JP3519444B2 - Space culture vessel - Google Patents

Space culture vessel

Info

Publication number
JP3519444B2
JP3519444B2 JP4350394A JP4350394A JP3519444B2 JP 3519444 B2 JP3519444 B2 JP 3519444B2 JP 4350394 A JP4350394 A JP 4350394A JP 4350394 A JP4350394 A JP 4350394A JP 3519444 B2 JP3519444 B2 JP 3519444B2
Authority
JP
Japan
Prior art keywords
culture
culture vessel
container
inner lid
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4350394A
Other languages
Japanese (ja)
Other versions
JPH07250667A (en
Inventor
成昭 根岸
一秀 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4350394A priority Critical patent/JP3519444B2/en
Publication of JPH07250667A publication Critical patent/JPH07250667A/en
Application granted granted Critical
Publication of JP3519444B2 publication Critical patent/JP3519444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は宇宙空間などの微小重力
環境で使用するのに好適な細胞などの培養容器に関す
る。 【0002】 【従来の技術】地上での通常の細胞等の培養を行う場合
には、図3に示すような直径40〜90mm、高さ10
〜20mmのシャーレ本体7に各種の栄養源を含む培養
液3と細胞などの培養種を入れてシャーレ蓋8をして培
養する方法によって行われている。近年、スペースシャ
トルなどを利用し宇宙空間において各種の細胞などの培
養試験が行われることが多くなってきている。宇宙空間
などの微小重力環境の下では容器の壁面と液体との接触
角が90度に近く、壁面の間隔が小さければ水平な液面
を保つことができるが、接触角が90度から大きくずれ
ていると(例えば45度程度)、小さな外力が加えられ
るだけで液面が移動し、図6に示すように培養液などの
液体13は容器12の壁面に付き、気体14は容器12
の中央部に集まる形となる。また、接触角が90度に近
くても壁面の間隔が大きくなると液面が壁面に沿って移
動したり、波打ったりして液面を安定した状態に保こと
ができない。従って、図3のようなシャーレを宇宙空間
に持っていき培養液3を入れると、この培養液3はシャ
ーレ本体7及びシャーレ蓋8の壁面に付着し、シャーレ
本体7とシャーレ蓋8の隙間から培養液3が漏れ出し、
飛散する。シャーレから漏れ出した培養液3は、地上で
は床に落ちるが、宇宙船内では室内に漂い電気的な短絡
の原因となる恐れがあり非常に危険である。そのため宇
宙では従来、図4に示すようなゴム栓10をした密閉容
器9からなる密閉式培養容器を使用し、そのゴム栓10
に注射針を刺して注射器により培養液3及び細胞などを
注入するような方法が用いられている。また、宇宙用の
培養容器として図5に示すように容器内部に上下方向に
延びる複数枚の板11を横に並べて配設し、壁面と壁面
との間隔を狭くするようにした容器が提案されている。
図5(a)は正面、(b)は側面から見た断面図であ
る。 【0003】 【発明が解決しようとする課題】図4のような密閉容器
を使用する場合には、注射器を使用して培養液などの供
給、抜き出しを行わなければならない。地上で一般的に
行われるピペット操作などに比べて注射器の操作は煩雑
であり、先端が鋭利な注射針を使用するため、作業者に
とって危険でもある。一方、図5のように内部に板11
を並べた培養容器では、地上でシャーレを使用して行う
場合と同様の操作を行うことができる。ところが、細胞
などの培養を行う際には培養容器は、細胞などの成育環
境に制御されているインキュベータと無菌的な環境で容
器内に培養液の注入等を行うクリーンベンチの間で頻繁
に移動される。図5のように内部に板を並べた容器で
は、図7に示すように板11と平行な方向(図の矢印の
方向)に培養容器を動かすと液面の後方が上がり、培養
液3が培養容器本体1の壁面全体に広がり、やはり培養
容器本体1と培養容器蓋6との隙間から培養液3がこぼ
れることになる。なお、図7の(a)は容器を移動し始
めたときの状態、(b)は容器を移動させている途中の
状態、(c)は容器を止めた直後の状態を示している。
本発明はこのような従来技術の問題点を解決し、宇宙空
間のような微小重力環境においても、培養液や細胞など
の培養種、薬品類などの注入や取り出しあるいは運搬な
どの取扱を、地上における場合と同じように行うことの
できる宇宙用培養容器を提供するものである。 【0004】 【課題を解決するための手段】本発明は上蓋付き培養容
器であって、前記容器内に内接し、複数の径3〜10m
mの貫通孔を有する厚さが前記貫通孔の径の1〜5倍の
内蓋を具えてなることを特徴とする宇宙用培養容器であ
る。 【0005】本発明において、培養容器に内接させる内
蓋の材質としては水をはじく性質のある樹脂類が適して
おり、特にポリカーボネート、シリコン樹脂、テフロン
等のフッ素樹脂などが好ましい。この内蓋には、径が3
〜10mmの該内蓋の上面から下面へ貫通する貫通孔が
設けられている。この径が10mmを超えると液面を保
持することができなくなるので好ましくない。また、3
mm未満ではピペット等による操作が行い難くなる。4
〜7mmが最も好ましい範囲である。内蓋の厚みは前記
貫通孔の径の1〜5倍とする。これは、培養液の樹脂に
対する接触角が90度に近いことによる。厚みが貫通孔
の径の1倍未満では液が溢れ出し、本発明の効果が発揮
されない。また、厚みが厚くなり過ぎると、ピペット等
による操作がやり難くなり、取扱性も悪くなるので好ま
しくない。2〜3倍が最も好ましい範囲である。培養容
器の形状はシャーレ状の円筒形のものが一般的であるが
特にこれに限定されるものではない。前記貫通孔の形状
も断面円形ないしそれに近似したものが好ましい。 【0006】培養容器内への内蓋の装着方法としては、
内蓋に適当数の脚を取り付けるか培養容器の内壁に段差
を付けておき、その内蓋を液中に入れ、内蓋の周囲にO
リングを設けるかあるいは蓋の内側に突起を設けて内蓋
を押さえるようにして固定する方法などが好適である。
また、容器が円筒形の場合には、容器の内壁と内蓋外周
にねじを切ってはめ込むようにしてもよい。 【0007】 【作用】円筒型の容器において液体と容器との接触角が
90度に近く、円筒の内径が充分に小さければ液面が安
定することが知られている。このことは地上において内
径2〜5mmのガラス管に水を入れ、逆さにしても水は
こぼれない現象からも容易に推察できる。本発明はこの
原理を巧みに利用したものである。通常使用されている
シャーレは円筒型ではあるが内径が大きいため液面は平
坦にならず、図6のように培養液は容器内壁全体に接触
する。そこで、容器に内接する円盤を配設し、該円盤に
適当な大きさの貫通孔を開け、液面が該貫通孔の中に位
置するように培養液を入れれば、地上でのシャーレと同
様に液面は平坦な状態に保たれ、地上と同じような感覚
で培養液などを容器より出し入れすることが可能にな
る。 【0008】培養液は水溶液であり各種材料との接触角
は純水に近く、樹脂類との接触角は90度に近い。従っ
て、培養液を樹脂製の円筒容器に入れると、容器の内径
が小さければ液面は安定している。航空機による微小重
力実験(9.8×10-2mm/s2 )において樹脂の一
つであるアクリル製円筒型容器に、アクリルに対する接
触角が85度の純水を入れて、人が通常の試験において
試験器具に対して与える加速度で容器を動かし、液面の
挙動を観察した結果、内径10mm以下であれば液面が
安定していた。特に、内径4mm以下であれば液面はほ
とんど変化しなかった。本発明では容器に貫通孔を設け
た内蓋が内接しており、この貫通孔内に液面が位置する
ように培養液を入れると、培養液の接触角が90度に近
ければ液面は貫通孔内で安定する。 【0009】 【実施例】以下実施例により本発明をさらに具体的に説
明する。図1に本発明の宇宙用培養容器の1例を示す。
円筒形の培養容器本体1に内接して図2にその平面図及
び側面図を示すような内蓋2を配設している。内蓋2は
培養容器本体1の底部から浮いた状態で設置し、培養液
3は培養容器本体1内において自由に移動できる。培養
容器内への内蓋の装着方法については、図1にはその細
部については示していないが、内蓋に適当数の脚を取り
付けるか培養容器の内壁に段差を付けておき、その内蓋
を液中に入れ、内蓋の周囲にOリングを設けるか蓋の内
側に突起を設けて内蓋を押さえるようにして固定する方
法あるいは容器の内壁と内蓋外周にねじを切ってはめ込
む方法をとればよい。内蓋2には貫通孔4が複数個(こ
の例では5個)設けられており、貫通孔4の直径は10
mm以下、好ましくは4mm以下である。培養容器本体
1を動かしても貫通孔4内の液が貫通孔4からあふれる
ことがないよう、内蓋2の厚さは貫通孔4の直径以上、
好ましくは2倍程度とする。貫通孔4の深さの中間に液
面が位置するよう培養液3を入れる。液面は各貫通孔4
内で安定しているので、培養容器本体1を動かしても貫
通孔4からこぼれることはない。また、貫通孔4内で液
面が開放されているので、ピペットなどにより貫通孔4
内の培養液3に細胞や薬品類を添加したり、培養液3の
試料を採取することができる。 【0010】 【発明の効果】本発明の宇宙用培養容器では、微小重力
環境においても液面が開放された状態で液面を安定した
状態に保持することができる。本発明の宇宙用培養容器
を使用することにより、宇宙空間などの微小重力環境に
おいて、密封容器を使用することなく、液の飛散の恐れ
がなく地上でのシャーレを使用した液体培養と同じよう
な感覚で、細胞などの液体培養を実施することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a culture vessel for cells and the like suitable for use in a microgravity environment such as outer space. 2. Description of the Related Art When culturing ordinary cells or the like on the ground, a diameter of 40 to 90 mm and a height of 10 as shown in FIG.
This is performed by a method in which a culture solution 3 containing various nutrients and a culture species such as a cell are put in a Petri dish main body 7 having a size of about 20 mm, and a Petri dish lid 8 is used to culture the Petri dish. 2. Description of the Related Art In recent years, culture tests of various cells and the like in space using a space shuttle or the like have been frequently performed. In a microgravity environment such as outer space, the contact angle between the container wall and the liquid is close to 90 degrees, and if the distance between the walls is small, a horizontal liquid surface can be maintained, but the contact angle deviates significantly from 90 degrees (For example, about 45 degrees), the liquid level moves only by applying a small external force, and as shown in FIG.
Will be gathered in the central part of. Also, even if the contact angle is close to 90 degrees, if the distance between the wall surfaces is large, the liquid surface moves along the wall surface or undulates, and the liquid surface cannot be kept in a stable state. Therefore, when the petri dish as shown in FIG. 3 is brought into outer space and the culture solution 3 is introduced, the culture solution 3 adheres to the wall surfaces of the petri dish main body 7 and the petri dish lid 8 and passes through the gap between the petri dish main body 7 and the petri dish lid 8. The culture solution 3 leaks out,
Scatter. The culture solution 3 leaked from the petri dish falls on the floor on the ground, but in the spacecraft, it may drift inside the room and cause an electric short circuit, which is extremely dangerous. For this reason, in the universe, a closed culture vessel comprising a sealed container 9 having a rubber stopper 10 as shown in FIG.
A method is used in which a culture solution 3 and cells are injected with a syringe by piercing a syringe needle. As a culture vessel for space, a vessel has been proposed in which a plurality of vertically extending plates 11 are arranged side by side in the vessel as shown in FIG. 5 so as to reduce the distance between the walls. ing.
FIG. 5A is a cross-sectional view as viewed from the front, and FIG. [0003] When a closed container as shown in FIG. 4 is used, it is necessary to supply and withdraw a culture solution or the like using a syringe. The operation of the syringe is more complicated than the pipetting operation generally performed on the ground, and the use of a sharp-pointed injection needle is dangerous for the operator. On the other hand, as shown in FIG.
Can be performed in the culture vessel in which the same operation as when using a petri dish on the ground is performed. However, when culturing cells and the like, the culture vessel frequently moves between an incubator that is controlled by the growth environment of the cells and the like and a clean bench that injects the culture solution into the vessel in an aseptic environment. Is done. In a container in which plates are arranged inside as shown in FIG. 5, when the culture container is moved in a direction parallel to the plate 11 (in the direction of the arrow in the figure) as shown in FIG. The culture solution 3 spreads over the entire wall surface of the culture vessel body 1, and the culture solution 3 also spills out of the gap between the culture vessel body 1 and the culture vessel lid 6. 7A illustrates a state when the container is started to be moved, FIG. 7B illustrates a state in which the container is being moved, and FIG. 7C illustrates a state immediately after the container is stopped.
The present invention solves such a problem of the conventional technology, and even in a microgravity environment such as outer space, the handling of injection, removal or transportation of culture species such as culture solution and cells, chemicals, etc. can be performed on the ground. The present invention provides a space culture vessel that can be carried out in the same manner as in the above. [0004] The present invention relates to a culture vessel with a top lid, which is inscribed in the vessel and has a plurality of diameters of 3 to 10 m.
A space culture container having an inner lid having a thickness of 1 to 5 times the diameter of the through hole having a through hole of m. [0005] In the present invention, as the material of the inner lid to be inscribed in the culture vessel, resins having a property of repelling water are suitable, and in particular, fluorocarbon resins such as polycarbonate, silicone resin and Teflon are preferable. The inner lid has a diameter of 3
A through hole of 10 mm to 10 mm penetrating from the upper surface to the lower surface of the inner lid is provided. If the diameter exceeds 10 mm, the liquid level cannot be maintained, which is not preferable. Also, 3
If it is less than mm, operation with a pipette or the like becomes difficult. 4
~ 7 mm is the most preferred range. The thickness of the inner lid is 1 to 5 times the diameter of the through hole. This is because the contact angle of the culture solution with the resin is close to 90 degrees. If the thickness is less than one time the diameter of the through hole, the liquid overflows, and the effect of the present invention is not exhibited. On the other hand, if the thickness is too large, it becomes difficult to operate with a pipette or the like, and the handleability is deteriorated. 2-3 times is the most preferred range. The shape of the culture vessel is generally a petri dish-shaped cylindrical shape, but is not particularly limited thereto. It is preferable that the shape of the through-hole is a circular cross section or a shape similar thereto. [0006] As a method of mounting the inner lid in the culture vessel,
Attach an appropriate number of legs to the inner lid or place a step on the inner wall of the culture vessel, put the inner lid in the solution, and place an O around the inner lid.
A method in which a ring is provided or a projection is provided on the inside of the lid and the inner lid is pressed down and fixed is preferable.
When the container has a cylindrical shape, the container may be screwed into the inner wall and the outer periphery of the inner lid. It is known that in a cylindrical container, the liquid surface becomes stable if the contact angle between the liquid and the container is close to 90 degrees and the inside diameter of the cylinder is sufficiently small. This can easily be inferred from the phenomenon that water is poured into a glass tube having an inner diameter of 2 to 5 mm on the ground and water does not spill even if it is inverted. The present invention takes advantage of this principle. Although a commonly used petri dish is cylindrical, the liquid surface is not flat because the inside diameter is large, and the culture solution comes into contact with the entire inner wall of the container as shown in FIG. Therefore, a disk inscribed in the container is arranged, a through hole of an appropriate size is opened in the disk, and a culture solution is put so that the liquid level is located in the through hole, similar to a petri dish on the ground In addition, the liquid surface is kept flat, and a culture solution and the like can be taken in and out of the container with the same feeling as on the ground. The culture solution is an aqueous solution, and its contact angle with various materials is close to pure water, and its contact angle with resins is close to 90 degrees. Therefore, when the culture solution is put into a cylindrical container made of resin, the liquid surface is stable if the inner diameter of the container is small. In a microgravity experiment (9.8 × 10 −2 mm / s 2 ) using an aircraft, pure water having a contact angle of 85 ° with acrylic was placed in an acrylic cylindrical container, which is one of the resins, so that people could use ordinary water. As a result of observing the behavior of the liquid surface by moving the container at an acceleration given to the test device in the test, the liquid surface was stable if the inner diameter was 10 mm or less. In particular, when the inner diameter was 4 mm or less, the liquid level hardly changed. In the present invention, the inner lid provided with a through-hole in the container is inscribed, and when the culture solution is poured so that the liquid surface is located in this through-hole, the liquid surface is adjusted if the contact angle of the culture solution is close to 90 degrees. Stable in the through hole. The present invention will be described more specifically with reference to the following examples. FIG. 1 shows an example of the space culture vessel of the present invention.
An inner lid 2 as shown in the plan view and the side view in FIG. 2 is provided in contact with the cylindrical culture vessel main body 1. The inner lid 2 is installed so as to float from the bottom of the culture vessel main body 1, and the culture solution 3 can move freely in the culture vessel main body 1. Although the details of the method of mounting the inner lid in the culture vessel are not shown in FIG. 1, an appropriate number of legs are attached to the inner lid or a step is provided on the inner wall of the culture vessel, and the inner lid is provided. Into the liquid and provide an O-ring around the inner lid or a projection on the inside of the lid to hold down the inner lid, or fix it by screwing it on the inner wall of the container and the outer periphery of the inner lid. It is good. The inner lid 2 is provided with a plurality of through holes 4 (five in this example).
mm or less, preferably 4 mm or less. The thickness of the inner lid 2 is equal to or larger than the diameter of the through-hole 4 so that the liquid in the through-hole 4 does not overflow from the through-hole 4 even when the culture vessel main body 1 is moved.
Preferably, it is about twice. The culture solution 3 is put so that the liquid level is located at the middle of the depth of the through hole 4. The liquid level is each through hole 4
Is stable in the inside, so that even if the culture vessel main body 1 is moved, it does not spill out from the through hole 4. Further, since the liquid surface is opened in the through hole 4, the through hole 4 is formed by a pipette or the like.
Cells or chemicals can be added to the culture solution 3 inside, or a sample of the culture solution 3 can be collected. According to the culture vessel for space of the present invention, the liquid surface can be maintained in a stable state even in a microgravity environment with the liquid surface opened. By using the culture vessel for space of the present invention, in a microgravity environment such as outer space, without using a sealed vessel, there is no danger of scattering of liquid, similar to liquid culture using a petri dish on the ground Liquid culture of cells and the like can be performed with a sense.

【図面の簡単な説明】 【図1】本発明の実施例に係る宇宙用培養容器の縦断面
図。 【図2】図1の培養容器内に内接する内蓋の概念図。 【図3】地上で使用するシャーレの縦断面図。 【図4】従来の宇宙用密閉式培養容器の1例を示す縦断
面図。 【図5】従来の宇宙用液体容器の1例を示す正面及び側
面断面図。 【図6】気体と液体の入った容器の宇宙での状態を示す
断面図。 【図7】図6と同様の従来の宇宙用液体容器を移動させ
た場合の状態を示す断面図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a space culture container according to an embodiment of the present invention. FIG. 2 is a conceptual diagram of an inner lid inscribed in the culture vessel of FIG. FIG. 3 is a longitudinal sectional view of a petri dish used on the ground. FIG. 4 is a longitudinal sectional view showing an example of a conventional closed culture vessel for space. FIG. 5 is a front and side sectional view showing an example of a conventional space liquid container. FIG. 6 is a sectional view showing a state in space of a container containing a gas and a liquid. FIG. 7 is a cross-sectional view showing a state in which a conventional space liquid container similar to FIG. 6 is moved.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C12M 1/00 - 3/10 B64G 1/66 BIOSIS/WPI(DIALOG)────────────────────────────────────────────────── ─── Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) C12M 1/00-3/10 B64G 1/66 BIOSIS / WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 上蓋付き培養容器であって、前記容器内
に内接し、複数の径3〜10mmの貫通孔を有する厚さ
が前記貫通孔の径の1〜5倍の内蓋を具えてなることを
特徴とする宇宙用培養容器。
(57) Claims: 1. A culture vessel with a top lid, wherein the thickness of the culture vessel inscribed in the vessel and having a plurality of through holes having a diameter of 3 to 10 mm is one of the diameters of the through holes. A culture vessel for space, comprising an inner lid of up to 5 times.
JP4350394A 1994-03-15 1994-03-15 Space culture vessel Expired - Fee Related JP3519444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350394A JP3519444B2 (en) 1994-03-15 1994-03-15 Space culture vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4350394A JP3519444B2 (en) 1994-03-15 1994-03-15 Space culture vessel

Publications (2)

Publication Number Publication Date
JPH07250667A JPH07250667A (en) 1995-10-03
JP3519444B2 true JP3519444B2 (en) 2004-04-12

Family

ID=12665532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350394A Expired - Fee Related JP3519444B2 (en) 1994-03-15 1994-03-15 Space culture vessel

Country Status (1)

Country Link
JP (1) JP3519444B2 (en)

Also Published As

Publication number Publication date
JPH07250667A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
US2958517A (en) Vessel for tissue culture and the like comprising a magnetic stirrer
EP3317394B1 (en) Device for propagating microtissues
JP4609799B2 (en) Cell culture apparatus and method
US8828337B2 (en) Microreactor
KR100736059B1 (en) Interface patch clamping
EP0800571A2 (en) Biological analysis device having improved contamination prevention
NZ504223A (en) Device and methods for determination of the presence or amount of an analyte or microorganism in a solution
JP4680037B2 (en) Fluid handling device and fluid handling unit used therefor
US20090137032A1 (en) Cell- and Tissue Culture Device
AU773384C (en) Laboratory cap and well for hanging-drop crystallization methods
JP3519444B2 (en) Space culture vessel
WO2019055448A1 (en) Suspension culture devices and systems and related methods
US20130344473A1 (en) Arresting objects
CN207895144U (en) For microscopical load sample device
CN213596305U (en) Cell negative pressure culture apparatus
JP2002153261A (en) Cell culture container
CN209784649U (en) Sample carrying device for microscope
CN109036012B (en) Parallel floating type leakage oscillation experimental method
KR101847044B1 (en) 3 dimensional cell culture plate
US5508174A (en) Method and micro roller bottle for in vitro exposure of cells to volatile chemicals
CN214473310U (en) Test device for researching heavy metal contaminated soil on earthworm ecotoxicity
CN110470513A (en) A kind of saturation device by chemical solution and its application method for Polluted Soil
JPH05244930A (en) Photo-cultivation reaction tank and cultivation process
CN109036030B (en) Parallel floating type leakage flow oscillation experiment instrument
CN106932299A (en) A kind of method for evaluating floating state oil product/harmful influence sorbing material absorption property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040129

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees