JP3518848B2 - Phase control method for quadrature modulator and quadrature demodulator and communication device - Google Patents

Phase control method for quadrature modulator and quadrature demodulator and communication device

Info

Publication number
JP3518848B2
JP3518848B2 JP17229299A JP17229299A JP3518848B2 JP 3518848 B2 JP3518848 B2 JP 3518848B2 JP 17229299 A JP17229299 A JP 17229299A JP 17229299 A JP17229299 A JP 17229299A JP 3518848 B2 JP3518848 B2 JP 3518848B2
Authority
JP
Japan
Prior art keywords
input
signal
phase
component
quadrature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17229299A
Other languages
Japanese (ja)
Other versions
JP2001007882A (en
Inventor
昌幸 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP17229299A priority Critical patent/JP3518848B2/en
Publication of JP2001007882A publication Critical patent/JP2001007882A/en
Application granted granted Critical
Publication of JP3518848B2 publication Critical patent/JP3518848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ディジタ
ル移動通信装置に使用される最適な直交変調器および直
交復調器と、その位相誤差を校正する制御方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optimum quadrature modulator and quadrature demodulator used in, for example, a digital mobile communication device, and a control method for calibrating a phase error thereof.

【0002】[0002]

【従来の技術】ディジタル移動通信では広く線形変調方
式が採用されており、その変調および復調を行うために
直交変調器および直交復調器が用いられる。
2. Description of the Related Art A linear modulation system is widely used in digital mobile communication, and a quadrature modulator and a quadrature demodulator are used to perform the modulation and demodulation.

【0003】直交変調器および直交復調器を備えた通信
装置の一例を図5に示す。図5は直交変調器および直交
復調器を備えた通信装置の構成の一例を示すブロック図
である。1-1,1-2は送信側の入力端子、1-3は受信側の
入力端子、 2-1,2-2は受信側の出力端子、2-3は送信
側の出力端子、5は搬送波発振器、6-1,6-2,6-3,6-4
は乗算器、7-1,7-2は90度移相器、9は加算器、3は乗算
器6-1,6-2と90度移相器7-1と加算器9とからなる直交変
調器、4は乗算器6-3,6-4と90度移相器7-2とからなる直
交復調器である。図5において、まず送信側では、入力
端子1-1にベースバンド信号の同相成分(I成分)が入力
し、入力端子1-2にベースバンド信号の直交相成分(Q成
分)が入力され、それぞれ直交変調器3の乗算器6-1およ
び6-2に送られる。乗算器6-1および6-2には、入力信号
(I成分とQ成分)それぞれと別途に搬送波発振器5から
送られた搬送波が入力し、入力された搬送波と入力信号
のI成分またはQ成分を乗じて、それぞれ加算器9に送
る。加算器9は入力した2つの信号を加算して出力し、出
力端子2-3を介して高周波回路へ送る。このとき、搬送
波発振器5で発振した所要周波数の搬送波は乗算器6-1に
は直接入力し、乗算器6-2には90度移相器7-1を介して入
力する。90度移相器7-1は入力した搬送波の位相を90度
移相して乗算器6-2に出力する。
FIG. 5 shows an example of a communication device including a quadrature modulator and a quadrature demodulator. FIG. 5 is a block diagram showing an example of the configuration of a communication device including a quadrature modulator and a quadrature demodulator. 1-1 and 1-2 are input terminals on the transmitting side, 1-3 are input terminals on the receiving side, 2-1 and 2-2 are output terminals on the receiving side, 2-3 is output terminals on the transmitting side, and 5 is Carrier wave oscillator, 6-1, 6-2, 6-3, 6-4
Are multipliers, 7-1 and 7-2 are 90-degree phase shifters, 9 is an adder, and 3 is multipliers 6-1, 6-2 and 90-degree phase shifter 7-1 and adder 9. A quadrature modulator, 4 is a quadrature demodulator composed of multipliers 6-3 and 6-4 and a 90-degree phase shifter 7-2. In FIG. 5, on the transmitting side, first, the in-phase component (I component) of the baseband signal is input to the input terminal 1-1, and the quadrature-phase component (Q component) of the baseband signal is input to the input terminal 1-2. The signals are sent to the multipliers 6-1 and 6-2 of the quadrature modulator 3, respectively. The input signals (I component and Q component) and the carrier waves separately sent from the carrier wave oscillator 5 are input to the multipliers 6-1 and 6-2, and the input carrier wave and the I component or Q component of the input signal are input. And send them to the adder 9. The adder 9 adds the two input signals, outputs the added signal, and sends it to the high-frequency circuit via the output terminal 2-3. At this time, the carrier wave of the required frequency oscillated by the carrier wave oscillator 5 is directly input to the multiplier 6-1 and is input to the multiplier 6-2 via the 90-degree phase shifter 7-1. The 90-degree phase shifter 7-1 shifts the phase of the input carrier wave by 90 degrees and outputs it to the multiplier 6-2.

【0004】一方、受信側では、入力端子1-3から入力
された受信信号を乗算器6-3および乗算器6-4に入力す
る。乗算器6-3は入力信号と別途入力された搬送波を乗
じて出力端子2-1を介してI成分を出力する。乗算器6-4
は入力信号と別途入力された搬送波を乗じて出力端子2-
2を介してQ成分を出力する。直交復調器4には搬送波発
信器5で発振された所定周波数の搬送波が入力され、乗
算器6-3および90度移相器7-2に入力され、90度移相器7-
2は入力した搬送波の位相を90度移相して乗算器6-4に出
力する。
On the other hand, on the receiving side, the received signal input from the input terminal 1-3 is input to the multiplier 6-3 and the multiplier 6-4. The multiplier 6-3 multiplies the input signal by the separately input carrier wave and outputs the I component via the output terminal 2-1. Multiplier 6-4
Is an output terminal that multiplies the input signal by the separately input carrier wave.
Output the Q component via 2. The quadrature demodulator 4 is supplied with the carrier wave of a predetermined frequency oscillated by the carrier wave oscillator 5, and is inputted to the multiplier 6-3 and the 90-degree phase shifter 7-2, and the 90-degree phase shifter 7-
2 shifts the phase of the input carrier wave by 90 degrees and outputs it to the multiplier 6-4.

【0005】上述の従来技術において、直交変調器3で
は、I成分とQ成分の2つの信号で搬送波を直交変調する
際に、90度移相器による位相誤差のため、変調精度の劣
化を招く。また、直交復調器4では搬送波でI成分とQ成
分の2つの信号を直交復調する際に、90度移相器による
位相誤差のため復調精度の劣化を招く。これらの変調精
度および復調精度の劣化により通信装置のデータ誤り率
が増加して通信品質が低下する。例えば、図6は90度移
相器の位相誤差と変復調精度劣化との関係を説明する図
である。横軸がI成分(I軸)、縦軸がQ成分(Q軸)、A
は理想的な識別点、A′は実際の信号点、Δθは位相誤
差、Q′軸は位相誤差Δθを有する場合の軸方向であ
る。図6において、I成分-Q成分の直交座標のベクトル
図で示すように、I軸に対してQ軸が位相誤差Δθを有す
る場合(このときのQ軸をQ′軸とする)、理想的な識別
点A(ベクトルOA)は、識別点A′(ベクトルOA′)に移
動するため、誤差ベクトルAA′によって変調精度あるい
は復調精度が劣化する。したがって、このような位相誤
差を発生する直交変調器および直交復調器を備えた通信
装置では、直交変調器および直交復調器において位相補
正を行い、受信データ誤り率の劣化を改善する必要があ
る。従来、90度移相器の位相精度はその製造プロセスに
おける精度に依存しており、また、汎用性を持たせ、広
い帯域で使用できるように一定の誤差を許容して設計さ
れるため、使用する周波数帯域によっては位相誤差に差
異が生じる。また、90度移相器の温度特性および経年変
化によりその位相誤差が変化して更に変調精度および復
調精度が劣化する。
In the above-mentioned conventional technique, in the quadrature modulator 3, when the carrier wave is quadrature-modulated by the two signals of the I component and the Q component, the phase error due to the 90-degree phase shifter causes the deterioration of the modulation accuracy. . Further, in the quadrature demodulator 4, when quadrature demodulating the two signals of the I component and the Q component by the carrier wave, the demodulation accuracy is deteriorated due to the phase error caused by the 90-degree phase shifter. Due to the deterioration of the modulation accuracy and the demodulation accuracy, the data error rate of the communication device increases and the communication quality deteriorates. For example, FIG. 6 is a diagram for explaining the relationship between the phase error of the 90-degree phase shifter and the deterioration of modulation / demodulation accuracy. The horizontal axis is the I component (I axis), the vertical axis is the Q component (Q axis), A
Is an ideal identification point, A ′ is an actual signal point, Δθ is a phase error, and the Q ′ axis is the axial direction when the phase error Δθ is present. In FIG. 6, when the Q axis has a phase error Δθ with respect to the I axis as shown by the vector diagram of the I component-Q component orthogonal coordinates (the Q axis at this time is defined as the Q ′ axis), it is ideal. Since the identification point A (vector OA) is moved to the identification point A ′ (vector OA ′), the error vector AA ′ deteriorates the modulation accuracy or the demodulation accuracy. Therefore, in a communication device provided with a quadrature modulator and a quadrature demodulator that generate such a phase error, it is necessary to correct the phase in the quadrature modulator and the quadrature demodulator to improve the deterioration of the received data error rate. Conventionally, the phase accuracy of a 90-degree phase shifter depends on the accuracy of its manufacturing process, and it is designed to have versatility and allow a certain error so that it can be used in a wide band. The phase error differs depending on the frequency band to be used. In addition, the phase error of the 90-degree phase shifter changes over time and its phase error changes, which further deteriorates the modulation accuracy and demodulation accuracy.

【0006】[0006]

【発明が解決しようとする課題】前述の従来技術には、
90度移相器の製造ばらつき、温度特性および経年変化に
よる位相誤差に起因して、変調精度と復調精度が劣化す
る欠点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Due to manufacturing variations of 90-degree phase shifters, temperature characteristics, and phase errors due to aging, the modulation accuracy and demodulation accuracy deteriorate.

【0007】本発明の目的は、上記のような欠点を除去
し、直交変調器および直交復調器における位相誤差がゼ
ロとなるように制御し、受信データ誤り率の劣化を改善
した直交変調器および直交復調器とその位相制御方法を
提供することを目的とする。
An object of the present invention is to eliminate the above-mentioned drawbacks, control the phase error in the quadrature modulator and the quadrature demodulator to be zero, and improve the deterioration of the received data error rate. An object is to provide a quadrature demodulator and a phase control method thereof.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の直交変調器および直交復調器は、ディジ
タル信号処理を行う、直交変調器と直交復調器とを備え
た通信装置において、直交変調器に入力する信号に乗ず
るI成分側に乗ずる第1の搬送波とQ成分側に乗ずる第2
の搬送波との間の位相差を制御信号によって調節する第
1の移相手段と、直交復調器から直交復調信号を出力す
るために、直交復調器に乗ずるI成分側に乗ずる第3の
搬送波とQ成分側に乗ずる第4の搬送波との間の位相差
を制御信号によって調節する第2の移相手段と、直交復
調器から出力するI成分とQ成分の信号から位相誤差を検
出して誤差情報を出力する検出器と、検出器から出力さ
れた誤差情報に基づき第1の移相手段および第2の移相
手段へ制御信号を出力して位相制御を行う制御手段とを
備え、制御手段によって、直交復調器出力のI成分とQ成
分の信号から検出した位相誤差信号から、直交変調器に
乗ずる搬送波の位相差が90度になるように第1の移相手
段を制御し、直交復調器に乗ずる搬送波の位相差が90度
になるように第2の移相手段を制御したものである。
In order to achieve the above object, a quadrature modulator and a quadrature demodulator of the present invention are provided in a communication device including a quadrature modulator and a quadrature demodulator for performing digital signal processing. , A first carrier wave on the I component side of the signal input to the quadrature modulator and a second carrier wave on the Q component side
A first phase shifting means for adjusting the phase difference between the carrier and the carrier by the control signal, and a third carrier for multiplying the I component side to be multiplied by the quadrature demodulator in order to output the quadrature demodulated signal from the quadrature demodulator. The second phase shift means for adjusting the phase difference between the fourth carrier wave multiplied to the Q component side by the control signal and the phase error detected from the I component and Q component signals output from the quadrature demodulator The control means includes a detector that outputs information and a control means that outputs a control signal to the first phase shift means and the second phase shift means based on the error information output from the detector to perform phase control. Controls the first phase shifting means so that the phase difference of the carrier wave multiplied by the quadrature modulator becomes 90 degrees from the phase error signal detected from the I component and Q component signals of the quadrature demodulator output, and the quadrature demodulation is performed. The second phase shift so that the phase difference of the carrier wave is 90 degrees. It is a controlled means.

【0009】また、本発明の直交変調器と直交復調器の
位相制御方法は、直交変調器に入力する信号の入力I成
分と入力Q成分の、一方に所定の振幅、他方に振幅ゼロ
の信号を入力して、第2の移相手段の制御を初めに行
い、次に、直交変調器に入力する入力I成分と入力Q成分
の信号について、第2の移相手段を制御する時に振幅ゼ
ロとした入力成分に所定の振幅を与え、第2の移相手段
を制御する時に所定の振幅を与えた入力成分の振幅をゼ
ロとすることによって、第1の移相手段の制御を行うも
のである。
The phase control method for the quadrature modulator and the quadrature demodulator according to the present invention is a signal having a predetermined amplitude in one of the input I component and the input Q component of the signal input to the quadrature modulator and a signal having zero amplitude in the other. To control the second phase shift means first, and then for the input I component and input Q component signals input to the quadrature modulator, when controlling the second phase shift means, zero amplitude is applied. A predetermined amplitude is given to the input component, and the first phase shift means is controlled by setting the amplitude of the input component given the predetermined amplitude to zero when controlling the second phase shift means. is there.

【0010】更にまた、本発明の直交変調器と、直交復
調器とを備えた通信装置では、直交変調器の出力信号の
一部を帰還信号として帰還する手段と、帰還信号と直交
復調器において復調するための復調入力信号とを入力
し、帰還信号と復調入力信号のいずれか一方を、制御手
段によって切替えて直交復調器に出力する切替手段を備
えたものである。
Furthermore, in the communication device including the quadrature modulator and the quadrature demodulator of the present invention, a means for feeding back a part of the output signal of the quadrature modulator as a feedback signal, and the feedback signal and the quadrature demodulator A demodulation input signal for demodulation is input, and one of the feedback signal and the demodulation input signal is switched by the control means and output to the quadrature demodulator.

【0011】また、本発明の直交変調器と直交復調器と
を備え、電力増幅器の出力の一部を帰還して電力増幅器
の非線形歪みを補償する送信部を有する通信装置におい
て、帰還信号を直交復調器において復調したI成分とQ成
分信号とを入力し、直交変調器と直交復調器の位相誤差
を調節する制御手段を備えたものである。
In addition, in a communication device having a quadrature modulator and a quadrature demodulator according to the present invention, and having a transmitter for feeding back a part of the output of the power amplifier to compensate for the non-linear distortion of the power amplifier, the feedback signal is quadratured. The I / Q and Q component signals demodulated in the demodulator are input, and a control means for adjusting the phase error between the quadrature modulator and the quadrature demodulator is provided.

【0012】[0012]

【発明の実施の形態】本発明による直交変調器および直
交復調器の位相制御方法の一実施例を図1,図2および
図4を使用して説明する。図1は本発明による直交変調
器および直交復調器の位相制御方法を実施した通信装置
の直交復調器および直交復調器の部分のブロック図であ
り、図2は制御手順の一例を示すフローチャート、図4
は図2のフローチャートに対応した検出器の構成の一例
を示すブロック図である。図1で、図5と同一のものに
は同一の番号を付した。その他、8-1と8-2は移相器、10
は検出器、11は制御装置、12は切替器、16-1は90度移相
器7-1と移相器8-1とで構成された移相回路、16-2は90度
移相器7-2と移相器8-2とで構成された移相回路、3′は
乗算器6-1,6-2,移相回路16-1,および加算器9-1とで
構成された直交変調器、4′は乗算器6-3,6-4および移
相回路16-2とで構成された直交復調器である。また、図
4の1-4はI成分の入力端子、1-5はQ成分の入力端子、2-
4はI成分の出力端子、2-5はQ成分の出力端子、15-1と15
-2は比較器、10は比較器15-1と15-2で構成された検出器
である。図1の通信装置において、送信機側では、I成
分が入力端子1-1に、Q成分が入力端子1-2に入力し、そ
れぞれ直交変調器3´の乗算器6-1および6-2に入力す
る。乗算器6-1は入力したI成分と別途入力した搬送波を
乗じて加算器9に送り、乗算器6-2は入力したQ成分と別
途移相回路16-1を介して入力した搬送波を乗じて加算器
9に送る。加算器9は入力した2つの乗算器出力を加算し
て出力端子2-3から、例えば電力増幅器のような高周波
回路へ出力する。直交変調器3′には、搬送波発振器5で
発振した所要周波数の搬送波が出力し、乗算器6-1と移
相回路16-1に入力する。移相回路16-1に入力した搬送波
は、90度移相器7-1で90度移相され、更に移相器8-1で制
御器11出力の制御信号にしたがって移相されて出力され
てから、乗算器6-2に送られる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a phase control method for a quadrature modulator and a quadrature demodulator according to the present invention will be described with reference to FIGS. 1, 2 and 4. FIG. 1 is a block diagram of a quadrature demodulator and a quadrature demodulator of a communication device that implements a phase control method for a quadrature modulator and a quadrature demodulator according to the present invention. FIG. 2 is a flowchart showing an example of a control procedure. Four
FIG. 3 is a block diagram showing an example of the configuration of a detector corresponding to the flowchart of FIG. 2. In FIG. 1, the same parts as those in FIG. 5 are designated by the same reference numerals. In addition, 8-1 and 8-2 are phase shifters, 10
Is a detector, 11 is a control device, 12 is a switcher, 16-1 is a 90 ° phase shifter composed of a 90 ° phase shifter 7-1 and a phase shifter 8-1, and 16-2 is a 90 ° phase shifter. The phase shift circuit composed of the multiplier 7-2 and the phase shifter 8-2, and 3'is composed of the multipliers 6-1, 6-2, the phase shift circuit 16-1, and the adder 9-1. The quadrature modulator 4'is a quadrature demodulator composed of multipliers 6-3 and 6-4 and a phase shift circuit 16-2. Also, in FIG. 4, 1-4 is an input terminal for the I component, 1-5 is an input terminal for the Q component, 2-
4 is the I component output terminal, 2-5 is the Q component output terminal, 15-1 and 15
Reference numeral -2 is a comparator, and 10 is a detector composed of the comparators 15-1 and 15-2. In the communication device of FIG. 1, on the transmitter side, the I component is input to the input terminal 1-1 and the Q component is input to the input terminal 1-2, and the multipliers 6-1 and 6-2 of the quadrature modulator 3 ′ are respectively input. To enter. The multiplier 6-1 multiplies the input I component by the separately input carrier and sends it to the adder 9, and the multiplier 6-2 multiplies the input Q component by the separately input carrier by way of the phase shift circuit 16-1. Adder
Send to 9. The adder 9 adds the two input multipliers and outputs the result from the output terminal 2-3 to a high frequency circuit such as a power amplifier. The quadrature modulator 3'outputs the carrier wave of the required frequency oscillated by the carrier wave oscillator 5 and inputs it to the multiplier 6-1 and the phase shift circuit 16-1. The carrier wave input to the phase shift circuit 16-1 is phase-shifted by 90 degrees by the 90-degree phase shifter 7-1 and further phase-shifted by the phase shifter 8-1 according to the control signal output from the controller 11 and output. Then, it is sent to the multiplier 6-2.

【0013】一方、受信機側では、直交変調器3´から
出力した信号の一部が帰還されて復調器入力の切替器12
に入力する(切替器12の端子b)。切替器12には受信信
号入力端子1-3からの受信信号も入力しており(切替器1
2の端子a)、直交復調器4´に入力する信号は、制御器1
1出力の制御情報によって切替器12の入力を切替えるこ
とにより選択される。直交復調器4´は、切替機2の出力
信号を乗算器6-3に入力し、乗算器6-3は入力した信号
に、別途乗算器6-3に入力した搬送波を乗じてI成分を復
調して、出力端子2-1および検出器10に出力する。切替
機2の出力信号はまた、乗算器6-4に入力し、乗算器6-4
は入力信号に、別途移相回路16-2を介して送られてきた
搬送波を乗じてQ成分を復調して、出力端子2-2および検
出器10に出力する。直交復調器4′には、搬送波発信器5
で発振した所定周波数の搬送波が送られ、乗算器6-3お
よび移相回路16-2に入力する。移相回路16-2に入力した
搬送波は、90度移相器7-2で90度移相され、さらに移相
器8-2で制御器11出力の制御信号にしたがって移相され
て出力されてから、乗算器6-4に送られる。
On the other hand, on the receiver side, a part of the signal output from the quadrature modulator 3'is fed back, and the demodulator input switch 12
Input to (terminal b of switch 12). Received signals from the received signal input terminals 1-3 are also input to the switch 12 (switch 1
The signal input to the terminal a) of 2 and the quadrature demodulator 4'is
It is selected by switching the input of the switch 12 according to the control information of one output. The quadrature demodulator 4 ′ inputs the output signal of the switching device 2 to the multiplier 6-3, and the multiplier 6-3 multiplies the input signal by the carrier wave input to the multiplier 6-3 separately to obtain the I component. It demodulates and outputs to the output terminal 2-1 and the detector 10. The output signal of the switching device 2 is also input to the multiplier 6-4, and the multiplier 6-4
Outputs the input signal to the output terminal 2-2 and the detector 10 by multiplying the input signal by the carrier wave sent separately via the phase shift circuit 16-2 to demodulate the Q component. The quadrature demodulator 4'includes a carrier oscillator 5
The carrier wave of a predetermined frequency oscillated by is sent and input to the multiplier 6-3 and the phase shift circuit 16-2. The carrier wave input to the phase shift circuit 16-2 is phase-shifted 90 degrees by the 90-degree phase shifter 7-2, and further phase-shifted by the phase shifter 8-2 according to the control signal of the controller 11 output. Then, it is sent to the multiplier 6-4.

【0014】検出器10は、入力した復調I成分および復
調Q成分の振幅をもとに位相誤差を検出し、検出した誤
差情報を制御器11に出力する。制御器11は、入力した誤
差信号にもとづき直交変調器3′の移相器8-1および、直
交復調器4′の移相器8-2と、切替器12とを制御する。移
相器8-1は制御器11の制御信号によって90度移相器7-1の
位相誤差を補正し、移相器8-2は制御器11の制御信号に
よって90度移相器7-2の位相誤差を補正する。即ち、制
御器11は、直交変調器3′の90度移相器7-1の位相誤差を
相殺して、入力端子1-1と1-2からそれぞれ入力するI成
分とQ成分に乗じる2つの搬送波の位相差が正確に90度に
なるように移相器8-1の移相量を制御し、直交復調器4′
の90度移相器7-2の位相誤差を相殺して、復調信号のI成
分とQ成分とを出力するために入力信号に乗じる2つの搬
送波の位相差が正確に90度になるように移相器8-2の移
相量を制御し、また、位相制御を行っている期間、復調
器入力の切替器12を直交変調器3′の出力信号が帰還し
て直交復調器4′に入力するように切替器12入力を端子b
側に接続する。
The detector 10 detects a phase error based on the input amplitudes of the demodulated I component and the demodulated Q component, and outputs the detected error information to the controller 11. The controller 11 controls the phase shifter 8-1 of the quadrature modulator 3 ′, the phase shifter 8-2 of the quadrature demodulator 4 ′, and the switch 12 based on the input error signal. The phase shifter 8-1 corrects the phase error of the 90-degree phase shifter 7-1 by the control signal of the controller 11, and the phase shifter 8-2 receives the 90-degree phase shifter 7- by the control signal of the controller 11. Correct the phase error of 2. That is, the controller 11 cancels the phase error of the 90-degree phase shifter 7-1 of the quadrature modulator 3'and multiplies the I component and the Q component input from the input terminals 1-1 and 1-2, respectively. The quadrature demodulator 4'is controlled by controlling the phase shift amount of the phase shifter 8-1 so that the phase difference between the two carrier waves becomes exactly 90 degrees.
90 degree phase shifter 7-2 of the phase error is canceled, so that the phase difference between the two carrier waves multiplied by the input signal to output the I component and the Q component of the demodulated signal is exactly 90 degrees. The amount of phase shift of the phase shifter 8-2 is controlled, and while the phase control is being performed, the output signal of the quadrature modulator 3'is fed back to the demodulator input switch 12 to the quadrature demodulator 4 '. Input the switch 12 so that the input
Connect to the side.

【0015】更に、図2を使用して、直交変調器および
直交復調器の位相制御方法の制御手段の一例を説明す
る。図2は直交変調器および直交復調器の位相制御を行
う処理過程を説明するフローチャートである。制御開始
時、制御器11の制御により、直交復調器4′に直交変調
器3′から分岐した出力信号が帰還して入力するように
切替え器12入力を端子b側に設定する(帰還路接続ステ
ップ101)。次に、直交復調器4′の位相制御を行うた
め、直交変調器3′のI成分入力端子1-1に“A”(I=A、
A:正の定数)、Q成分入力端子1-2に“0”(Q=0)を入
力して、直交変調した直交変調波を出力する(I成分信
号入力ステップ102)。直交復調器4′のQ成分出力端子2
-2の信号の振幅を検出器10で検出し、Q成分の振幅が
“0”になるように制御器11で移相器8-2の移相量φ(制
御後のφ:φ=φ0)を調節する(復調器移相制御ステッ
プ103)。次に、直交変調器3′の位相制御を行うため、
直交変調器3′のI成分入力端子1-1に“0”(I=0)、Q成
分入力端子1-2に“B”(Q=B、B:正の定数)を入力して
直交変調した直交変調波を出力する(Q成分信号入力ス
テップ104)。直交復調器4′のI成分出力2-1の信号の振
幅を検出器10で検出し、I成分の振幅が“0”になるよう
に制御器11で移相器8-1の移相量θ(制御後のθ:θ=θ
0)を調節する(変調器位相制御ステップ105)。ステッ
プ105までの処理過程が終ると、直交変調器3′および直
交復調器4′の位相補正が完了するので、制御器11は直
交復調器4´の入力を、入力端子1-3入力の受信信号とな
るように切替器12入力を端子a側に接続する(帰還路切
断ステップ106)。以上の過程によって、通信装置の位
相が調整される。
Further, an example of the control means of the phase control method for the quadrature modulator and the quadrature demodulator will be described with reference to FIG. FIG. 2 is a flow chart for explaining the processing steps for performing the phase control of the quadrature modulator and the quadrature demodulator. At the start of control, the input of the switch 12 is set on the terminal b side so that the output signal branched from the quadrature modulator 3'is fed back to the quadrature demodulator 4'by the control of the controller 11 (feedback path connection Step 101). Next, in order to control the phase of the quadrature demodulator 4 ′, “A” (I = A, I = A,
A: positive constant), "0" (Q = 0) is input to the Q component input terminal 1-2, and a quadrature modulated wave subjected to quadrature modulation is output (I component signal input step 102). Quadrature demodulator 4'Q component output terminal 2
The amplitude of the signal of -2 is detected by the detector 10, and the phase shift amount φ of the phase shifter 8-2 is controlled by the controller 11 so that the amplitude of the Q component becomes “0” (φ after control: φ = φ = φ0 ) Is adjusted (demodulator phase shift control step 103). Next, to control the phase of the quadrature modulator 3 ',
Input "0" (I = 0) to the I component input terminal 1-1 of the quadrature modulator 3'and input "B" (Q = B, B: positive constant) to the Q component input terminal 1-2 for quadrature The modulated quadrature modulated wave is output (Q component signal input step 104). The detector 10 detects the amplitude of the I component output 2-1 of the quadrature demodulator 4 ', and the controller 11 controls the phase shift amount of the phase shifter 8-1 so that the amplitude of the I component becomes "0". θ (θ after control: θ = θ
0) (modulator phase control step 105). When the processing steps up to step 105 are completed, the phase correction of the quadrature modulator 3 ′ and the quadrature demodulator 4 ′ is completed, so the controller 11 receives the input of the quadrature demodulator 4 ′ from the input terminals 1-3 inputs. The switch 12 input is connected to the terminal a side so that it becomes a signal (return path disconnection step 106). Through the above process, the phase of the communication device is adjusted.

【0016】前述の制御手順を実行する場合の検出器10
の一実施例を図4に示す。図4は本発明の位相制御を実
行する場合に使用する検出器の構成を表すブロック図で
ある。1-4はI成分入力端子、1-5はQ成分入力端子、15-1
と15-2は比較器、10は比較器15-1と15-2で構成された検
出器、2-4と2-5は出力端子である。図4において、I成
分入力端子1-4およびQ成分入力端子1-5が比較器15-1お
よび15-2の一方の入力に入力される。2つの比較器の他
方の入力にはそれぞれ“0”が入力されており、両者を
比較して入力信号の符号の判定結果を出力する(例え
ば、入力信号>0ならば、比較器出力=1、入力信号≦0な
らば、比較器出力=0)。比較器15-1および15-2の出力は
出力端子2-4および2-5から制御器11に出力される。前述
の図2の復調器位相制御ステップ103において、入力端
子1-5に入力された復調Q成分の符号が比較器15-2で判定
され、制御器11は比較器15-2出力の符号の変化を観察し
ながら移相器8-2の移相量φを可変し、符号が変化する
直前の移相量φ0を決定する。また、図2の変調器位相
制御ステップ105において、入力端子1-4に入力された復
調I成分の符号が比較器15-1で判定され、制御器11は比
較器15-1出力の符号の変化を観察しながら移相器8-1の
移相量θを可変し、符号が変化する直前の移相量θ0を
決定する。
Detector 10 for performing the control procedure described above
An example of this is shown in FIG. FIG. 4 is a block diagram showing the configuration of a detector used when executing the phase control of the present invention. 1-4 is I component input terminal, 1-5 is Q component input terminal, 15-1
And 15-2 are comparators, 10 is a detector composed of comparators 15-1 and 15-2, and 2-4 and 2-5 are output terminals. In FIG. 4, the I component input terminal 1-4 and the Q component input terminal 1-5 are input to one input of the comparators 15-1 and 15-2. “0” is input to the other input of each of the two comparators, and the two are compared and the judgment result of the sign of the input signal is output (for example, if the input signal is> 0, the comparator output is 1). , If the input signal ≤ 0, the comparator output = 0). The outputs of the comparators 15-1 and 15-2 are output from the output terminals 2-4 and 2-5 to the controller 11. In the demodulator phase control step 103 of FIG. 2 described above, the code of the demodulated Q component input to the input terminal 1-5 is determined by the comparator 15-2, and the controller 11 determines the code of the output of the comparator 15-2. While observing the change, the phase shift amount φ of the phase shifter 8-2 is varied to determine the phase shift amount φ0 immediately before the sign change. In the modulator phase control step 105 of FIG. 2, the sign of the demodulated I component input to the input terminal 1-4 is determined by the comparator 15-1, and the controller 11 determines the sign of the output of the comparator 15-1. The phase shift amount θ of the phase shifter 8-1 is varied while observing the change, and the phase shift amount θ0 immediately before the sign change is determined.

【0017】以上の、位相制御手順により、直交復調器
4′出力のみを検出して直交変調器3′および直交復調器
4′の位相誤差を校正する。なお、直交変調器3′の移相
回路16-1および直交復調器4′の移相回路16-2は90度移
相器7-1あるいは7-2と移相器8-1あるいは8-2の2つの回
路でそれぞれ構成されているが、90度移相器を省略して
移相器8-1,8-2のみで構成し、さらに上記の制御手順に
よって移相器8-1と8-2の位相誤差を補正することもでき
る(ただし、移相器8-1,8-2の初期値は90度とする)。
また、上記制御手順および検出器の一例では、復調信号
の符号を検出して位相制御を行っているため、直交変調
器3′のI成分とQ成分の間に振幅の偏差がある場合、ま
たは、直交復調器4′のI成分とQ成分の間に振幅の偏差
がある場合においても、これらの振幅の偏差の影響を受
けずに直交変調器3′および直交復調器4′の位相制御を
行うことができる。また、上記位相制御を通信装置の電
源投入時、通信を実施するする直前、あるいは非通信時
に間欠的に実施することにより、位相誤差の経年変化お
よび温度変化を校正することができ、位相誤差による直
交変調器の変調精度および直交復調器の復調精度の劣化
なしに通信を行うことができる。
With the above phase control procedure, the quadrature demodulator
Quadrature modulator 3'and quadrature demodulator by detecting only 4'output
Calibrate the 4'phase error. The phase shift circuit 16-1 of the quadrature modulator 3'and the phase shift circuit 16-2 of the quadrature demodulator 4'include a 90-degree phase shifter 7-1 or 7-2 and a phase shifter 8-1 or 8- Although it is composed of two circuits of 2 respectively, the 90-degree phase shifter is omitted and only the phase shifters 8-1 and 8-2 are used. It is also possible to correct the phase error of 8-2 (however, the initial values of the phase shifters 8-1 and 8-2 are 90 degrees).
Further, in the above control procedure and an example of the detector, since the code of the demodulated signal is detected and the phase control is performed, when there is an amplitude deviation between the I component and the Q component of the quadrature modulator 3 ′, or , Even if there is an amplitude deviation between the I component and the Q component of the quadrature demodulator 4 ′, the phase control of the quadrature modulator 3 ′ and the quadrature demodulator 4 ′ can be performed without being affected by these amplitude deviations. It can be carried out. Further, by performing the above-mentioned phase control at the time of turning on the power of the communication device, immediately before performing communication, or intermittently during non-communication, it is possible to calibrate the secular change and the temperature change of the phase error. Communication can be performed without deterioration of the modulation accuracy of the quadrature modulator and the demodulation accuracy of the quadrature demodulator.

【0018】次に、本発明の第2の実施例を図3によっ
て説明する。図3は、送信出力の一部を帰還して電力増
幅器の非線形歪みを補償する送信部を有する通信装置の
ブロック構成図である。図3の通信装置に対して、直交
変調器および直交復調器の位相制御を行った場合をいか
に説明する。1-1はベースバンド信号のI成分の入力端
子,1-2はベースバンド信号のQ成分の入力端子、9-1と9
-2は加算器、5は搬送波発振器、3′直交変調器、4′直
交復調器、13は電力増幅器、14は方向性結合器、2-6は
出力端子、10は検出器、11は制御装置である。図3にお
いて、入力端子1-1にI成分、入力端子1-2にQ成分の信号
が入力され、それぞれ加算器9-1と9-2に入力する。加算
器9-1では、別に直交復調器4′から送られてくる復調I
成分と、入力端子1-1からのI成分とを加算し、直交変調
器3′に入力する。同様に、加算器9-1では、別に直交復
調器4′から送られてくる復調Q成分と、入力端子1-2か
らのQ成分とを加算し、直交変調器3′に入力する。直交
変調器3′は搬送波発振器5から入力する搬送波をもとに
して、入力したI成分とQ成分の信号を直交変調して出力
し電力増幅器13に送る。電力増幅器13で送信する電力レ
ベルに増幅後、出力端子1-6例えばアンテナ等の高周波
回路を介して出力する。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block configuration diagram of a communication device having a transmission unit that feeds back a part of the transmission output to compensate for the non-linear distortion of the power amplifier. How the phase control of the quadrature modulator and the quadrature demodulator is performed on the communication device of FIG. 3 will be described. 1-1 is the input terminal for the I component of the baseband signal, 1-2 is the input terminal for the Q component of the baseband signal, 9-1 and 9
-2 is an adder, 5 is a carrier oscillator, 3'quadrature modulator, 4'quadrature demodulator, 13 is a power amplifier, 14 is a directional coupler, 2-6 is an output terminal, 10 is a detector, 11 is control It is a device. In FIG. 3, the I component signal is input to the input terminal 1-1 and the Q component signal is input to the input terminal 1-2, and are input to the adders 9-1 and 9-2, respectively. In the adder 9-1, the demodulation I separately sent from the orthogonal demodulator 4 '
The component and the I component from the input terminal 1-1 are added and input to the quadrature modulator 3 '. Similarly, in the adder 9-1, the demodulation Q component separately sent from the quadrature demodulator 4'and the Q component from the input terminal 1-2 are added and input to the quadrature modulator 3 '. The quadrature modulator 3 ′ quadrature-modulates the input I-component and Q-component signals based on the carrier wave input from the carrier wave oscillator 5, and outputs them to the power amplifier 13. After being amplified to the power level to be transmitted by the power amplifier 13, the output terminal 1-6 outputs the signal via a high frequency circuit such as an antenna.

【0019】また、電力増幅器13の信号出力の一部は、
方向性結合器14を介して帰還されて直交復調器4′に入
力する。直交復調器4′は、搬送波発振器5から入力する
搬送波をもとにして、電力増幅器13の帰還した一部出力
信号を直交復調する。直交復調器4′のI成分の出力信号
は加算器9-1に入力し、Q成分の出力信号は加算器9-2に
入力して、入力端子1-1と1-2とからのI成分信号とQ成分
信号とに対してそれぞれ負帰還されるため、電力増幅器
の非線形歪みが補償される。
Further, a part of the signal output of the power amplifier 13 is
It is fed back through the directional coupler 14 and input to the quadrature demodulator 4 '. The quadrature demodulator 4 ′ quadrature demodulates the partial output signal fed back from the power amplifier 13 based on the carrier wave input from the carrier wave oscillator 5. The output signal of the I component of the quadrature demodulator 4'is input to the adder 9-1, the output signal of the Q component is input to the adder 9-2, and the I signal from the input terminals 1-1 and 1-2 is input. Since the component signal and the Q component signal are respectively negatively fed back, the non-linear distortion of the power amplifier is compensated.

【0020】図3において、制御装置11から制御信号を
出力し、加算器9-1と9-1に送り、加算器9-1と9-1におい
て直交復調器4′からの帰還信号が加算されない(また
は入力されない)ように制御することによって、図1の
切替器12と同じ働きをさせ、図1または図2で述べた位
相制御を直交変調器3′と直交復調器4′で実行させるこ
とにより、本発明の位相制御が実施できる。即ち、制御
器11出力の制御信号によりQ相側の搬送波の位相制御を
行う直交変調器3´と、制御器11出力の制御情報によりQ
相側の搬送波の位相制御を行う直交復調器4´と、直交
復調器4´出力の信号を入力して位相誤差を検出する検
出器10と、当該検出器10出力の誤差信号を入力して直交
変調器3´と直交変調器4´の位相制御情報および加算器
9-1,9-2の制御を行う制御器11を用い、図2の制御手順
にしたがって位相制御を実行することができる(ただ
し、図2のI成分信号入力ステップ102および帰還路切断
ステップ106における帰還路の切替え制御の代わりに、
ここでは加算器9-1および9-2の制御を行う)。
In FIG. 3, a control signal is output from the control device 11 and sent to the adders 9-1 and 9-1, and the feedback signals from the quadrature demodulator 4'are added in the adders 9-1 and 9-1. By controlling so as not to be input (or not input), the same operation as that of the switch 12 of FIG. 1 is performed, and the phase control described in FIG. 1 or 2 is executed by the quadrature modulator 3 ′ and the quadrature demodulator 4 ′. Thereby, the phase control of the present invention can be implemented. That is, the quadrature modulator 3'which controls the phase of the carrier on the Q phase side by the control signal of the controller 11 output, and the Q by the control information of the controller 11 output.
The quadrature demodulator 4'for controlling the phase of the carrier wave on the phase side, the detector 10 for detecting the phase error by inputting the signal of the quadrature demodulator 4 ', and the error signal of the output of the detector 10 are input. Phase control information of quadrature modulator 3'and quadrature modulator 4'and adder
The phase control can be executed according to the control procedure of FIG. 2 by using the controller 11 for controlling 9-1 and 9-2 (however, the I component signal input step 102 and the feedback path disconnection step 106 of FIG. 2 are performed. Instead of the return path switching control in
Here, the adders 9-1 and 9-2 are controlled).

【0021】[0021]

【発明の効果】以上のように本発明によれば、直交変調
器と直交復調器を備える通信装置において、直交復調器
出力の復調I成分と復調Q成分の信号から直交変調器と直
交復調器の位相誤差を検出し、誤差信号に基づく位相制
御を直交変調器に備えた移相器と直交復調器に備えた移
相器で行い、直交変調器および直交復調器における2つ
の搬送波の位相差が90度になるように制御し、受信デー
タ誤り率の劣化を改善することができる。
As described above, according to the present invention, in a communication device including a quadrature modulator and a quadrature demodulator, a quadrature modulator and a quadrature demodulator from a signal of a demodulation I component and a demodulation Q component of a quadrature demodulator output. The phase difference between the two carriers in the quadrature modulator and the quadrature demodulator is detected by detecting the phase error of the signal and performing phase control based on the error signal with the phase shifter provided in the quadrature modulator and the phase shifter provided in the quadrature demodulator. Can be controlled to be 90 degrees to improve the deterioration of the received data error rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の通信装置の一実施例の構成を示すブ
ロック図。
FIG. 1 is a block diagram showing the configuration of an embodiment of a communication device of the present invention.

【図2】 本発明の制御手段の一実施例を示すフローチ
ャート。
FIG. 2 is a flowchart showing an embodiment of the control means of the present invention.

【図3】 本発明の他の実施例の構成を示すブロック
図。
FIG. 3 is a block diagram showing the configuration of another embodiment of the present invention.

【図4】 本発明の実施例に関する検出器の一例を示す
ブロック構成図。
FIG. 4 is a block diagram showing an example of a detector according to an embodiment of the present invention.

【図5】 従来の通信装置の構成を示すブロック図。FIG. 5 is a block diagram showing a configuration of a conventional communication device.

【図6】 位相誤差による変調精度の劣化を説明する
図。
FIG. 6 is a diagram for explaining deterioration of modulation accuracy due to a phase error.

【符号の説明】[Explanation of symbols]

1-1,1-2,1-3,1-4,1-5:入力端子、 2-1,2-2,2-
3,2-4,2-5,2-6:出力端子、 3,3′:直交変調器、
4,4′:直交復調器、 5:搬送波発振器、6-1,6-
2,6-3,6-4:乗算器、 7-1,7-2:90度移相器、 8-
1,8-2:移相器、 9,9-1,9-2:加算器、 10:検出
器、 11:制御装置、 12:切替器、 13:電力増幅
器、 14:方向性結合器、 15-1,15-2:比較器、 16
-1,16-2:移相回路、
1-1, 1-2, 1-3, 1-4, 1-5: Input terminal, 2-1, 2-2, 2-
3, 2-4, 2-5, 2-6: Output terminal, 3, 3 ': Quadrature modulator,
4, 4 ': Quadrature demodulator, 5: Carrier wave oscillator, 6-1, 6-
2, 6-3, 6-4: Multiplier, 7-1, 7-2: 90 degree phase shifter, 8-
1, 8-2: Phase shifter, 9, 9-1, 9-2: Adder, 10: Detector, 11: Control device, 12: Switching device, 13: Power amplifier, 14: Directional coupler, 15-1, 15-2: Comparator, 16
-1, 16-2: Phase shift circuit,

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ディジタル信号処理を行う、直交変調器と
直交復調器とを備えた通信装置において、搬送波発振手段から所要の周波数の搬送波が出力され、 該所要の周波数の搬送波が前記直交変調器に入力され、
I成分側の信号に乗じる第1の搬送波 とQ成分側に乗ず
る第2の搬送波との間の位相差を制御信号によって調節
する第1の移相手段と、 前記直交復調器から直交復調信号を出力するために、
記所要の周波数の搬送波が前記直交復調器に入力され、
I成分側の信号に乗じる第3の搬送波とQ成分側に乗ず
る第4の搬送波との間の位相差を制御信号によって調節
する第2の移相手段と、 前記直交復調器から出力するI成分とQ成分の信号から
位相誤差を検出して誤差情報を出力する検出器と、 前記検出器から出力された前記誤差情報に基づき前記第
1の移相手段および前記第2の移相手段へ制御信号を出
力して搬送波の位相制御を行う制御手段とを備え、 前記制御手段によって、前記直交復調器出力の前記I成
分とQ成分の信号から検出した位相誤差信号から、前記
直交変調器に乗ずる搬送波の位相差が90度になるよう
に前記第1の移相手段を制御し、前記直交復調器に乗ず
る搬送波の位相差が90度になるように前記第2の移相
手段を制御し、 前記直交変調器に入力する信号の入力I成分と入力Q成
分の、一方に所定の振幅、他方に振幅ゼロの信号を入力
して、前記第2の移相手段の制御を行い、 そして、前記直交変調器に入力する入力I成分と入力Q
成分の信号について、前記第2の移相手段を制御する時
に振幅ゼロとした入力成分に所定の振幅を与え、前記第
2の移相手段を制御する時に所定の振幅を与えた入力成
分の振幅をゼロとすることによって、前記第1の移相手
段の制御を行う ことを特徴とする直交変調器と直交復調
器の位相制御方法。
1. A communication device for performing digital signal processing, comprising a quadrature modulator and a quadrature demodulator, wherein a carrier wave oscillating means outputs a carrier wave of a required frequency, and the carrier wave of the required frequency is the quadrature modulator. Entered in
First phase shifting means for adjusting a phase difference between a first carrier wave multiplied by the I component side signal and a second carrier wave multiplied by the Q component side by a control signal; and a quadrature demodulated signal from the quadrature demodulator. Before to output
The carrier of the required frequency is input to the quadrature demodulator,
Second phase shifting means for adjusting a phase difference between a third carrier wave multiplied by the I component side signal and a fourth carrier wave multiplied by the Q component side by a control signal, and an I component outputted from the quadrature demodulator And a detector that detects a phase error from the signal of the Q component and outputs error information, and controls the first phase shift means and the second phase shift means based on the error information output from the detector. Control means for outputting a signal to control the phase of the carrier wave, and multiplying the quadrature modulator from the phase error signal detected from the I component and Q component signals of the quadrature demodulator output by the control means. Controlling the first phase shifting means so that the phase difference of the carrier waves becomes 90 degrees, and controlling the second phase shifting means so that the phase difference of the carrier waves multiplied by the quadrature demodulator becomes 90 degrees , Input I of the signal input to the quadrature modulator Minute and the input Q formed
Input a signal with a predetermined amplitude to one side and zero amplitude to the other side
Then, the second phase shifting means is controlled, and the input I component and the input Q input to the quadrature modulator are controlled.
When controlling the second phase shifting means for the component signal
Given a predetermined amplitude to the input component whose amplitude is zero,
When controlling the phase shifting means of No. 2, the input signal with a given amplitude is applied.
By setting the minute amplitude to zero, the first transfer partner
A phase control method for a quadrature modulator and a quadrature demodulator, which is characterized by performing stage control .
【請求項2】ディジタル信号処理を行う、直交変調器と
直交復調器とを備えた通信装置において、 前記直交変調器の出力信号の一部を帰還信号として帰還
する手段と、 前記帰還信号と、前記直交復調器において復調するため
の復調入力信号とを入力し、前記帰還信号と前記復調入
力信号のいずれか一方を、制御手段によって切替えて前
記直交復調器に出力する切替手段と、所要の周波数の搬
送波を出力する搬送波発振手段とを備え、 前記制御手段は、 該所要の周波数の搬送波が前記直交変調器に入力され、
I成分側の信号に乗じる第1の搬送波とQ成分側に乗ず
る第2の搬送波との間の位相差を制御信号によって調節
する第1の移相手段と、 前記直交復調器から直交復調信号を出力するために、前
記所要の周波数の搬送波が前記直交復調器に入力され、
I成分側の信号に乗じる第3の搬送波とQ成分側に乗ず
る第4の搬送波との間の位相差を制御信号によって調節
する第2の移相手段と、 前記直交復調器から出力するI成分とQ成分の信号から
位相誤差を検出して誤差情報を出力する検出器と、 前記検出器から出力された前記誤差情報に基づき前記第
1の移相手段および前記第2の移相手段へ制御信号を出
力して搬送波の位相制御を行う制御手段とを備え、 前記制御手段によって、前記直交復調器出力の前記I成
分とQ成分の信号から検出した位相誤差信号から、前記
直交変調器に乗ずる搬送波の位相差が90度になるよう
に前記第1の移相手段を制御し、前記直交復調器に乗ず
る搬送波の位相差が90度になるように前記第2の移相
手段を制御し、 前記直交変調器に入力する信号の入力I成分と入力Q成
分の、一方に所定の振幅、他方に振幅ゼロの信号を入力
して、前記第2の移相手段の制御を行い、 そして、前記直交変調器に入力する入力I成分と入力Q
成分の信号について、前記第2の移相手段を制御する時
に振幅ゼロとした入力成分に所定の振幅を与え、前記第
2の移相手段を制御する時に所定の振幅を与えた入力成
分の振幅をゼロとすることによって、前記第 1の移相手
段の制御を行うことを特徴とする直交変調器と直交復調
器を備えた通信装置。
2. A quadrature modulator for performing digital signal processing,
In a communication device having a quadrature demodulator, a part of the output signal of the quadrature modulator is fed back as a feedback signal.
Means for demodulating in the quadrature demodulator with the feedback signal
Input the demodulation input signal of the
Before switching either of the force signals by the control means
The switching means for outputting to the quadrature demodulator and the required frequency
A carrier wave oscillating means for outputting a transmission wave, wherein the control means inputs a carrier wave of the required frequency to the quadrature modulator,
Do not multiply the first carrier wave multiplied by the I component side signal and the Q component side
The phase difference between the second carrier and the second carrier is adjusted by the control signal.
First phase shifting means for outputting a quadrature demodulated signal from the quadrature demodulator,
The carrier of the required frequency is input to the quadrature demodulator,
The third carrier multiplied by the signal on the I component side and the third carrier on the Q component side
The phase difference between the fourth carrier and the
From the second phase shifting means and the I and Q component signals output from the quadrature demodulator,
A detector that detects a phase error and outputs error information; and the detector based on the error information output from the detector .
The control signal is output to the first phase shift means and the second phase shift means.
And a control means for controlling the phase of the carrier wave by applying the input signal to the quadrature demodulator output by the control means.
From the phase error signal detected from the minute and Q component signals,
The phase difference of the carrier wave multiplied by the quadrature modulator should be 90 degrees.
To control the first phase shifting means and not to multiply the quadrature demodulator
The second phase shift so that the phase difference between the carrier waves becomes 90 degrees.
Means for controlling the input I component and the input Q component of the signal input to the quadrature modulator.
Input a signal with a predetermined amplitude to one side and zero amplitude to the other side
Then, the second phase shifting means is controlled, and the input I component and the input Q input to the quadrature modulator are controlled.
When controlling the second phase shifting means for the component signal
Given a predetermined amplitude to the input component whose amplitude is zero,
When controlling the phase shifting means of No. 2, the input signal with a given amplitude is applied.
By setting the minute amplitude to zero, the first transfer partner
Quadrature modulator and quadrature demodulation characterized by performing stage control
Device equipped with an instrument.
【請求項3】ディジタル信号処理を行う、直交変調器と
直交復調器とを備えた通信装置において、 電力増幅器の出力の一部を帰還して前記直交変調器にお
いて復調して前記電力増幅器の非線形歪みを検出するこ
とによって、電力増幅器の非線形歪みを補償する送信部
と、所要の周波数の搬送波を出力する搬送波発振手段
と、 前記直交復調器の出力を入力する位相制御手段を有し、 該位相制御手段は、 該所要の周波数の搬送波が前記直交変調器に入力され、
I成分側の信号に乗じる第1の搬送波とQ成分側に乗ず
る第2の搬送波との間の位相差を制御信号によって調節
する第1の移相手段と、 前記直交復調器から直交復調信号を出力するために、前
記所要の周波数の搬送波が前記直交復調器に入力され、
I成分側の信号に乗じる第3の搬送波とQ成分側に乗ず
る第4の搬送波との間の位相差を制御信号によって調節
する第2の移相手段と、 前記直交復調器から出力するI成分とQ成分の信号から
位相誤差を検出して誤差情報を出力する検出器と、 前記検出器から出力された前記誤差情報に基づき前記第
1の移相手段および前記第2の移相手段へ制御信号を出
力して搬送波の位相制御を行う制御手段とを備え、 前記制御手段によって、前記直交復調器出力の前記I成
分とQ成分の信号から検出した位相誤差信号から、前記
直交変調器に乗ずる搬送波の位相差が90度になるよう
に前記第1の移相手段を制御し、前記直交復調器に乗ず
る搬送波の位相差が90度になるように前記第2の移相
手段を制御し、 前記直交変調器に入力する信号の入力I成分と入力Q成
分の、一方に所定の振幅、他方に振幅ゼロの信号を入力
して、前記第2の移相手段の制御を行い、 そして、前記直交変調器に入力する入力I成分と入力Q
成分の信号について、前記第2の移相手段を制御する時
に振幅ゼロとした入力成分に所定の振幅を与え、前記第
2の移相手段を制御する時に所定の振幅を与えた入力成
分の振幅をゼロとすることによって、前記第1の移相手
段の制御を行うことを特徴とする直交変調器と直交復調
器とを備えた通信装置。
3. A quadrature modulator for digital signal processing
In a communication device including a quadrature demodulator, a part of the output of the power amplifier is fed back to the quadrature modulator.
The power amplifier to detect the nonlinear distortion of the power amplifier.
And a transmitter that compensates for the non-linear distortion of the power amplifier.
And carrier wave oscillating means for outputting a carrier wave of a desired frequency
When, a phase control means for inputting the output of the quadrature demodulator, the phase control means, the carrier of the required frequency is input to the quadrature modulator,
Do not multiply the first carrier wave multiplied by the I component side signal and the Q component side
The phase difference between the second carrier and the second carrier is adjusted by the control signal.
First phase shifting means for outputting a quadrature demodulated signal from the quadrature demodulator,
The carrier of the required frequency is input to the quadrature demodulator,
The third carrier multiplied by the signal on the I component side and the third carrier on the Q component side
The phase difference between the fourth carrier and the
From the second phase shifting means and the I and Q component signals output from the quadrature demodulator,
A detector that detects a phase error and outputs error information; and the detector based on the error information output from the detector .
The control signal is output to the first phase shift means and the second phase shift means.
And a control means for controlling the phase of the carrier wave by applying the input signal to the quadrature demodulator output by the control means.
From the phase error signal detected from the minute and Q component signals,
The phase difference of the carrier wave multiplied by the quadrature modulator should be 90 degrees.
To control the first phase shifting means and not to multiply the quadrature demodulator
The second phase shift so that the phase difference between the carrier waves becomes 90 degrees.
Means for controlling the input I component and the input Q component of the signal input to the quadrature modulator.
Input a signal with a predetermined amplitude to one side and zero amplitude to the other side
Then, the second phase shifting means is controlled, and the input I component and the input Q input to the quadrature modulator are controlled.
When controlling the second phase shifting means for the component signal
Given a predetermined amplitude to the input component whose amplitude is zero,
When controlling the phase shifting means of No. 2, the input signal with a given amplitude is applied.
By setting the minute amplitude to zero, the first transfer partner
Quadrature modulator and quadrature demodulation characterized by performing stage control
And a communication device.
JP17229299A 1999-06-18 1999-06-18 Phase control method for quadrature modulator and quadrature demodulator and communication device Expired - Fee Related JP3518848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17229299A JP3518848B2 (en) 1999-06-18 1999-06-18 Phase control method for quadrature modulator and quadrature demodulator and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17229299A JP3518848B2 (en) 1999-06-18 1999-06-18 Phase control method for quadrature modulator and quadrature demodulator and communication device

Publications (2)

Publication Number Publication Date
JP2001007882A JP2001007882A (en) 2001-01-12
JP3518848B2 true JP3518848B2 (en) 2004-04-12

Family

ID=15939234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17229299A Expired - Fee Related JP3518848B2 (en) 1999-06-18 1999-06-18 Phase control method for quadrature modulator and quadrature demodulator and communication device

Country Status (1)

Country Link
JP (1) JP3518848B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049771A (en) 2007-08-21 2009-03-05 Toshiba Corp Modulation/demodulation device and modulation/demodulation method
JP5633270B2 (en) * 2010-09-16 2014-12-03 株式会社リコー Transceiver
JP6003749B2 (en) 2013-03-22 2016-10-05 富士通株式会社 Modulation apparatus and modulation method
CN116346558B (en) * 2023-05-23 2023-08-22 清华大学 Method and system for generating orthogonal signals

Also Published As

Publication number Publication date
JP2001007882A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
US5771263A (en) Communication system control method and communication system using the method
JP3169803B2 (en) Nonlinear compensation circuit of power amplifier
JP3565160B2 (en) Cross polarization interference compensation circuit
KR100539874B1 (en) Method and apparatus for self-calibrating in a mobile transceiver
EP1154580B1 (en) A method for controlling the transmitter part of a radio transceiver and a corresponding radio transceiver
EP1560391A2 (en) Apparatus and method for adjusting quadrature modulator, communication apparatus and program
EP1634420B1 (en) Method and device for estimating iq imbalance
JP2006148940A (en) Inphase/quadrature phase imbalance compensation
JP4582752B2 (en) Suppressing transmitter images in time division duplex transceivers
JP2007104007A (en) Orthogonal modulator, and vector correction method in the same
JPH10136048A (en) Negative feedback amplifier
JP3518848B2 (en) Phase control method for quadrature modulator and quadrature demodulator and communication device
JPH08213846A (en) Method for correcting distortion of modulation wave and transmitter
US6490326B1 (en) Method and apparatus to correct for in-phase and quadrature-phase gain imbalance in communication circuitry
JP3214463B2 (en) Wireless communication device
KR20080028961A (en) Dc offset correction device and its method
JPH08204774A (en) Negative feedback amplifier
JP4068999B2 (en) Cartesian transmitter
JP2007311839A (en) Digital radio device
JPH07177188A (en) Orthogonal modulation demodulation system having modulation accuracy compensation function
JP2006086928A (en) Nonlinear distortion compensation circuit for power amplifier
EP3731430A1 (en) Device and method for correcting deviation between multiple transmission channels
JPH11196140A (en) Power amplifier
EP1271815B1 (en) Calibrating a transmitting station
JP2003125014A (en) Modulator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees