に使用するロールを、ロール粗さRa
=0.3のセラミックロールとした以外はすべて実施例
1と同様にして2軸配向ポリアミドフィルムを得た。 【0030】比較例2 縦延伸の第1段目延伸温度を92℃とした以外はすべて
実施例1と同様にして2軸配向ポリアミドフィルムを得
た。 【0031】比較例3 縦延伸の第2段目延伸温度を90℃にした以外はすべて
実施例1と同様にして2軸配向ポリアミドフィルムを得
た。 【0032】比較例4 ロール粗さRa=0.3のセラミックロールを後段の延
伸ロールに用いる以外はすべて実施例2と同様にして2
軸配向ポリアミドフィルムを得た。 【0033】比較例5 ロール粗さRa=0.3のセラミックロールを後段の延
伸ロールに用いる以外はすべて実施例3と同様にして2
軸配向ポリアミドフィルムを得た。 【0034】実施例と比較例における製膜条件とフィル
ム評価結果を表1に示す。 【0035】 【表1】【0036】 【発明の効果】本発明の製造方法によって得られた縦横
逐次延伸による2軸配向ポリアミドフィルムは、フィル
ムの破断がなく、厚み斑が小さく、沸水収縮率の斜め
差、吸湿図柄歪みを小さくすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a biaxially oriented polyamide film by a longitudinal and transverse sequential biaxial stretching method. More specifically, the present invention relates to a method for producing a biaxially oriented polyamide film having uniform physical, chemical and physicochemical properties in the width direction. 2. Description of the Related Art Conventionally, biaxially oriented polyamide films have excellent properties such as toughness, high gas barrier properties, pinhole resistance, transparency, and easy printability.
It is widely used as a bag packaging material for liquid foods such as konjac, hamburger, miso, ham, etc., aquatic foods, frozen foods, retort foods, pasty foods, meat and marine products. In general, as a method for producing a biaxially oriented film, a vertical and horizontal sequential biaxial stretching method is known, and this is also used for a polyamide film. [0003] However, it is known that the longitudinal and horizontal sequential biaxial stretching method tends to vary in physical properties in the film width direction. The reason for this is that in the tenter in the transverse stretching step, longitudinal stress due to transverse stretching and heat in the longitudinal direction cause contraction stress in the longitudinal direction. By the way, while both ends of the film are gripped and restrained by the clip, the central portion of the film is weakly affected by the gripping means, and the restraining force is weak. Therefore, the running speed of the central portion of the film is slower than that of both ends gripped by the clip due to the influence of the above-described stress, and thus the physical properties vary in the width direction. Polyamide film used for bag packaging material has a large variation in physical properties in the width direction, for example, an oblique difference in boiling water shrinkage ratio, which causes a twisting phenomenon in a heat treatment after bag making, causing serious trouble. Become. In order to avoid this problem, it is effective to reduce the above-mentioned stress by lowering the magnification of longitudinal stretching, but this not only causes another problem of impairing the strength in the longitudinal direction, but also reduces the production. This leads to a decrease in speed, which is not preferable for industrial production. An object of the present invention is to provide a method for producing a biaxially oriented polyamide film which reduces variations in physical properties in the width direction of a film generated in a transverse stretching step in a sequential biaxial stretching method. More specifically, an object of the present invention is to provide a method for producing a polyamide film by biaxial stretching, which reduces variations in physical properties such as uneven thickness and oblique difference in boiling water shrinkage ratio in the film width direction without lowering the longitudinal stretching ratio. Means for Solving the Problems In view of the above problems, the present inventors have made intensive studies and as a result, have reached the present invention. That is, the present invention relates to a method for successively biaxially stretching a polyamide film obtained by stretching a substantially unoriented polyamide sheet in the longitudinal direction and then stretching it in the transverse direction. ) +20] ° C. or more, [low-temperature crystallization temperature (Tc) of polyamide + 20] ° C.
At the following temperature, it is divided into two stages, a former stage and a latter stage, so that the total longitudinal stretching ratio is 3 times or more, and the latter stage longitudinal stretching uses a ceramic roll having a roll roughness Ra ≦ 0.2. To a method for producing a biaxially oriented polyamide film. The method of the present invention is applied to the production of a polyamide film, and is particularly suitable for producing a biaxially oriented film from a polyamide containing nylon 6 as a main component. As the polyamide, for example, nylon 6, a copolymer obtained by copolymerizing nylon 6 with a small amount of nylon salt or the like, nylon 6
And a nylon salt or the like. Examples of the nylon salt include a nylon salt of hexamethylenediamine and adipic acid or isophthalic acid, and a nylon salt of metaxylylenediamine and adipic acid.
The polyamide may contain a small amount of various known additives, such as various antiblocking agents, antistatic agents and stabilizers, as long as the properties are not impaired. According to the present invention, a biaxially oriented polyamide film is obtained by stretching a substantially unoriented polyamide sheet longitudinally in two steps, followed by transverse stretching, and heat setting. More specifically, in the longitudinal stretching of the substantially unoriented polyamide sheet, the first-stage stretching is performed,
Subsequently, the second-stage stretching is performed using a ceramic roll having a roll roughness Ra ≦ 0.2. Then, it is stretched in the horizontal direction and further heat-set. That is, after drying the above-mentioned polyamide raw material, it is melt-extruded by an extruder, cast from a die on a rotating drum and rapidly cooled and solidified to obtain a polyamide sheet. This polyamide sheet is in a substantially unoriented state. This sheet is first treated with the glass transition temperature (T
g) The first stage of longitudinal stretching is performed at a temperature not lower than +20] ° C. and not higher than the low-temperature crystallization temperature (Tc) of the raw polyamide (Tc) +20] ° C. Here, the low-temperature crystallization temperature (Tc) is a crystallization temperature caused by heating from a glassy state. When the longitudinal stretching is performed at a temperature lower than (Tg of raw material polyamide + 20) ° C., necking is caused and unevenness in thickness tends to increase. On the other hand, if the stretching is performed at a temperature exceeding (Tc + 20 of the raw material polyamide) ° C., thermal crystallization proceeds, and it is easy to break in the transverse stretching, which is not preferable. A more preferred stretching temperature is (Tg of raw polyamide + 30) ° C. to (Tg of raw polyamide).
c + 10) ° C. If the stretching ratio (running speed of the film after stretching / running speed of the film before stretching) in the first-stage longitudinal stretching is too low, the stretching effect cannot be obtained, and if it is too high, the orientation crystallization proceeds. If it is too much, the stretching stress in the second-stage stretching described later becomes too high, resulting in breakage or in transverse stretching. From this viewpoint, the stretching ratio in the first-stage longitudinal stretching is preferably 1.1 to 2.9 times. A more preferred stretching ratio is 1.5 to 2.5 times. For the first-stage longitudinal stretching, a known longitudinal stretching method such as hot roll stretching or infrared radiation stretching can be used. After the first-stage longitudinal stretching, the second-stage longitudinal stretching is subsequently performed. For the second-stage longitudinal stretching, hot roll stretching is used. One of the features of the present invention is to use a ceramic roll having a roughness Ra ≦ 0.2 in the second-stage longitudinal stretching. Ra
If a roll having a size of> 0.2 is used, the film is stretched while the film is slipping on the roll, so that the film surface is undesirably scratched. In addition, since the stretching start point on the roll becomes uneven in the width direction and the stretching start point pulsates, thickness unevenness occurs in the longitudinal and transverse directions of the film flow, which is not preferable. More preferably, a ceramic roll satisfying Ra ≦ 0.05 is used. That is, in the second-stage longitudinal stretching, regardless of the thickness profile in the width direction of the film subjected to the first-stage longitudinal stretching, the film is stretched in a state where the film is linearly adhered in the width direction on a roll. In addition, uniform heating and stretching in the width direction can be performed. Here, Ra is
Center line average roughness is the average height of irregularities (unit = μ)
m), which is a value defined by JIS B0601. The second-stage longitudinal stretching ratio is set so that the total longitudinal stretching ratio is 3.0 times or more. When the ratio is less than 3.0 times, the variation in physical properties in the width direction of the biaxially oriented film is reduced, but the strength in the vertical direction is reduced. If the longitudinal stretching ratio is too large, the effect of reducing variations in physical properties in the width direction of the biaxially oriented film may not be exhibited. Considering this, the preferable total longitudinal stretching ratio is 3.0 to 3.0.
It is 3.8 times, and more preferably 3.3 to 3.6 times. The stretching temperature in the second-stage longitudinal stretching is also (Tg + 20 of raw polyamide) ° C. to (Tc + 20 of raw polyamide).
° C. The stretching temperature is (Tg + 2 of raw material polyamide)
If the temperature is lower than 0) ° C., the stretching stress increases, and the film tends to be broken by transverse stretching. If the temperature exceeds (Tc + 20) of the raw material polyamide, the thickness unevenness increases. More preferably, (Tg of raw material polyamide + 25) ° C. to (Tc of raw material polyamide + 10)
° C. [0011] The uniaxially oriented film thus obtained is then stretched in the transverse direction using a stenter. Here, if the transverse stretching temperature is too low, the transverse stretchability may deteriorate (breakage may occur), while if too high, the thickness unevenness tends to increase. From such a point, the transverse stretching temperature is 100
C. to less than the melting point is preferable, and 100 C. to 180 C. is more preferable. In addition, from the viewpoint of securing the strength in the lateral direction, the stretching ratio is preferably 3.0 times or more, and more preferably 3.5 times or more. The biaxially oriented film stretched in this way is heat-set and wound up. As described above, according to the method of the present invention,
By performing the longitudinal stretching in two stages and performing the second-stage stretching using a ceramic roll having a roll roughness Ra ≦ 0.2, a biaxially oriented polyamide film having small variations in physical properties in the width direction is obtained. be able to. The reason is,
Not only the effect of reducing the stretching stress by dividing the longitudinal stretching into two stages can be obtained, but also the roll roughness Ra in the second stage stretching.
Since the film is stretched in a state in which the film is in close contact with the roll using a ceramic roll of ≦ 0.2, the film can be uniformly heated on the roll in the film width direction. As a result, a linear stretching start point can be obtained in the width direction, and the orientation of the uniaxially oriented film becomes uniform in the width direction. In addition, since the structure of the uniaxially oriented film before the horizontal stretching is made gentle by the sheet orientation relaxing action after the first-stage stretching in the roll adhesion process, the formation of the horizontal orientation which is exhibited at the time of the horizontal stretching becomes easy, and It is considered that the stretching property was improved by reducing the transverse stretching stress. Hereinafter, the present invention will be described in detail with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples. In addition, the film temperature, physical property values, and characteristics used in Examples and Comparative Examples are measured and defined as follows. Glass transition temperature (Tg) and low-temperature crystallization temperature (Tc) An unoriented polyamide sheet is frozen in liquid nitrogen, thawed under reduced pressure, and heated at a rate of 10 ° C. /
Measured in minutes. Film temperature (stretching temperature) The temperature in the longitudinal stretching is measured by a radiation thermometer I manufactured by Minolta Co., Ltd.
The temperature of the film was measured using R-004. For the temperature in the transverse stretching, the temperature of the film was measured using a radiation thermometer RHP3 manufactured by Raytec Japan Co., Ltd. The biaxially oriented polyamide film having uneven thickness is cut into strips of 1 m × 5 cm each in the vertical and horizontal directions, and the thickness shape is measured using a thickness gauge K306C manufactured by Anritsu Electric Co., Ltd. The thickness unevenness per meter is calculated by the following formula, and this is repeated five times.
The average value was regarded as thickness unevenness. [Equation 1] A biaxially oriented polyamide film having an oblique difference in boiling water shrinkage is cut into 21 cm square samples from a position (end) 40% of the full width to the left and right from the center of the full width. Draw a circle with a diameter of 20 cm centering on the center of each sample, draw straight lines passing through the center of the circle in 45 ° and 135 ° directions when the vertical direction is 0 °, measure the diameter in each direction, process It will be the previous length. The sample is heat-treated in boiling water for 30 minutes, taken out, removed of water adhering to the surface, and air-dried. After air drying,
The diameter in each direction is measured and defined as the length after processing. The boiling water shrinkage is calculated using the following equation. [Equation 2] 45 ° and 135 when the vertical direction is 0 °
The absolute value of the difference in the boiling water shrinkage in the ° direction was determined, and the average value at both ends was defined as the oblique difference in the boiling water shrinkage. The surface layer of the biaxially oriented polyamide film wound into a hygroscopic design strain roll is removed, a sample of the entire width is cut out from the inside, and a vacuum dryer adjusted to 30 ° C. × 1.0 mmHg or less is immediately used. The sample was dried for at least 6 hours. Take it out,
Immediately after adjusting for 24 hours or more in a 20 ° C. × 30% RH environment using a desiccator, draw a circle mark with a diameter of 20 cm from the center of the full width to the left and right at 40% of the full width (end). 0 °, 45 °, 9 when the direction is 0 °
Straight lines passing through the center of the circle are drawn in the directions of 0 ° and 135 °, and the diameter in each direction is measured, which is defined as the length before processing. Then, after adjusting the sample for 24 hours in an environment of 30 ° C. × 80% RH, the diameter of the mark in each direction is measured, and the measured length is defined as the length after processing. The moisture elongation is calculated using the following equation. (Equation 3) The absolute value of the difference between the moisture absorption elongation in the 0 ° and 90 ° directions when the vertical direction is 0 ° and the absolute value of the difference in the moisture absorption elongation in the 45 ° and 135 ° directions are determined. The average value of five measurements was defined as the vertical difference and the oblique difference in the moisture elongation. Moisture absorption elongation Vertical and oblique differences are less than 0.5% for 4 points, 0.5%
3 points when the value is less than 1.0% or less, 2 points when the value is 1.0% or more and less than 1.5%, and 1 point when the value is 1.5% or more.
The evaluation was made in 4 grades of 6 to 7 points of ○, 4 to 5 points of Δ, and 2 to 3 points of X, and this evaluation was defined as moisture absorption pattern distortion. The film was biaxially stretched sequentially for 2 hours under the same conditions as described in Example 1. As soon as the film was broken, the film was formed and stretched, and the number of breaks was examined. Example 1 Nylon 6 pellets [relative viscosity (RV) = 2.8] were vacuum-dried, supplied to an extruder, melted at 260 ° C., extruded from a T-die into a sheet, and subjected to direct current heating. A voltage was applied, and the sheet was electrostatically brought into close contact with the cooling roll, and cooled and solidified to obtain a 200 μm-thick non-oriented sheet. The Tg of this sheet was 40 ° C. and the Tc was 68 ° C. The sheet is first pre-heated at a temperature of 50 ° C. and then stretched at a temperature of 75 ° C.
The first-stage longitudinal stretching was performed at a temperature of ℃ and a stretching ratio of 1.7 times.
Next, the second-stage longitudinal stretching was performed using a ceramic roll having a roll roughness Ra of 0.05 so that the total stretching ratio was 3.4 times at a stretching temperature of 70 ° C. Subsequently, the sheet was continuously guided to a stenter, stretched four times at 130 ° C., heat-set at 210 ° C. and subjected to a 5% transverse relaxation treatment, cooled, and both edges were cut and removed. An axially oriented polyamide film was obtained. Table 1 shows the film formation state, physical properties and properties of the film at this time. Example 2 A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the first-stage stretching temperature in the longitudinal stretching was 85 ° C. Example 3 A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the second-stage stretching temperature in the longitudinal stretching was changed to 80 ° C. Example 4 The roll used for the second-stage longitudinal stretching was changed to a roll roughness Ra.
A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the ceramic roll was 0.1. Comparative Example 1 The roll used for the second-stage longitudinal stretching was prepared by using a roll roughness Ra.
A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that a ceramic roll of = 0.3 was used. Comparative Example 2 A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the first-stage stretching temperature in the longitudinal stretching was changed to 92 ° C. Comparative Example 3 A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the second-stage stretching temperature in the longitudinal stretching was 90 ° C. Comparative Example 4 The procedure of Example 2 was repeated except that a ceramic roll having a roll roughness Ra = 0.3 was used for the subsequent stretching roll.
An axially oriented polyamide film was obtained. Comparative Example 5 The procedure of Example 3 was repeated except that a ceramic roll having a roll roughness Ra = 0.3 was used for a subsequent stretching roll.
An axially oriented polyamide film was obtained. Table 1 shows film forming conditions and film evaluation results in Examples and Comparative Examples. [Table 1] The biaxially oriented polyamide film obtained by the longitudinal and transverse sequential stretching obtained by the production method of the present invention has no film breakage, small thickness unevenness, oblique difference in boiling water shrinkage ratio, and moisture absorption pattern distortion. Can be smaller.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−197620(JP,A) 特開 平7−290565(JP,A) 特開 平8−174663(JP,A) 特開 昭56−56827(JP,A) 特開 昭55−21258(JP,A) 特開 昭58−128820(JP,A) 特開 昭51−49266(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 55/14 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-197620 (JP, A) JP-A-7-290565 (JP, A) JP-A-8-174563 (JP, A) JP-A-56-197 56827 (JP, A) JP-A-55-21258 (JP, A) JP-A-58-128820 (JP, A) JP-A-51-49266 (JP, A) (58) Fields investigated (Int. 7 , DB name) B29C 55/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】 実質的に未配向のポリアミドシートを縦
方向に延伸し、ついで横方向に延伸して得られる逐次2
軸延伸によるポリアミドフィルムの製造方法において、
縦延伸を〔ポリアミドのガラス転移温度(Tg)+2
0〕℃以上、〔ポリアミドの低温結晶化温度(Tc)+
20〕℃以下の温度で、前段と後段の2段階に分けて総
合縦延伸倍率3倍以上になるように行い、かつ後段の縦
延伸はロール粗さRa≦0.2のセラミックロールを用
いることを特徴とする2軸配向ポリアミドフィルムの製
造方法。
(57) [Claims 1] A sequential sheet obtained by stretching a substantially unoriented polyamide sheet in the longitudinal direction and then in the transverse direction.
In a method for producing a polyamide film by axial stretching,
Longitudinal stretching is performed using [glass transition temperature of polyamide (Tg) +2
0] ° C or higher, [low temperature crystallization temperature (Tc) of polyamide +
20] At a temperature of not more than ° C., two stages of a former stage and a latter stage are performed so that the total longitudinal stretching ratio is 3 times or more, and the latter stage longitudinal stretching uses a ceramic roll having a roll roughness Ra ≦ 0.2. A method for producing a biaxially oriented polyamide film, comprising:
JP928595A 1995-01-24 1995-01-24 Method for producing biaxially oriented polyamide film Expired - Lifetime JP3520589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP928595A JP3520589B2 (en) 1995-01-24 1995-01-24 Method for producing biaxially oriented polyamide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP928595A JP3520589B2 (en) 1995-01-24 1995-01-24 Method for producing biaxially oriented polyamide film

Publications (2)

Publication Number Publication Date
JPH08197619A JPH08197619A (en) 1996-08-06
JP3520589B2 true JP3520589B2 (en) 2004-04-19

Family

ID=11716213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP928595A Expired - Lifetime JP3520589B2 (en) 1995-01-24 1995-01-24 Method for producing biaxially oriented polyamide film

Country Status (1)

Country Link
JP (1) JP3520589B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150091302A (en) * 2012-12-04 2015-08-10 도레이 카부시키가이샤 Method for manufacturing stretched film
TWI822929B (en) * 2019-01-28 2023-11-21 日商東洋紡股份有限公司 Biaxially oriented polyamide film and polyamide film mill roll

Also Published As

Publication number Publication date
JPH08197619A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
JPS58153616A (en) Method of stretching nylon-film in mechanical direction
US4753842A (en) Heat-shrinkable biaxially drawn polyamide film and process for preparation thereof
JP3569989B2 (en) Method for producing biaxially oriented polyamide film
JP3520589B2 (en) Method for producing biaxially oriented polyamide film
JP3915025B2 (en) Method for producing biaxially oriented polyamide film
JP2001239578A (en) Biaxially oriented nylon 6 film and manufacturing method therefor
JP2900570B2 (en) Biaxially oriented polyamide film and method for producing the same
JP3676883B2 (en) Method for producing polyamide film, and biaxially oriented polyamide film obtained by the method
JP4068249B2 (en) Method for producing biaxially stretched polyamide film
JP3367129B2 (en) Method for producing polyester film
JP2982541B2 (en) Biaxially stretched polyester film for mold release
JPH0764023B2 (en) Method for producing biaxially stretched polyetheretherketone film
JP4710126B2 (en) Method for producing biaxially stretched polyamide film
JPH0458373B2 (en)
JP2001001398A (en) Biaxially stretched polyamide film and production thereof
JPH0245974B2 (en) NIJIKUENSHINSARETAHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JPH10235730A (en) Manufacture of biaxially oriented polyamide film
JPH10175255A (en) Manufacture of biaxially oriented polyamide film
KR100572086B1 (en) Polyamide tape and preparation thereof
JPH04173229A (en) Biaxially oriented polyamide film and its manufacture
JPH10296853A (en) Manufacture of biaxially oriented polyamide film
JP2611413B2 (en) Method for producing high-strength polyester film
KR940009905B1 (en) Polyamide film and manufacturing method thereof
JPH10329211A (en) Manufacture of biaxially oriented polyamide film
JP3822075B2 (en) Method for producing biaxially stretched polyamide resin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 10

EXPY Cancellation because of completion of term