JP3520332B2 - Probe for scanning tunneling microscope and method of manufacturing the same - Google Patents
Probe for scanning tunneling microscope and method of manufacturing the sameInfo
- Publication number
- JP3520332B2 JP3520332B2 JP2000361807A JP2000361807A JP3520332B2 JP 3520332 B2 JP3520332 B2 JP 3520332B2 JP 2000361807 A JP2000361807 A JP 2000361807A JP 2000361807 A JP2000361807 A JP 2000361807A JP 3520332 B2 JP3520332 B2 JP 3520332B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- thin film
- scanning tunneling
- tunneling microscope
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この出願の発明は、走査型ト
ンネル顕微鏡用探針およびその作製方法に関するもので
ある。さらに詳しくは、この出願の発明は、トンネル電
子による光子計測を行う場合における走査型トンネル顕
微鏡に好適に用いることのできる、新しい走査型トンネ
ル顕微鏡用探針、およびその作製方法に関するものであ
る。TECHNICAL FIELD The present invention relates to a probe for a scanning tunneling microscope and a method for manufacturing the same. More specifically, the invention of this application relates to a new probe for a scanning tunneling microscope, which can be suitably used for a scanning tunneling microscope when performing photon measurement by tunneling electrons, and a method for producing the same.
【0002】[0002]
【従来の技術】従来より、探針集光型の走査型トンネル
顕微鏡を用いてトンネル電子による光子計測を行う場合
では、探針として、マルチモード光ファイバー探針にI
TO(インジウム錫酸化物)薄膜を被膜したものがしば
しば用いられている。ITO薄膜は、高導電性および可
視光に対する高透過性を有することから光ファイバー探
針の被膜として好ましいとされていた。2. Description of the Related Art Conventionally, in the case of performing photon measurement by tunneling electrons using a scanning light converging type scanning tunneling microscope, a multimode optical fiber probe is used as a probe.
A film coated with a TO (indium tin oxide) thin film is often used. The ITO thin film has been considered preferable as a coating film for an optical fiber probe because it has high conductivity and high transparency to visible light.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、ITO
薄膜は、金属表面のプラズモン発光効率が低く、近年の
ナノテクノロジーにおける基盤技術としてのナノスケー
ル局所化学分析には不十分であるといった問題があっ
た。However, the ITO is
The thin film has a problem that the plasmon emission efficiency of the metal surface is low and is insufficient for nanoscale local chemical analysis as a basic technology in recent nanotechnology.
【0004】この出願の発明は、以上のとおりの事情に
鑑みてなされたものであり、従来技術の問題点を解消
し、高導電性および高光透過性はもちろんのこと、高い
プラズモン発光効率を得ることのできる、新しい走査型
トンネル顕微鏡用探針およびその作製方法を提供するこ
とを課題としている。The invention of the present application has been made in view of the above circumstances, and solves the problems of the prior art and obtains high plasmon luminous efficiency as well as high conductivity and high light transmittance. It is an object of the present invention to provide a new probe for a scanning tunneling microscope and a method for manufacturing the same.
【0005】[0005]
【課題を解決する手段】この出願の発明は、上記の課題
を解決するものとして、光ファイバー探針にITO薄膜
およびプラズモン発光効率を高めるための銀薄膜が積層
被膜されてなることを特徴とする走査型トンネル顕微鏡
用探針(請求項1)を提供し、この探針において、銀薄
膜の膜厚が5nm〜25nmであること(請求項2)を
提供する。In order to solve the above-mentioned problems, the invention of the present application is characterized in that an optical fiber probe is laminated with an ITO thin film and a silver thin film for increasing the plasmon emission efficiency. And a thin silver film having a thickness of 5 nm to 25 nm (claim 2 ) .
Hisage to today.
【0006】また、この出願の発明は、真空スパッター
蒸着法により光ファイバー探針に銀薄膜およびITO薄
膜を積層被膜することを特徴とする走査型トンネル顕微
鏡用探針の作製方法(請求項3)を提供する。Further, the invention of this application provides a method for manufacturing a probe for a scanning tunneling microscope, characterized in that an optical fiber probe is laminated with a silver thin film and an ITO thin film by a vacuum sputter deposition method (claim 3 ). provide.
【0007】[0007]
【発明の実施の形態】この出願の発明の走査型トンネル
顕微鏡用探針は、この出願の発明の発明者等による金属
薄膜がITO薄膜よりも1桁以上高いプラズモン発光効
率を得ることができるという全く新しい発見に基づいて
なされたものであり、上記の通りに光ファイバー探針に
ITO薄膜および金属薄膜を積層被膜したことを特徴と
している。BEST MODE FOR CARRYING OUT THE INVENTION The probe for a scanning tunneling microscope of the invention of this application is such that a metal thin film by the inventors of the invention of this application can obtain a plasmon luminous efficiency higher by one digit or more than an ITO thin film. It was made based on a completely new discovery, and is characterized in that an optical fiber probe is laminated with an ITO thin film and a metal thin film as described above.
【0008】すなわち、プラズモン発光効率の高いたと
えば銀、銅、金などの金属物質によりなる薄膜をITO
被膜光ファイバー探針にさらに積層被膜させることによ
り、プラズモン発光効率を増大させ、ナノスケール局所
化学分析において十分なプラズモン発光効率、つまり表
面局所状態密度像および光子発生像の可視化をナノスケ
ール分解能で可能とするプラズモン発光効率を実現して
いるのである。That is, a thin film made of a metal substance such as silver, copper or gold having a high plasmon luminous efficiency is formed of ITO.
By further layering the coated optical fiber probe, the plasmon emission efficiency can be increased, and sufficient plasmon emission efficiency in the nanoscale local chemical analysis, that is, visualization of surface local state density image and photon generation image can be achieved at nanoscale resolution. It realizes plasmon luminous efficiency.
【0009】また、この金属/ITO積層被膜の光ファ
イバー探針は、導電性も向上しており、探針の衝突をよ
り効果的に防止して、探針の長寿命化をも図ることがで
きる。In addition, the optical fiber probe of the metal / ITO laminated film has improved conductivity, so that the collision of the probe can be more effectively prevented and the life of the probe can be extended. .
【0010】なお、この出願の発明の発明者等はさら
に、上記金属物質のなかでも銀が最もプラズモン発光効
率の高いということをも発見した。したがって、金属薄
膜は銀薄膜であることがより好ましい。積層する銀薄膜
の膜厚は、光透過性および導電性ならびに連続性の観点
から5〜25nmの範囲内が好ましく、より好ましくは
5〜20nm、さらに好ましくは5〜10nmである。
他の金属薄膜の場合にも、各種特性が最適となる膜厚を
適宜選択することが望ましい。Further, the inventors of the invention of this application have also discovered that silver has the highest plasmon luminous efficiency among the above metal substances. Therefore, the metal thin film is more preferably a silver thin film. The thickness of the silver thin film to be laminated is preferably within the range of 5 to 25 nm, more preferably 5 to 20 nm, and further preferably 5 to 10 nm from the viewpoint of light transmission, conductivity and continuity.
Also in the case of other metal thin films, it is desirable to appropriately select a film thickness that optimizes various characteristics.
【0011】また、この走査型トンネル顕微鏡用探針の
作製において、銀薄膜を初めとする金属薄膜の積層被膜
は、膜厚の均一性および付着力の観点から真空スパッタ
ー蒸着法によることが好ましい。Further, in the production of the probe for the scanning tunneling microscope, the laminated coating of the metal thin films such as the silver thin film is preferably formed by the vacuum sputter deposition method from the viewpoint of the uniformity of the film thickness and the adhesive force.
【0012】この出願の発明は、以上のとおりの特徴を
有するものであるが、以下に、添付した図面に沿って実
施例を示し、さらに詳しくこの発明の実施の形態につい
て説明する。The invention of this application has the characteristics as described above. The embodiments will be described below in more detail with reference to the accompanying drawings.
【0013】[0013]
【実施例】まず、ITO薄膜上に積層された銀薄膜の特
性を評価するために、真空スパッター蒸着法の一つであ
るマグネトロンスパッター法により、真空にてガラス基
板上に膜厚約100nmのITO(5%SnO2)薄膜
を被膜し、続いて真空を破ることなくITO薄膜上に銀
薄膜を被膜した。EXAMPLE First, in order to evaluate the characteristics of a silver thin film laminated on an ITO thin film, an ITO film having a thickness of about 100 nm was formed on a glass substrate under vacuum by a magnetron sputtering method which is one of vacuum sputtering deposition methods. A (5% SnO 2 ) thin film was coated, followed by a thin silver film on the ITO thin film without breaking the vacuum.
【0014】これにより得られた銀薄膜について透過率
測定を行ったところ、銀薄膜の膜厚(nm)と可視光
(波長630nm)に対する透過率(%)との関係は図
1に例示したようになった。この図1から明らかなよう
に、銀薄膜の可視光透過率は膜厚に対して指数関数的に
減少することがわかる。これは銀の薄膜がほぼ均一に成
長していることを示す。5〜25nmの場合において約
60〜5%という十分な透過率が得られており、5〜2
0nmでは約60〜10%、さらに5〜10nmでは約
60〜50%という極めて高い透過率が得られている。
また、4端子導電率測定も行ったが、その結果も優れた
導電率を示していた。したがって、これらの膜厚範囲が
高い可視光透過率および導電率を有していることから銀
薄膜として好ましいものである。When the transmittance of the silver thin film thus obtained was measured, the relationship between the film thickness (nm) of the silver thin film and the transmittance (%) with respect to visible light (wavelength 630 nm) was as illustrated in FIG. Became. As is clear from FIG. 1, the visible light transmittance of the silver thin film decreases exponentially with respect to the film thickness. This indicates that the silver thin film is growing almost uniformly. In the case of 5 to 25 nm, a sufficient transmittance of about 60 to 5% is obtained.
An extremely high transmittance of about 60 to 10% at 0 nm and about 60 to 50% at 5 to 10 nm is obtained.
In addition, the four-terminal conductivity was also measured, and the result also showed excellent conductivity. Therefore, these film thickness ranges are preferable as a silver thin film because they have high visible light transmittance and conductivity.
【0015】次いで、DCマグネトロンスパッター法に
より真空にて光ファイバー探針に膜厚100nmのIT
O薄膜および膜厚10nmの金属薄膜を順に積層被膜し
て、この出願の発明の走査型トンネル顕微鏡用探針を作
製した。図2は、この探針の走査型オージェ顕微鏡によ
る銀オージェ像を示したものである。この図2の銀オー
ジェ像から明らかなように、光ファイバー探針表面の全
面にわたり銀薄膜が均一に成膜されていることがわか
る。したがって、真空スパッター蒸着法を選択すること
で、光ファイバー探針に対する均一な積層被膜を実現で
きるのである。Then, an IT film having a film thickness of 100 nm was formed on the optical fiber probe in vacuum by the DC magnetron sputtering method.
An O thin film and a metal thin film having a film thickness of 10 nm were laminated in this order to manufacture a probe for a scanning tunneling microscope of the invention of this application. FIG. 2 shows a silver Auger image obtained by a scanning Auger microscope of this probe. As is clear from the silver Auger image in FIG. 2, it is found that the silver thin film is uniformly formed on the entire surface of the optical fiber probe. Therefore, by selecting the vacuum sputter deposition method, it is possible to realize a uniform laminated coating on the optical fiber probe.
【0016】そして、金属/ITO積層被膜光ファイバ
ー探針であるこの走査型トンネル顕微鏡用探針によるプ
ラズモン発光効率は〜10-4であり、従来のITO被膜
光ファイバー探針と比べて極めて高い数値であった。も
ちろん、その可視光透過率は約50%、導電率は1×1
0-4Ωmであり、プラズモン発光効率だけでなく、光透
過性および導電性もナノスケール局所科学分析には十分
に高いものとなっている。The plasmon luminous efficiency of this probe for a scanning tunneling microscope, which is a metal / ITO laminated optical fiber probe, is -10 -4, which is an extremely high value as compared with a conventional ITO coated optical fiber probe. It was Of course, its visible light transmittance is about 50% and its conductivity is 1 × 1.
Since it is 0 −4 Ωm, not only the plasmon luminous efficiency but also the light transmittance and conductivity are sufficiently high for nanoscale local scientific analysis.
【0017】この発明は以上の例に限定されるものでは
なく、細部については様々な態様が可能である。The present invention is not limited to the above examples, and various details can be made.
【0018】[0018]
【発明の効果】以上詳しく説明した通り、この出願の発
明によって、高導電性および高光透過性を有するととも
に、高いプラズモン発光効率を得ることのできる、新し
い走査型トンネル顕微鏡用探針、およびその作製方法が
提供される。As described in detail above, according to the invention of this application, a new probe for a scanning tunneling microscope, which has high conductivity and high light transmittance, and can obtain high plasmon emission efficiency, and its fabrication. A method is provided.
【図1】ITO薄膜上に積層した銀薄膜の膜厚と透過率
との関係を例示した図である。FIG. 1 is a diagram illustrating the relationship between the film thickness and the transmittance of a silver thin film laminated on an ITO thin film.
【図2】この出願の発明の走査型トンネル顕微鏡用探針
の銀オージェ像の一例を示した図である。FIG. 2 is a diagram showing an example of a silver Auger image of the scanning tunneling microscope probe of the invention of this application.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 13/12 G01B 7/34 G12B 21/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 13/12 G01B 7/34 G12B 21/04
Claims (3)
ラズモン発光効率を高めるための銀薄膜が積層被膜され
てなることを特徴とする走査型トンネル顕微鏡用探針。1. A ITO film and up to the optical fiber probe
A probe for a scanning tunneling microscope, comprising a laminated thin film of silver thin film for improving lasmon luminous efficiency .
請求項1の走査型トンネル顕微鏡用探針。2. The probe for a scanning tunnel microscope according to claim 1, wherein the film thickness of the silver thin film is 5 nm to 25 nm .
ー探針に銀薄膜およびITO薄膜を積層被膜することを
特徴とする走査型トンネル顕微鏡用探針の作製方法。3. An optical fiber produced by a vacuum sputter deposition method.
ー It is possible to stack silver thin film and ITO thin film on the probe.
A method for producing a characteristic probe for a scanning tunneling microscope.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000361807A JP3520332B2 (en) | 2000-11-28 | 2000-11-28 | Probe for scanning tunneling microscope and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000361807A JP3520332B2 (en) | 2000-11-28 | 2000-11-28 | Probe for scanning tunneling microscope and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002168757A JP2002168757A (en) | 2002-06-14 |
JP3520332B2 true JP3520332B2 (en) | 2004-04-19 |
Family
ID=18833192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000361807A Expired - Lifetime JP3520332B2 (en) | 2000-11-28 | 2000-11-28 | Probe for scanning tunneling microscope and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3520332B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6717358B1 (en) * | 2002-10-09 | 2004-04-06 | Eastman Kodak Company | Cascaded organic electroluminescent devices with improved voltage stability |
US7967435B1 (en) * | 2010-04-21 | 2011-06-28 | 3M Innovative Properties Company | Metal detectable lens |
-
2000
- 2000-11-28 JP JP2000361807A patent/JP3520332B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002168757A (en) | 2002-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Uniform self‐forming metallic network as a high‐performance transparent conductive electrode | |
Banerjee et al. | Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique | |
TWI480653B (en) | High contrast transparent conductors and methods of forming the same | |
US7161171B2 (en) | Material for use in the manufacturing of luminous display devices | |
US7858194B2 (en) | Extreme low resistivity light attenuation anti-reflection coating structure in order to increase transmittance of blue light and method for manufacturing the same | |
CN101866708B (en) | High-transmissivity flexible transparent conductive film and preparation method thereof | |
TW201543701A (en) | Composite transparent conductors and methods of forming the same | |
JPWO2005076292A1 (en) | Manufacturing method of transparent electrode | |
KR20150022964A (en) | Conductive film having oxide layer and method for manufacturing thereof | |
Mashkov et al. | Effect of ligand treatment on the tuning of infrared plasmonic indium tin oxide nanocrystal electrochromic devices | |
CN104616719B (en) | A kind of low indium transparency electrode and preparation method thereof | |
CN111129198A (en) | Graphene/lead sulfide infrared detector and preparation method thereof | |
JP2002323606A (en) | Functional thin film having optical and electrical properties | |
JP3520332B2 (en) | Probe for scanning tunneling microscope and method of manufacturing the same | |
JP2001319384A (en) | Electrode material for forming stamper and thin film for forming stamper | |
JPH07249316A (en) | Transparent conductive film and transparent substrate using the transparent conductive film | |
JP2005071901A (en) | Transparent conductive laminated film | |
CN109254467A (en) | A kind of changeable colour optical device and preparation method thereof | |
CN211480067U (en) | Graphene/lead sulfide infrared detector | |
EP1154421A2 (en) | Production method for optical disc | |
JP6670368B2 (en) | Multilayer thin film | |
JP3369728B2 (en) | Laminated transparent conductive substrate | |
JP3654841B2 (en) | Transparent conductive film and method for producing the same | |
JP3489844B2 (en) | Transparent conductive film and method for producing the same | |
JP3915202B2 (en) | Conductive antireflection film and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3520332 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |