JP3516118B2 - 物体認識方法および物体認識装置 - Google Patents
物体認識方法および物体認識装置Info
- Publication number
- JP3516118B2 JP3516118B2 JP09035497A JP9035497A JP3516118B2 JP 3516118 B2 JP3516118 B2 JP 3516118B2 JP 09035497 A JP09035497 A JP 09035497A JP 9035497 A JP9035497 A JP 9035497A JP 3516118 B2 JP3516118 B2 JP 3516118B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- pixel
- perspective
- point
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Description
いて対象物を認識する技術に関連し、特にこの発明は、
画像上で撮像位置の近傍に位置する対象物と遠方に位置
する対象物とを、ともに精度良く認識するための物体認
識方法および装置に関する。
テレビカメラをその対象物が位置する方向に向けて撮像
し、得られた画像を入力して認識処理を行う装置が利用
されている。
に所定の処理を施して対象物の特徴を示す画素(以下こ
れを「特徴点」という)を抽出した後、抽出された各特
徴点の示すパターンを所定のモデルデータと照合するな
どして、前記対象物の種類,位置,向きなどを認識する
ようにしている。
入力画像を所定大きさの小領域に分割し、それぞれその
領域内に対象物の特徴が含まれていれば、領域内の所定
の点(例えば中心点)を特徴点として設定する方法が提
案されている。この方法によれば、対象物の特徴が含ま
れる小領域毎に1つの特徴点が設定されることになるの
で、処理対象となるデータを削減して効率の良い認識処
理を実施することができる。
法では、各小領域は画像上で均一な大きさに設定されて
いるため、特に道路上の車輌など、撮像位置の近傍から
遠方までの広い範囲を観測対象とする場合、遠方に位置
する対象物の特徴を精度良く抽出できないという問題が
ある。
メラからの画像を入力して、前記領域分割処理を行った
例を示すもので、入力画像上には、車輌の画像50,5
1が現れている。この入力画像に対し、図中の点線で示
すような分割処理を行った場合、撮像位置の近傍にある
車輌の画像50上には複数個の小領域が設定され(図
中、対応する領域の外枠を太実線で示す)、これら小領
域毎に抽出される複数個の特徴点を用いて認識処理を実
施することができる。これに対し、撮像位置より遠方に
ある車輌の画像51は1つの小領域内に含まれるため、
単に1個の特徴点が抽出されるのみとなり、車輌として
認識することは困難となる。
たもので、撮像位置より遠方に位置する対象物について
も、その特徴を精度良く抽出して、認識処理精度を向上
することを技術課題とする。
方向に向けて撮像手段を設置し、この撮像手段により得
られた画像を用いて前記特定方向に位置する対象物を認
識する方法であって、前記画像上の画素毎に、前記撮像
手段の撮像中心とその画素とを結ぶ直線を設定する処理
と、この直線が前記対象物の支持面を含む仮想平面に交
わる点に前記画素を投影する処理とを実行することによ
り、透視変換画像を生成する第1のステップと、前記透
視変換画像から対象物の特徴点を抽出する第2のステッ
プと、前記特徴点の抽出結果を示す画像を均一な大きさ
を有する複数個の小領域に分割した後、所定数以上の特
徴点が含まれる小領域を認識処理の対象として設定する
第3のステップと、前記認識対象の小領域のうち所定の
距離範囲内にある小領域を1グループとして統合する第
4のステップと、前記統合されたグループ毎に、あらか
じめ登録された対象物の3次元モデルをそのグループの
位置に投影した場合の投影像の特徴と前記グループの特
徴とを照合して、各グループが対象物を示すかどうかを
判別する第5のステップとを、実行するようにしてい
る。
置された撮像手段からの画像を入力し、この入力画像を
用いて前記特定方向に位置する対象物を認識する装置
に、前記入力画像上の画素毎に、前記撮像手段の撮像中
心とその画素とを結ぶ直線を設定する処理と、この直線
が前記対象物の支持面を含む仮想平面に交わる点に前記
画素を投影する処理とを実行することにより、前記入力
画像から透視変換画像を生成する透視変換手段;前記透
視変換手段により生成された透視変換画像から対象物の
特徴点を抽出する特徴点抽出手段;前記特徴点の抽出結
果を示す画像を均一な大きさを有する複数個の小領域に
分割する領域分割手段;所定数以上の特徴点が含まれる
小領域を認識処理の対象として設定した後、これらの小
領域につき、所定の距離範囲内にある小領域を1グルー
プとして統合する統合手段;対象物の3次元モデルを記
憶する記憶手段;前記統合手段により統合されたグルー
プ毎に、前記3次元モデルをそのグループの位置に投影
するモデル投影手段;前記モデル投影手段により投影さ
れたモデルの特徴と前記グループの特徴とを照合して、
各グループが対象物を示すか否かを判別する判別手段;
の各手段を具備させている。
置された複数個の撮像手段からの画像を入力し、各入力
画像を用いた3次元計測処理により前記特定方向に位置
する対象物を認識する装置に、前記各入力画像に対し、
それぞれその画像上の画素毎に、前記撮像手段の撮像中
心とその画素とを結ぶ直線を設定する処理と、この直線
が前記対象物の支持面を含む仮想平面に交わる点に前記
画素の画素データを投影する処理とを実行することによ
り、各入力画像から透視変換画像を生成する透視変換手
段;前記透視変換手段により生成された各透視変換画像
からそれぞれ対象物に応じた所定長さのエッジ成分を抽
出するエッジ抽出手段;前記抽出されたエッジ成分に含
まれる各特徴点を透視変換画像間で対応づける対応づけ
手段;前記対応づけられた特徴点の組毎に、それぞれ変
換前の入力画像上における対応点の座標を求め、得られ
た座標を用いて3次元計測処理を実行する3次元計測手
段;前記3次元計測手段による計測結果に基づき、対象
物の3次元的形状を認識する認識処理手段;の各手段を
具備させている。
像上の各画素について、撮像手段の撮像中心とその画素
とを結ぶ直線を設定する処理と、この直線が前記対象物
の支持面を含む仮想平面に交わる点に前記画素を投影す
る処理とを実行すると、画像上で高さのある物点を示す
画素は、実際の物点を前記支持面上に垂直に投影して得
られる位置よりも離れた位置に投影される。一方、画像
上の対象物の支持面上の物点を示す画素は、前記2段階
の処理により、この物点の実際の位置と同じ位置に投影
される。したがって所定の高さを有する対象物の画像を
透視変換すると、その支持面に接する部分は実際の座標
位置に、高さを有する部分は実際の座標位置より離れた
位置に、それぞれ投影される。その結果、透視変換画像
上に現れる対象物の画像は、実際の対象物をその支持面
の真上から見た2次元形状よりも歪んだ形状をとること
になる。また、上記の透視変換処理によれば、撮像位置
より遠方にある物点ほど、その物点は、撮像位置に対
し、実際よりも遠方に投影されるので、透視変換画像上
に現れる対象物の画像の大きさは、その対象物が撮像位
置より離れるにつれて大きくなる。したがって、原画像
上に現れた対象物であれば、透視変換画像上に、その対
象物を認識するのに十分な大きさの投影像を生成するこ
とができる。
用してなされたものである。請求項1,2の発明では、
前記透視変換画像を均一な大きさを有する複数の小領域
に分割し、所定数以上の特徴点が含まれる小領域を認識
処理の対象として設定する。さらに、これらの認識処理
対象の小領域の中から所定距離範囲内にあるものを1グ
ループとして統合するので、撮像位置より遠方にある対
象物についても、複数の小領域から成るグループを得る
ことができる。よって、グループ毎に、あらかじめ登録
された3次元モデルをそのグループの位置に投影した場
合の投影像の特徴とグループの特徴とを照合することに
より、各対象物を個別に認識することができる。
り特定方向を撮像して得られた画像について、それぞれ
上記の透視変換画像を生成した後、各透視変換画像から
対象物に応じた所定長さのエッジ成分を抽出するので、
遠方の対象物についても、前記所定長さのエッジ成分を
抽出することができる。さらに、抽出されたエッジ成分
に含まれる各特徴点を透視変換画像間で対応づけた後、
対応づけられた特徴点の組毎に、変換前の入力画像上に
おける座標を用いて3次元計測処理を実行するので、各
対象物につき、それぞれ複数の特徴点の3次元座標を得
ることができる。
計測装置の設置例を示す。この交通流計測装置は、道路
4の近傍に支柱3を配備し、この支柱3の上部位置にカ
メラ1を、下部位置に制御ボックス2を、それぞれ取り
付けて構成される。
を道路4の長さ方向に向けて撮像して得られた画像を処
理する制御処理装置5(図5に示す)やその処理結果を
管理センターなどの外部へ伝送するための伝送装置(図
示せず)などが収容されている。
された2次元画像をフレーム単位で道路面上の仮想水平
面上に透視変換し、この透視変換画像について後記する
特徴抽出処理や車輌の判別処理を実行する。さらに制御
処理装置5は、この判別結果を道路上の車輌の位置デー
タに編集するとともに、この編集結果の時間的な推移に
基づいて道路上の各車輌の動きを認識し、各車輌の軌跡
や移動速度,道路の渋滞度合いなどを示す交通流データ
を生成する。
成を示す前に、この制御処理装置5に導入された透視変
換処理の原理および変換処理の詳細な方法を説明する。
この透視変換処理は、あらかじめ定められた空間座標系
に対するカメラ座標系の回転角度により決定されるパラ
メータを用いて、入力画像上の各画素について、それぞ
れカメラの撮像中心とこの画素とを結ぶ直線を設定し、
この直線と前記仮想水平面上との交点の位置にその画素
データを投影するものである。前記パラメータは、計測
処理に先立ち、空間座標が既知の点を用いたキャリブレ
ーションによりカメラ座標系の回転角度を算出した後、
さらにこの算出結果を後記する(28)〜(35)式に
あてはめることにより算出される。
x,y,zの各軸で示される座標系)と、前記した空間
座標系(図中、X,Y,Zの各軸で示される座標系)と
の関係を示す。なおOc はカメラの撮像中心点であっ
て、ここではカメラ座標系の原点に対応するものとす
る。またOは空間座標系の原点を、Mは空間中の任意の
物点を、それぞれ示す。
メラ座標系のx,y,z軸がそれぞれ角度α,β,γだ
け回転していると想定すると、点Oc の空間座標を(X
co,Yco,Zc0),点Mの空間座標を(XM ,YM ,Z
M )としたときの点Mのカメラ座標(xM ,yM ,
zM )は、これら回転角度α,β,γにより決定される
パラメータs1 ,s2 ,s3 ,t1 ,t2 ,t3 ,
u1 ,u2 ,u3 に基づき、つぎの(1)〜(3)で表
される。なお上記各パラメータは、それぞれ(4)〜
(12)式で表される。また前記xM ,yM は、点Mの
入力画像上の対応点M´のx,y座標に、zM はカメラ
の焦点距離Fに、それぞれ相当する。
想水平面は、それぞれつぎの(13)(14)式により
表される。
面上に透視変換するものとすると、点M´は前記直線O
c Mと仮想水平面との交点m(Xm ,Ym ,0)の位置
に投影される。したがって前記(13)(14)式よ
り、Xm ,Ym は、つぎの(15)(16)式で表され
る。
´=YM −Yc0/ZM −Zc0,Z´=1/ZM −Zc0と
おくと、前記(1)〜(3)式および(15)(16)
式は、それぞれ(17)〜(21)式に変形される。
することにより、X´,Y´は、それぞれつぎの(2
2)(23)式により表される。さらにこの(22)
(23)式を用いて前記(20)(21)式を変形する
ことにより、(24)(25)式が得られる。
´の座標(xM ,yM )と(28)〜(35)式により
定義されるパラメータa,b,c,d,e,f,g,h
とを用いた(26)(27)式により算出される。
間座標(Xc0,Yc0,Zc0),キャリブレーションによ
り算出されたカメラ座標系の回転角度α,β,γ,およ
びカメラ32の焦点距離Fを、前記(28)〜(35)
式に代入して各パラメータa〜hを求めておき、カメラ
32からの入力画像の各画素毎に、そのx,y座標を前
記(26)(27)式にあてはめることにより、各画素
の投影点の座標を算出することができる。
力画像上の点M´を仮想水平面上に透視変換すると、こ
の点M´における画像データは、カメラ中心点Oc と点
Mとを結ぶ直線Oc Mと仮想水平面との交点mに投影さ
れる。したがってこの直線Oc Mの傾きが緩慢であるほ
ど、仮想水平面上の投影点は、点Mを真上方向から透視
した際の投影点(すなわち点MのX,Y座標により特定
される点)から離れた場所に位置することになる。言い
換えれば、点Mが高い位置にあるほど、また点Mが撮像
中心点Oc より離れた位置にあるほど、その投影点は、
本来の点Mのあるべき位置から離れた場所に位置するの
で、高さ成分を有する対象物を透視変換したとき、実際
の対象物を真上位置より見た場合とは異なる大きさ,形
状を有する特徴が得られることになる。
点の画像データは、実際と同じ位置に投影されるため、
影など道路面上の2次元対象物は、透視変換後も、実際
の対象物を真上位置より見た場合と同様の大きさ,形状
の特徴を有する。
例であって、車輌の画像30,その影の画像31,道路
の車線間の境界線を示す画像32などが含まれている。
図3(2)は、上記入力画像を前記水平面上に透視変換
した結果を示すもので、透視変換画像中、前記車輌の画
像30の投影像30´の形状には、車輌の高さ成分を反
映した歪みが現れている。これに対し、影の画像14や
車線間の境界線の画像32の投影像31´,32´の形
状は、実際の車線や影を真上位置から観察した結果と同
様になる。
次元モデルを設定しておき、前記透視変換画像上で抽出
された特徴を、前記3次元モデルがこの特徴抽出位置に
あるときに仮想水平面上に現れる2次元パターンと比較
することにより、この特徴が車輌を示すものであるか否
かを判別することが可能となる。
は、この車輌がカメラの撮像位置より遠方にあるほど小
さくなるので、カメラからの画像上で車輌を示す特徴の
抽出処理を行った場合、遠方の車輌については認識する
のに十分な特徴が得られなくなる虞がある。しかしなが
ら画像の透視変換処理を行うと、前記したように、撮像
位置より遠方にある物点ほど、その物点の実際の位置よ
り離れた場所に投影されるので、透視変換画像上の車輌
の投影像の大きさは、図4に示すように、撮像位置より
遠方にある車輌ほど大きくなる。したがって原画像上に
現れた車輌であれば、その車輌がいずれの位置にあって
も、透視変換画像上に認識するのに十分な大きさの投影
像を生成することができる。
示すもので、カメラ1からの画像データを入力するため
の画像入力部6,画像メモリ7,パラメータ記憶部8,
画像変換部9,特徴抽出部10,領域設定部11,物体
判別部12などを構成として含んでいる。
れたアナログ量の画像データをディジタル量に変換する
ためのA/D変換回路などを具備する。画像メモリ7に
は、画像入力部による変換処理後のディジタル量の濃淡
画像データのほか、この入力画像を上記原理に基づき透
視変換して得られる透視変換画像データや後記するエッ
ジ画像データなどが、それぞれ、個別に格納される。
(35)式により算出されたパラメータa,b,c,
d,e,f,g,hなどが記憶されている。画像変換部
9は、これらパラメータと入力画像中の各画素のx,y
座標とを前記(26)(27)式に代入することによ
り、各画素の透視変換点の座標を算出した後、この算出
結果に基づき入力画像の透視変換画像を生成して、画像
メモリ7へと格納する。
入力画像の各画素についての透視変換先の座標が記憶さ
れたルックアップテーブルを設け、画像入力時に、各画
素を、このルックアップテーブル中の対応する設定値に
基づく位置に変換するようにすれば、変換処理の高速化
を実現できる。
プラシアンフィルタなどのエッジ抽出用フィルタを走査
して、車輌などの物体の輪郭を示すエッジ成分を抽出す
る。この抽出結果は、例えばエッジ構成点を黒画素とす
る2値画像として表され、前記画像メモリ7内に記憶さ
れる(以下この画像を「エッジ変換画像」という)。
を、均一な大きさを有する複数個の小領域に分割処理し
た後、これら小領域の中から所定のエッジ成分を有する
領域を抽出する。物体判別部12は、この抽出結果を用
いて道路上の車輌の位置などを判別した後、その判別結
果を前記した交通流データの生成部(図示せず)などに
出力する。
手順を示すもので、以下、図7〜11を参照しつつ図6
の流れに沿って、上記各部による詳細な処理を説明す
る。まずステップ1で、前記画像入力部6にカメラから
の画像データが入力された後、つぎのステップ2で、前
記画像変換部9によりこの入力画像に対する透視変換画
像が生成されると、特徴抽出部10により、この透視変
換画像上の水平方向のエッジ成分が抽出されて、前記し
たエッジ変換画像が生成される(ステップ3)。
こでは説明を簡単にするために、車輌の画像C1 ,C2
に対応する影の画像を省略して示してある。図8は、前
記図7の入力画像に対する透視変換画像を示すもので、
前記図2に示した3次元座標系のX,Y軸により特定さ
れる平面上に前記車輌の投影像K1 ,K2 が示されてい
る。さらに図9は、この透視変換画像から生成されたエ
ッジ変換画像を示すもので、前記各車輌の投影像K1 ,
K2 の水平エッジ成分が黒画素として抽出されている。
つぎのステップ4で、領域設定部11は、図10に示す
ように、前記エッジ変換画像を一辺がdの複数の小領域
により均等に分割した後、各小領域内に含まれるエッジ
構成点の数をチェックし、さらにステップ5で所定のし
きい値以上のエッジ構成点が含まれる小領域のみを認識
処理の対象として設定する。
た小領域に対し、各領域間の距離を計測するなどして、
所定の距離範囲内にある小領域を1グループとして統合
する。またこの物体判別部12は、車輌の標準形状を示
す3次元モデルを記憶するメモリを備えており、最終的
に生成されたグループの特徴と前記3次元モデルがその
グループの位置に投影された場合の特徴とを照合して、
各グループがそれぞれ車輌を示すものであるか否かを判
別する(ステップ6)。図11は、前記図10の分割処
理結果のうち処理対象として設定された小領域のについ
ての統合結果を示すもので、前記車輌の投影像K1 ,K
2 の位置において、それぞれ複数個の小領域が統合され
て2個のグループG1 ,G2 が生成されている。
について、それぞれそのグループの最下端部の幅長さ
(図中f1 ,f2 で示す)と、縦方向の長さ(図中LT
1 ,LT2 で示す)とを抽出する。さらに物体判別部1
2は、前記車輌の標準形状を示す3次元モデルを、各グ
ループの抽出位置(前記最下端部のY座標Y1 ,Y2 )
において投影処理を行ったときに得られる投影像の大き
さを求め、前記幅長さf1 ,f2 および縦方向の長さL
T1 ,LT2 をそれぞれこのモデルの投影像の大きさと
照合する。この結果、グループ内の特徴抽出結果と3次
元モデルの投影像の大きさとの間に有意な差がなけれ
ば、物体判別部12は、これらグループG1,G2 が車
輌を示す特徴であると認識し、その抽出位置を示すY座
標Y1 ,Y2などを車輌抽出位置として特定する。
ッジ成分を抽出した後、このエッジ画像上で車輌を示す
特徴を抽出するようにしているが、これに限らず、例え
ば透視変換画像から背景部分の画像データや1段階前に
生成された透視変換画像を差分処理した画像を、所定の
しきい値で2値化した後、前記ステップ4以下の処理を
実施するようにしても良い。
示す。この実施例の交通流計測装置は、道路4の近傍に
配備された支柱33上に2台のカメラ1a,1bと制御
ボックス34とを取り付けて構成される。
に向かって突出させたF字型のものが用いられており、
カメラ1a,1bは、支柱の各横桟間に縦並びに取り付
けられている。
3次元座標系(ここでは前記図2に示したのと同様の座
標系とする)との関係を示す。この実施例の各カメラ1
a,1bは、ともに焦点距離をFとするレンズを有する
とともに、各光軸が道路の長さ方向に向けて角度θをも
って平行となり、かつ各撮像面が同一平面上に位置する
ように、その取り付け位置が調整される。なお図13に
おいて、IL ,Iu は、それぞれ各カメラ1a,1bに
より得られる画像を示す。またHは、3次元座標系の原
点Oから下方のカメラ1aの撮像中心点までの距離を、
Bは各カメラ1a,1b間の基線長を、それぞれ示す。
道路を撮像しているが、これに限らず、3台以上のカメ
ラを用いてもよい。またカメラの配置は縦並びに限らず
横並びにしても良い。またカメラを取り付ける支柱も上
記のF字型支柱2に限らず、既存の電信柱や照明柱など
を改良して用いてもよい。
ような制御処理装置15や図示しない伝送装置が収容さ
れている。この制御処理装置15は、各カメラ1a,1
bからの画像よりそれぞれ前記第1の実施例と同様の仮
想平面上に透視変換した後、各透視変換画像を用いた3
次元計測処理を行って車輌の認識処理を行うもので、各
カメラ1a,1bにそれぞれ対応する画像入力部16
a,16b,画像メモリ17,パラメータ記憶部18,
画像変換部19,特徴抽出部20,対応付け処理部2
1,3次元計測部22,物体判別部23などを構成とし
て含んでいる。
らの入力画像に対し、それぞれ前記と同様の透視変換処
理を実施する。特徴抽出部20は、生成された各透視変
換画像について、それぞれ画像上の物体の輪郭を示すエ
ッジ変換画像を生成する。これら入力画像,透視変換画
像,エッジ変換画像は、入力または生成の都度、画像メ
モリ17内に個別に格納され、対応付け処理部21によ
る対応付け処理時などに、必要に応じて読み出される。
なおこの実施例では、各カメラ1a,1b毎に前記(2
8)〜(35)式に示したパラメータがあらかじめ求め
られてパラメータ記憶部18に記憶される。このほかパ
ラメータ記憶部18には、3次元計測部22の計測処理
のための各種パラメータが記憶される。
を特定するためのデータや、複数の車種について、その
車種にかかる車輌を側方から見たイメージを示す2次元
モデルが登録されており、前記3次元計測結果をこれら
登録データと照合することにより、各車線毎の車輌の位
置や車種の判別が行われる。
手順を示すもので、以下、図16〜19を参照しつつ、
図15の流れに沿って、上記各部の詳細な処理を説明す
る。まずステップ1で、各カメラ1a,1bからの画像
が各画像入力部16a,16bに取り込まれると、つぎ
のステップ2で画像変換部19による透視変換処理が実
施される。
1aからの入力画像IL (以下「第1入力画像IL 」と
いう)の一例を、図16(2)は上方に配置されるカメ
ラ1bにより前記図16(1)の画像と同じタイミング
で入力された画像Iu (以下「第2入力画像Iu 」とい
う)を、それぞれ示す。また図17(1)は、前記第1
入力画像IL を透視変換して得られた変換画像Hl (以
下「第1透視変換画像Hl 」という)を、図17(2)
は、前記第2入力画像Iu を透視変換して得られた変換
画像Hu (以下「第2透視変換画像Hu 」という)を、
それぞれ示す。
ると、特徴抽出部20は、各透視変換画像から水平方向
のエッジ成分を抽出した後、これら抽出結果の中から車
輌の幅長さに応じた長さを有するエッジ成分のみを選択
する(ステップ3,4)。図18(1)(2)は、それ
ぞれ前記第1、第2の透視変換画像に対するエッジ抽出
結果を示す。また図19(1)(2)は、それぞれ前記
図18(1)(2)のエッジ抽出結果から車輌の幅に応
じたエッジ成分のみを抽出した結果であって、いずれ
も、前記透視変換画像上の車輌の投影像に対応する位置
において、車輌の水平方向の輪郭線を示すエッジ成分が
抽出されている。以下この実施例においては、この図1
9(1)(2)に示す所定長さのエッジ成分のみに限定
されたエッジ画像EL ,Eu を、それぞれ「第1エッジ
変換画像EL 」「第2エッジ変換画像Eu 」と呼ぶこと
にする。
ッジ変換画像が生成されると、つぎのステップ5で、対
応付け処理部21により各エッジ変換画像上の特徴点を
画像間で対応づける処理が行われる(ステップ5)。
記対応付け処理の具体例を説明する。いま第1エッジ変
換画像EL 上の所定の特徴点p(図20(1)に示す)
に対応する第2エッジ変換画像Eu 上の特徴点qを抽出
するものとすると、対応付け処理部は、第2エッジ変換
画像Eu 上に前記特徴点pのエピポーララインLを設定
し、このエピポーラライン上(もしくはその近傍)に位
置する特徴点(図中q1 〜q6 の6点)を、点pの対応
候補点として抽出する。なおここではカメラ1a,1b
が縦並びにかつ光軸が平行になるように配備されている
ので、原入力画像上のエピポーララインはy軸に平行と
なる。透視変換画像上のエピポーララインLは、この入
力画像上のエピポーララインの投影像と見なされるの
で、同じくY軸に平行となり、対応候補点を容易に抽出
することができる。
換画像HL (図20(3)に示す)上に、前記特徴点p
と同じ座標に位置する点Pを中心点とする所定大きさの
ウィンドウWL を設定するとともに、第2透視変換画像
Hu (図20(4)に示す)上で前記各対応候補点q1
〜q6 と同じ座標に位置する点Q1 〜Q6 を中心とし
て、それぞれ前記ウィンドウWL と同じ大きさのウィン
ドウW1 〜W6 を設定する。さらに対応付け処理部21
は、これらウィンドウW1 〜W6 についてそれぞれつぎ
の(36)式を実行し、各ウィンドウ内の画像データと
前記ウィンドウWu 内の画像データとの相違度DFを算
出する。
ンドウWL 内の所定の画素の輝度値を、またgu (X,
Y)はウィンドウWu (U=1〜6)内の所定の画素の
輝度値を、それぞれ示す。またi,jは各ウィンドウの
サイズに応じて変動する整数である。
ウW1 〜W6 毎に求められた相違度DFを比較し、相違
度が最も小さくなるウィンドウをウィンドウWL に対応
するものとして判別する。そしてそのウィンドウの中心
点QU と同じ座標(Xu ,Yu )上にある第2エッジ変
換画像上の点qu (図示例ではq4 )を前記第1エッジ
変換画像の特徴点pの対応点として決定する。
プ6で各特徴点に対応する空間中の物点の3次元座標が
計測される。まず3次元計測部22は、対応付けられた
特徴点p,qについて、それぞれその座標(XL ,
YL ),(Xu ,Yu )と前記透視変換処理に用いられ
たパラメータとを用いて、原入力画像上でこれら特徴点
p,qに対応する点の座標(xL,yL ),(xu ,y
u )を算出する(以下この座標を(特徴点p,qの)
「原座標」という)。
の座標(Xm ,Ym )が判明している場合、この点mの
原座標(xm ,ym )は、前記(26)(27)式を変
形したつぎの(37)(38)式により求められる。
E,F,G,H,Iは、前記した(28)〜(35)で
求めたパラメータa〜hによるつぎの(39)〜(4
7)式により算出される。
a,1bが設置されているので、それぞれのカメラ毎に
得られたパラメータを上記(37)(38)式にセット
した後、前記特徴点p,qの座標を該当するパラメータ
が設定された式に代入することにより、入力画像IL 上
における特徴点pの原座標(xL ,yL )と入力画像I
u 上における特徴点qの原座標(xu ,yu )とを算出
することができる。
徴点p,qの原座標(xL ,yL )(xu ,yu )とカ
メラ1a,1bのパラメータとを3角測量の原理に基づ
く(48)〜(50)式に代入し、前記特徴点に対応す
る空間中の物点の3次元座標(X,Y,Z)を算出す
る。なお各式中、F,θ,B,Hは、前記図13に示し
たパラメータである。またCCDW ,CCDH は、それ
ぞれ各カメラ1a,1bのCCD素子の横方向,縦方向
のサイズを、WTは入力画像上のx軸方向の画素数を、
HTは入力画像のy軸方向の画素数を、それぞれ示す。
特徴点の対応付け処理を行ってから対応付けられた各特
徴点を原入力画像上の点に変換し、3次元計測処理を行
うようにしているが、前記(37)(38)式により各
エッジ変換画像上で抽出された特徴点の原座標を求めた
後、各入力画像上で対応付け処理を行うようにしてもよ
い。
特徴点について、上記した対応付け処理と3次元計測処
理とが行われた結果、各特徴点に対応する空間中の物点
の3次元座標が算出されると、以下、物体判別部23に
よる車輌判別処理が実施される(ステップ7)。
算出結果を前記車線位置の登録データと照合して各車線
上に位置する物点を認識した後、各車線毎に、その長さ
方向に沿って仮想垂直平面を設定し、この平面上に前記
車線上の物点として認識された点の3次元座標を投影す
る。
車線に対する仮想垂直平面上の投影結果を示す。なお仮
想垂直平面の座標系は、前記した3次元座標系に基づ
き、車線の長さ方向をY軸,高さ方向をZ軸として設定
されている。また図中の×印は、前記特徴点の投影点を
示すもので、これら特徴点により車線上の対象物を車輌
の側方から見た2次元形状が表される。
3は、前記登録された各車種の2次元モデルをこの仮想
垂直平面上に順次設定して走査し、各走査位置毎に、投
影結果と2次元モデルとの類似度を算出するマッチング
処理を実行する。この結果、投影結果に最も類似する2
次元モデルが抽出されると、物体判別部23は、その2
次元モデルに最も類似する投影パターンが得られた位置
を、その2次元モデルに該当する車輌の位置として認識
する。
限らず、例えば3次元計測処理部22による計測結果の
中からZ座標が所定のしきい値以上となる物点を抽出
し、これら抽出された各物点間の距離を計測して所定距
離内にある物点同士をグループ化してゆき、最終的に得
られた各グループを車輌として認識するなど、種々の方
法を適用できる。
けて設置された撮像手段により得られた画像上の各画素
について、それぞれ撮像手段の撮像中心とその画素とを
結ぶ直線を設定する処理と、この直線が前記対象物の支
持面を含む仮想平面に交わる点に前記画素を投影する処
理とを実行することにより、遠方にある対象物について
も、認識するのに十分な投影像を生成することができ
る。さらに、上記2段階の処理により得られた透視変換
画像を均一な大きさを有する複数個の小領域に分割し、
所定数以上の特徴点が含まれる小領域を認識対象として
設定した後に所定の距離範囲にある小領域を1グループ
として統合するので、遠方の対象物についても、複数の
小領域から成るグループを得ることができる。よって、
統合されたグループ毎に、そのグループの位置に3次元
モデルを投影した場合の投影像の特徴とグループの特徴
とを照合することにより、各対象物を個別かつ精度良く
認識することができる。
り特定方向を撮像して得られた画像について、それぞれ
上記の透視変換画像を生成した後、各透視変換画像から
対象物に応じた所定長さのエッジ成分を抽出するので、
遠方の対象物についても、前記所定長さのエッジ成分を
抽出することができる。さらに、抽出されたエッジ成分
に含まれる各特徴点を透視変換画像間で対応づけた後、
対応づけられた特徴点の組毎に、変換前の入力画像上に
おける座標を用いて3次元計測処理を実行するので、各
対象物につき、それぞれ複数の特徴点の3次元座標を得
て、それぞれの3次元形状を精度良く認識することがで
きる。
設置例を示す説明図である。
系との関係を示す説明図である。
である。
説明図である。
置の電気的構成を示すブロック図である。
ャートである。
明図である。
示す説明図である。
る。
領域を設定した例を示す説明図である。
装置の設置例を示す説明図である。
関係を示す説明図である。
理装置の電気的構成を示すブロック図である。
ーチャートである。
である。
を示す説明図である。
果を示す説明図である。
変換画像を示す説明図である。
す説明図である。
Claims (3)
- 【請求項1】 特定方向に向けて撮像手段を設置し、こ
の撮像手段により得られた画像を用いて前記特定方向に
位置する対象物を認識する方法であって、前記画像上の画素毎に、前記撮像手段の撮像中心とその
画素とを結ぶ直線を設定する処理と、この直線が前記対
象物の支持面を含む仮想平面に交わる点に前記画素を投
影する処理とを実行することにより、透視変換画像を生
成する第1のステップと、 前記透視変換画像から対象物の特徴点を抽出する第2の
ステップと、 前記特徴点の抽出結果を示す画像を均一な大きさを有す
る複数個の小領域に分割した後、所定数以上の特徴点が
含まれる小領域を認識処理の対象として設定する第3の
ステップと、 前記認識対象の小領域のうち所定の距離範囲内にある小
領域を1グループとして統合する第4のステップと、 前記統合されたグループ毎に、あらかじめ登録された対
象物の3次元モデルをそのグループの位置に投影した場
合の投影像の特徴と前記グループの特徴とを照合して、
各グループが対象物を示すかどうかを判別する第5のス
テップとを、実行することを特徴とする物体認識方法。 - 【請求項2】 特定方向に向けて設置された撮像手段か
らの画像を入力し、この入力画像を用いて前記特定方向
に位置する対象物を認識する装置において、 前記入力画像上の画素毎に、前記撮像手段の撮像中心と
その画素とを結ぶ直線を設定する処理と、この直線が前
記対象物の支持面を含む仮想平面に交わる点に前記画素
を投影する処理とを実行することにより、前記入力画像
から透視変換画像を生成する透視変換手段と、 前記透視変換手段により生成された透視変換画像から対
象物の特徴点を抽出する特徴点抽出手段と、 前記特徴点の抽出結果を示す画像を均一な大きさを有す
る複数個の小領域に分割する領域分割手段と、 所定数以上の特徴点が含まれる小領域を認識処理の対象
として設定した後、これらの小領域につき、所定の距離
範囲内にある小領域を1グループとして統合する統合手
段と、 対象物の3次元モデルを記憶する記憶手段と、 前記統合手段により統合されたグループ毎に、前記3次
元モデルをそのグループの位置に投影するモデル投影手
段と、 前記モデル投影手段により投影されたモデルの特徴と前
記グループの特徴とを照合して、各グループが対象物を
示すか否かを判別する判別手段とを備えて成る物体認識
装置。 - 【請求項3】 特定方向に向けて設置された複数個の撮
像手段からの画像を入力し、各入力画像を用いた3次元
計測処理により前記特定方向に位置する対象物を認識す
る装置において、 前記各入力画像に対し、それぞれその画像上の画素毎
に、前記撮像手段の撮像中心とその画素とを結ぶ直線を
設定する処理と、この直線が前記対象物の支持面を含む
仮想平面に交わる点に前記画素の画素データを投影する
処理とを実行することにより、各入力画像から透視変換
画像を生成する透視変換手段と、 前記透視変換手段により生成された各透視変換画像から
それぞれ対象物に応じた所定長さのエッジ成分を抽出す
るエッジ抽出手段と、 前記抽出されたエッジ成分に含まれる各特徴点を透視変
換画像間で対応づける対応づけ手段と、 前記対応づけられた特徴点の組毎に、それぞれ変換前の
入力画像上における対応点の座標を求め、得られた座標
を用いて3次元計測処理を実行する3次元計測手段と、 前記3次元計測手段による計測結果に基づき、対象物の
3次元的形状を認識する認識処理手段とを備えて成る物
体認識装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09035497A JP3516118B2 (ja) | 1997-03-24 | 1997-03-24 | 物体認識方法および物体認識装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09035497A JP3516118B2 (ja) | 1997-03-24 | 1997-03-24 | 物体認識方法および物体認識装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10269365A JPH10269365A (ja) | 1998-10-09 |
JP3516118B2 true JP3516118B2 (ja) | 2004-04-05 |
Family
ID=13996208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09035497A Expired - Lifetime JP3516118B2 (ja) | 1997-03-24 | 1997-03-24 | 物体認識方法および物体認識装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3516118B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4798576B2 (ja) * | 2005-12-26 | 2011-10-19 | ダイハツ工業株式会社 | 付着物検出装置 |
JP5109294B2 (ja) * | 2006-06-19 | 2012-12-26 | 三菱電機株式会社 | 3次元位置補正装置 |
JP4946878B2 (ja) * | 2008-01-10 | 2012-06-06 | 株式会社豊田中央研究所 | 画像識別装置及びプログラム |
JP5163164B2 (ja) * | 2008-02-04 | 2013-03-13 | コニカミノルタホールディングス株式会社 | 3次元計測装置 |
JP2010128732A (ja) * | 2008-11-27 | 2010-06-10 | Japan Traffic Management Technology Association | 車両台数密度観測装置及び車両台数密度観測装置用のプログラム |
JP5487946B2 (ja) * | 2009-12-18 | 2014-05-14 | 株式会社リコー | カメラ画像の補正方法およびカメラ装置および座標変換パラメータ決定装置 |
JP5387625B2 (ja) * | 2011-07-19 | 2014-01-15 | 住友電気工業株式会社 | 移動体検出装置、移動体検出システム及びコンピュータプログラム |
JP5423764B2 (ja) * | 2011-10-20 | 2014-02-19 | 住友電気工業株式会社 | 移動体検出装置、コンピュータプログラム及び移動体検出方法 |
KR102082254B1 (ko) * | 2018-03-14 | 2020-02-27 | 광주과학기술원 | 차량 인식 시스템 |
CN110487796B (zh) * | 2019-08-16 | 2021-03-30 | 上海达梦数据库有限公司 | 一种基于图像的物料检测方法和装置 |
-
1997
- 1997-03-24 JP JP09035497A patent/JP3516118B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10269365A (ja) | 1998-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3868876B2 (ja) | 障害物検出装置及び方法 | |
US20020134151A1 (en) | Apparatus and method for measuring distances | |
JP2004112144A (ja) | 前方車両追跡システムおよび前方車両追跡方法 | |
CN112424565B (zh) | 车载环境识别装置 | |
JP2000517452A (ja) | 視認の方法 | |
CN110926330A (zh) | 图像处理装置和图像处理方法 | |
JP3516118B2 (ja) | 物体認識方法および物体認識装置 | |
JP3709879B2 (ja) | ステレオ画像処理装置 | |
JPH1173514A (ja) | 車両用認識装置 | |
JP3008875B2 (ja) | 被写体抽出装置 | |
WO1992010810A1 (fr) | Procede de correction de tache et dispositif a cet effet | |
JPH1144533A (ja) | 先行車両検出装置 | |
JP3465531B2 (ja) | 物体認識方法およびその装置 | |
JP3605955B2 (ja) | 車輌判別装置 | |
JP2006050451A (ja) | 障害物警告システム及び画像処理装置 | |
JPH1023311A (ja) | 画像情報入力方法及び装置 | |
JP3501841B2 (ja) | 立体物領域検出装置及び立体物領域迄の距離測定装置及びそれらの検出、測定方法 | |
JPH1055446A (ja) | 物体認識装置 | |
JP3475700B2 (ja) | 物体認識方法、物体認識装置、および車輌認識装置 | |
JP3893981B2 (ja) | 車両認識方法およびこの方法を用いた交通流計測装置 | |
JPH11259658A (ja) | 物体認識方法およびその方法を用いた物体認識装置,車輌認識方法,車輌認識装置 | |
JPH10283478A (ja) | 特徴抽出方法およびその方法を用いた物体認識装置 | |
JPH11190611A (ja) | 3次元計測方法およびその方法を用いた3次元計測処理装置 | |
JPH11506847A (ja) | 視覚的識別方法 | |
JP3525712B2 (ja) | 三次元画像撮像方法及び三次元画像撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140130 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |