JP3512348B2 - Operation control method of run-down wastewater treatment plant - Google Patents

Operation control method of run-down wastewater treatment plant

Info

Publication number
JP3512348B2
JP3512348B2 JP34536798A JP34536798A JP3512348B2 JP 3512348 B2 JP3512348 B2 JP 3512348B2 JP 34536798 A JP34536798 A JP 34536798A JP 34536798 A JP34536798 A JP 34536798A JP 3512348 B2 JP3512348 B2 JP 3512348B2
Authority
JP
Japan
Prior art keywords
pump
raw water
tank
water
pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34536798A
Other languages
Japanese (ja)
Other versions
JP2000167580A (en
Inventor
敬藏 渡邉
Original Assignee
株式会社渡辺コンサルタンツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社渡辺コンサルタンツ filed Critical 株式会社渡辺コンサルタンツ
Priority to JP34536798A priority Critical patent/JP3512348B2/en
Publication of JP2000167580A publication Critical patent/JP2000167580A/en
Application granted granted Critical
Publication of JP3512348B2 publication Critical patent/JP3512348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、下水管路から原
水ピットに流入する原水(下水)を原水ピット中のポン
プP1 ,P1 ′で浄化処理装置に供給して浄化処理し、
浄化処理装置に供給する原水の供給量宛、浄化処理装置
から処理水を垂れ流して排出、放流する垂れ流し式廃水
処理場、代表的には活性汚泥法や、オキシデーションデ
ィッチ法(OD法)の垂れ流し式廃水処理場の運転を、
放流する処理水の放流量を検出する出口側流量計と、原
水ピットの原水を浄化処理装置に供給するポンプP1
1′とによって制御するようにした垂れ流し式廃水処
理場の運転制御方法に関する。 【0002】 【従来の技術】図2は人口約700〜800人、200
戸程度の生活排水を生物学的に浄化処理する農村などの
集落排水処理用の活性汚泥法による廃水処理場の一般的
なフローシートであって、下水管路21から廃水処理場
内の入口の原水槽、或いは下水管路に設けられた最終マ
ンホール(原水槽と最終マンホールを総称して原水ピッ
ト1と記す。)に流入した原水は原水ピット内の1台の
常用ポンプP1 と、1台の予備ポンプP1 ′で流量調整
槽2に汲み上げる。原水は流量調整槽から槽内のポンプ
2 ,P2 ′で計量槽4に汲み上げ、計量槽から浄化処
理装置の処理槽5(こゝではブロワーBによる曝気槽)
に計量して供給し、処理槽で活性汚泥や、生物膜により
生物学的処理を行い、浄化する。処理槽で処理した水
は、計量槽から処理槽に供給される原水の供給量宛、垂
れ流し式に浄化処理装置の沈殿槽6に導入して上澄み水
と汚泥とに分離し、上澄み水は滅菌槽7に導入して消毒
し、処理水とする。尚、上澄み水は滅菌槽に流入する前
に、COD計、UV計等のCOD測定器10によりCO
Dを測定される。次いで消毒した処理水は滅菌槽から放
流槽8に導入し、ポンプP3 ,P3 ′で汲み上げて放流
する。尚、沈殿槽で生成した汚泥の一部は処理槽に返送
する。 【0003】図3に示すように、原水ピット1の水位H
−L間の容量は時間最大流入量(Qmax)の10〜1
5分程度(日平均流入量Qの約45分程度)で、Q=2
40m3 /日、Qmax=28.9m3 /時として4.
8m3 〜7.2m3 で、ここでは5.0m3 とする。こ
れに対し流量調整槽2の水位H−L間の容量は日平均流
入量の6時間以上、一般的には6〜9時間で、Q=24
0m3 /日、ここでは6時間として60m3 とする。原
水ピットには、流入した汚水を短時間で汲上げることが
できる吐出量、正確には時間最大流入量(Qmax)を
汲上げることができる常用と,予備の2台の水中ポンプ
1 とP1 ′が設けてある。又、流量調整槽2には2台
の常用か、1台の常用と、1台の予備の水中ポンプ
2 ,P2 ′が設けてある。流量調整槽2の常用ポンプ
2 と、予備ポンプP2 ′の吐出量は計量槽を介し処理
槽に少量宛原水を供給して処理槽の負荷を急激に高めな
いため、日平均汚水量以上を揚水できるもので、一般に
集落排水処理の場合、常用ポンプが2台のときは各1台
の常用ポンプP2 の吐出量は原水ピットの常用ポンプP
1 の1/6、常用ポンプが1台のときはその吐出量は原
水ピットの常用ポンプの1/3である。 【0004】図3に示すように、上述した流量調整槽の
2台、又は1台の常用ポンプP2 と、予備ポンプP2
は、通常は槽内に設けたレベルスイッチLS2 で制御さ
れ、常用ポンプP2 は水位が1mのMになると運転を開
始し、水位が0mのLに下がると停止し、予備ポンプP
2 ′は水位が3.5mのHHまで上昇すると運転を開始
し、水位が3mのHに下がると停止する。原水ピットの
常用ポンプP1 と予備ポンプP1 ′もピット内に設けた
レベルスイッチLS1 で制御され、常用ポンプP1 は水
位が2.0mのHになると運転を開始し、水位が0mの
Lに下がると停止する。原水ピットは前述したように容
量が小さく、且つポンプの吐出量は大なので、常用ポン
プP1 は頻繁にON,OFFを繰返す。原水ピットの予
備ポンプP1 ′は水位が2.5mのHHに上昇すると運
転を開始し、水位が2.0mのHに下がると停止する。
各レベルスイッチLS1 ,LS2 が警報を発するANN
水位は流量調整槽が4.5m、原水ピットが3.0mで
ある。 【0005】本特許出願人は、特願平7−70476号
(特開平8−243539号公報)により、図2に示す
ように、原水ピット1からポンプP1 ,P1 ′で流量調
整槽2に原水を揚水する配管に電磁式の入口側流量指示
積算記録計11(入口側流量計とも記す。)を設け、沈
殿槽6から滅菌槽7に上澄み水を導く水路にCOD計、
UV計などのCOD測定器10を、又、放流槽8から処
理水を放流するためにポンプP3 ,P3 ′で汲上げる配
管に電磁式の出口側流量指示積算記録計(出口側流量計
とも記す。)を夫々設けると共に、入口側流量計11が
出力する原水ピット1から流量調整槽2に供給される原
水の例えば10分毎の送水量、及び1日分の送水量、出
口側流量計12が出力する処理水の1時間毎の放流量、
及び1日分の総放流量、COD測定器10が出力する1
時間毎の処理水のCOD値(mg/立)を夫々制御盤3
を経て受けるパソコン、シーケンサー等の演算器9を設
けることを開示した。 【0006】上記演算器9で、出口側流量計12の入力
と、COD測定器10の入力とによって処理水の一日当
りのCOD総排出量(kgCOD/日)を演算して求
め、記憶、記録することが可能になった。処理水のCO
Dの一日当りの総排出量を求める理由は、地域によっ
て、処理水を一日50m3 以上、放流する工場などの施
設では、施設ごとに一日当りのCODの排出量の許容値
が定められ、一日当りのCODの排出量が許容値以下で
あることの証明が義務付けられているからであったり、
COD≒BOD×1.6〜2.0であって、BODは
計算で推定できるのに対し、CODは連続測定できず、
又、手で分析しなければ求めることができないため、C
ODを求める代わりにBODでCODを推定し、処理状
況を確認したり、CODの値によって曝気用のエアー
量や、返送汚泥の量を調節し、運転状態を良好、正常に
維持したりするためなどである。 【0007】又、原水ピット1に流入する原水(下水)
の日平均流入量(Q)は、通常流入パターンでは約24
0m3 で、図4に実線に示す通り深夜から早朝5時頃ま
では流入量はほゞ0、流入のピークは朝7時頃から10
時頃までと、夕方6時頃から8時頃までの2回、昼間は
朝、夕のピークの谷間で、昼食後に小さなピークがある
が、他の時間はダラダラと流入する。この通常流入パタ
ーンは集中豪雨等の異常気象による増水が起らない限り
毎日繰返す。 【0008】従って、演算器9には通常流入パターンで
の原水ピット1から流量調整槽2への原水の、1日24
時間の10分間毎の供給量を記憶させてあり、演算器は
入口側流量計11が入力してくる実際の供給量と、その
同じ時間の記憶供給量を演算し、実際の送水量が記憶供
給量を所定量、所定時間(例えば30分間)上回ると、
演算器は原水ピットから流量調整槽への原水の供給量の
増減を監視する監視態勢になり、実際の供給量が記憶供
給量を更に所定量、所定時間(例えば2時間)上回る
と、演算器は増水が起ると判断し、流量調整槽の少なく
とも常用ポンプP 2 を槽内水位(レベルスイッチLS2
)に関係なく運転して流量調整槽内の原水を処理槽に
揚水し、原水ピットに増水が流入する前に先回りして流
量調整槽内の水位を下げ、増水した水が原水ピットから
流量調整槽の調整能力を越えて流量調整槽に入り、処理
槽に溢流して処理槽から水質が悪化した処理水が流出し
たり、流量調整槽の水位がANN水位になって警報が
出、その対応に追われるのを防ぐようになっている。 【0009】尚、通常流入パターンで流入する際も入口
側流量計は実際の供給量を演算器に出力してくるが、演
算器はその時間の記憶供給量との差が小さいのでポンプ
2,P2 ′の制御は行わない。従って、通常流入パタ
ーンの際はポンプP1 ,P1′は原水ピットのリミット
スイッチLS1 で、ポンプP2 ,P2 ′は流量調整槽の
リミットスイッチLS2 で夫々運転を制御される。 【0010】 【発明が解決しようとする課題】上記従来装置は、放流
する処理水のCOD負荷を知るために出口側にCOD測
定器10と、流量指示積算記録計12を設置し、又、垂
れ流し式廃水処理場に流入して浄化処理装置に供給され
る原水の供給量を知ることにより、集中豪雨などの異常
増水時に放流する処理水の水質の悪化を防ぐため、入口
側流量指示積算記録計11を設置しているが、この流量
指示積算記録計は非常に高価な機器であるため、2台設
置することにより垂れ流し式廃水処理場の設置コストの
上昇の原因になっている。 【0011】又、入口側の流量計は常に汚れた原水と接
触しているため汚れが付着し、付着した汚れによって原
水ピットから流量調整槽への原水の供給量、ひいては垂
れ流し式廃水処理場に流入する原水の流入水量を正しく
制御盤3や演算器9に出力しない可能性があり、これに
よって原水が通常通り正常に流入しているのに制御盤や
演算器は異常流入があったと判断して監視体制を把った
り、逆に異常流入が生じているのに通常通りに流入して
いると判断して監視態勢を把らなかったりする事態を生
じる虞がある。 【0012】 【課題を解決するための手段】本発明は、上述した問題
点を解消するために開発されたのであって、下水管路か
ら原水ピットに流入する原水を原水ピット中の水位に応
じて稼動する常用ポンプP1と、予備ポンプP1′を介し
浄化処理装置の流量調整槽から処理槽へ供給して浄化処
理し、浄化処理装置に供給した原水の供給量宛、浄化処
理装置から処理水を垂れ流して排出、放流する垂れ流し
式廃水処理場の運転制御方法において、放流する処理水
の放流量を検出して出力する出口側流量計と、上記出口
側流量計の出力を受けて放流した処理水の放流量を集計
すると共に、前記原水ピットに流入した原水を浄化処理
装置に供給する常用ポンプP1と、予備ポンプP1′の稼
動時間が入力される演算器を設け、放流した処理水の放
流量と、常用ポンプP1と、予備ポンプP1′の稼動時間
とで浄化処理装置に供給する原水の供給量を上記演算器
で演算して求め、得られた前記原水ピットに流入した原
水の1日24時間の所定時間毎の通常流入パターンに基
づいて、原水ピットの常用ポンプP1と、予備ポンプ
1′の稼働状態により異常流入を判断し、前記常用ポ
ンプP1と、予備ポンプP1′や流量調整槽のポンプをコ
ントロールして浄化処理装置の流量調整槽から処理槽へ
オーバーフローをさせずに原水を供給し処理槽の負荷を
急激に高めないようにしたことを特徴とする。 【0013】 【発明の実施の形態】図1は、この発明の実施形態を示
すもので、前述した図2の従来例と同じ要素には同じ符
号を付してある。この発明では流量指示積算記録計(流
量計)12は処理水を放流する出口側にしか設けていな
い。図1(A)では図2と同様に、出口側流量計12
は、放流槽8からリミットスイッチLS3 で作動する放
流ポンプP3 ,P3 ′により処理水を汲み上げて放流す
る放流路8′に設けてあるが、図1(B)に示したよう
に滅菌槽7から消毒した処理水を放流槽8を経て自然流
下で放流できる場合は放流ポンプP3 ,P3 ′を省略
し、滅菌槽7の処理水を放流槽8に排水する排出管7′
の内部に出口側流量計12を取付け、潜水型にしてもよ
い。 【0014】出口側流量計12は図2の従来例と同様に
処理水の放流量を制御盤3を経て演算器9に入力する。
従って、処理水のCOD負荷量を知る場合は、図2の従
来例と同様に沈殿槽6からの滅菌前の上澄み水のCOD
をCOD計、UV計などのCOD測定器10で測定し、
その出力を制御盤3を経てパソコン、シーケンサー等の
演算器9に入力し、演算器9はその入力と、出口側流量
計12から入力される処理水の放流量との積算から処理
水の1日当りのCOD総排出量を演算して求め、記憶、
記録することができる。 【0015】原水ピット1、流量調整槽2の水位H−L
間の容量は前述した段落0003に示す通りで、原水ピ
ットの常用ポンプP1 、予備ポンプP1 ′、及び流量調
整槽の常用ポンプP2 、予備ポンプP2 ′の稼動は夫々
のピット1,槽2に設けたレベルスイッチLS1 、及び
LS2 により、段落0004に記載したように制御され
る。尚、原水ピット1の常用、及び予備ポンプP1 ,P
1 ′と、流量調整槽2の常用、及び予備ポンプP2 ,P
2 ′は制御盤3に接続し、その稼働状況を演算器に入力
し、又、原水ピット、及び流量調整槽のレベルスイッチ
LS1 、及びLS2 も制御盤3に接続し、ピット1,槽
2内の水位(レベルスイッチのL,M,H,HH,AN
Nなどの位置)も演算器9に入力するようになってい
る。 【0016】本発明では原水ピット1の常用、予備のポ
ンプP1 ,P1 ′がその稼動状況(稼動時間)を制御盤
3を介して演算器9に入力する。このため、ポンプ
1 ,P 1 ′の回路に夫々稼動時間計を接続し、この稼
動時間計で制御盤を経て演算器に入力してもよい。又、
出口側流量計12は放流する処理水の瞬時の放流量を制
御盤3を介して演算器9に入力する。演算器は出口側流
量計12の入力を受け、1日24時間の1時間毎の処理
水の放流量を演算し、1日当りの処理水の総放流量Qe
3 /日を計算する。 Qe=q1 +q2 +・・・・・・・ +q24・・・・・・・ (1) q1 :0:00〜1:00迄の1時間の処理水の放流量
〔m3 /時間〕 q2 :1:00〜2:00迄の1時間の処理水の放流量
〔m3 /時間〕 ∫ q24:23:00〜24:00迄の1時間の処理水の放
流量〔m3 /時間〕 【0017】又、演算器は、原水ピット1の常用、予備
の水中ポンプP1 ,P1 ′の入力によって各ポンプ
1 ,P1 ′の1日当りの稼動時間を計算する。 TP1 =t1 1 +t2 1 +・・・・・・・ +t241 ・・・・・・・(2) TP1 :常用ポンプP1 の1日当りの稼動時間〔時間/
日〕 t1 1 :ポンプP1 の0:00〜1:00迄の1時間
の稼動時間 t2 1 :ポンプP1 の1:00〜2:00迄の1時間
の稼動時間 ∫ t241 :ポンプP1 の23:00〜24:00迄の1
時間の稼動時間 TP1 ′=t1 1 ′+t2 1 ′+・・・・・・・ +t241 ′・・・・・・(3) TP1 ′:予備ポンプP1 ′の1日当りの稼動時間〔時
間/日〕 t1 1 ′:ポンプP1 ′の0:00〜1:00迄の1
時間の稼動時間 t2 1 ′:ポンプP1 ′の1:00〜2:00迄の1
時間の稼動時間 ∫ t241 ′:ポンプP1 ′の23:00〜24:00迄
の1時間の稼動時間 【0018】図4の実線の通常流入パターンで原水が流
入する際は、浄化処理装置に供給した原水の供給量宛、
浄化処理装置から処理水を垂れ流して排出、放流するの
で、1日当りの処理水の放流量Qem3 /日と、1日当
りの原水の流入量Qim3 /日は一致している。 Qi=Qe ・・・・・・・・・ (4) 原水ピットの常用ポンプP1 の1日当りの揚水量をQP
1 、同予備ポンプP1′の1日当たりの揚水量をQ
1 ′とすると、 Qi=QP1 +QP1 ′・・・・・・・・・ (5) QP1 =TP1 ・QAV1 ・・・・・・(6) QP1 ′=TP1 ′・QAV1 ′・・・・・・(7) QP1 :ポンプP1 の1日当りの揚水量〔m3 /日〕 QAV1 :ポンプP1 の1時間当りの平均揚水量〔m3
/時間〕 QP1 ′:ポンプP1 の1日当りの揚水量〔m3 /日〕 QAV1 ′:ポンプP1 ′の1時間当りの平均揚水量
〔m3 /時間〕 【0019】上記(4)、(5)、(6)、(7)式よ
り Qe=Qi=QP1 +QP1 ′ =TP1 ・QAV1 +TP1 ′・QAV1 ′・・・・・ (8) こゝで一般には常用ポンプP1 と予備ポンプP1 ′は同
一メーカの同一機種を同一条件で使用する。よって QAV1 =QAV1 ′・・・・・・・ (9) とすると、 Qe=(TP1 +TP1 ′)・QAV1AV1 =(Qe)/(TP1 +TP1 ′)(=QAV
1 ′)・・・・(10)となり、原水ピット1の常用ポンプP
1 と、予備ポンプP1 ′の揚水量QAV1 ,Q AV1
を出口側流量計12が入力する処理水の放出量Qeと、
ポンプP1 ,P 1 ′の稼動時間から求めることができ
る。 【0020】上記事項を具体的に示す。図4の通常流入
パターン(実線)の場合の原水ピットでの常用ポンプP
1 の動きを図5に示す。ここに原水ピットの常用、予備
の各ポンプの1台当たり吐出量は50m3 /時間(H)
であり、原水ピットの水位H〜L間の保有水量は段落0
003に示したように5m3 である。5時から6時にか
けては、50m3 /H能力の原水ピットの常用ポンプP
1 が6分×2回=12分間動作した。揚水量は50m3
/H×1/5H=10m3 /時間となる。同様に7時か
ら8時にかけては、50m3 /H×2/5H=20m3
となる。以下同様に進む。 【0021】以上により通常流入パターンでの原水ピッ
トの常用ポンプP1 の汲み上げ量は各時間帯で以下の
ようになる。 0:00〜 1:00 0m3 1:00〜 2:00 0m3 2:00〜 3:00 0m3 3:00〜 4:00 0m3 4:00〜 5:00 0m3 5:00〜 6:00 50m3 /H×(6/60×2回)H=10m3 6:00〜 7:00 50m3 /H×(6/60×2回)H=10m3 7:00〜 8:00 50m3 /H×(6/60×4回)H=20m3 8:00〜 9:00 50m3 /H×(6/60×6回)H=30m3 9:00〜10:00 50m3 /H×(6/60×8回)H=40m3 10:00〜11:00 50m3 /H×(6/60×2回)H=10m3 11:00〜12:00 50m3 /H×(6/60×1回)H= 5m3 12:00〜13:00 50m3 /H×(6/60×1回)H= 5m3 13:00〜14:00 50m3 /H×(6/60×2回)H=10m3 14:00〜15:00 50m3 /H×(6/60×1回)H= 5m3 15:00〜16:00 50m3 /H×(6/60×1回)H= 5m3 16:00〜17:00 50m3 /H×(6/60×1回)H= 5m3 17:00〜18:00 50m3 /H×(6/60×1回)H= 5m3 18:00〜19:00 50m3 /H×(6/60×4回)H=20m3 19:00〜20:00 50m3 /H×(6/60×6回)H=30m3 20:00〜21:00 50m3 /H×(6/60×2回)H=10m3 21:00〜22:00 50m3 /H×(6/60×2回)H=10m3 22:00〜23:00 50m3 /H×(6/60×2回)H=10m3 23:00〜24:00 0m3 これによって0:00から24:00までの総汲み上げ
量は240m3 /日になる。 【0022】一方、図4の0時から7時迄が異常流入パ
ターン(一点鎖線)の場合の原水ピットでの常用、及び
予備ポンプの動きを図6に示す。0時から1時、1時か
ら2時とそれぞれ50m3 /H×1/10H=5m3
汲み上げ、2時から3時は50m3 /H×1/5H=1
0m3 汲み上げる。更に3時から4時にかけては、図6
に示す通り、3時6分〜3時12分の6分間の後、3時
18分から4時迄の42分間は連続運転となっている。
この間の汲み上げ量は50m3 /H×(6+42)/6
0H=40m3 となる。 【0023】これを0:00から24:00迄示すと以
下のようになる。 0:00〜 1:00 50m3 /H×(6/60×1回)H= 5m3 1:00〜 2:00 50m3 /H×(6/60×1回)H= 5m3 2:00〜 3:00 50m3 /H×(6/60×2回)H=10m3 3:00〜 3:30 50m3 /H×(6/60×3回)H=15m3 3:30〜 4:00 50m3 /H×(30/60×1回)H=25m3 4:00〜 5:00 50m3 /H×(60/60+6/60×6回)H =80m3 5:00〜 6:00 50m3 /H×(60/60+10/60×2回) H=60m3 6:00〜 7:00 50m3 /H×(6/60×8回)H=40m3 7:00〜 8:00 50m3 /H×(6/60×4回)H=20m3 8:00〜 9:00 50m3 /H×(6/60×6回)H=30m3 9:00〜10:00 50m3 /H×(6/60×8回)H=40m3 10:00〜11:00 50m3 /H×(6/60×2回)H=10m3 11:00〜12:00 50m3 /H×(6/60×1回)H= 5m3 12:00〜13:00 50m3 /H×(6/60×1回)H= 5m3 13:00〜14:00 50m3 /H×(6/60×2回)H=10m3 14:00〜15:00 50m3 /H×(6/60×1回)H= 5m3 15:00〜16:00 50m3 /H×(6/60×1回)H= 5m3 16:00〜17:00 50m3 /H×(6/60×1回)H= 5m3 17:00〜18:00 50m3 /H×(6/60×1回)H= 5m3 18:00〜19:00 50m3 /H×(6/60×4回)H=20m3 19:00〜20:00 50m3 /H×(6/60×6回)H=30m3 20:00〜21:00 50m3 /H×(6/60×2回)H=10m3 21:00〜22:00 50m3 /H×(6/60×2回)H=10m3 22:00〜23:00 50m3 /H×(6/60×2回)H=10m3 23:00〜24:00 0m3 これによって0:00から24:00までの総汲み上げ
量は460m3 /日になる。 【0024】このような通常流入パターン及び異常流入
パターンの際の原水ピットでのポンプの稼働状況に対し
て流量調整槽の水位変動と、流量調整槽から処理槽への
送水量を図7,8,9に示す。図7は一般的な制御方法
での対応例、図8,図9はそれぞれ異常流入パターンに
対応した例である。尚、図7,8,9は流量調整槽内の
ポンプは常用1台、予備1台の場合についての説明であ
る。この流量調整槽内のポンプが3台の場合は2台が常
用、1台が予備になる。更に、常用の2台はポンプの寿
命を延ばすため、一定期間、例えば2週間ごとに切り替
えられることが多い。その切り替え方法は、3台の水中
ポンプをA,B,Cとすると、AとBが2週間常用、そ
の間Cが予備、次の2週間はBとCが常用、Aが予備、
その次の2週間はC,Aが常用、Bが予備の順になる。
ポンプが3台の場合、各ポンプの能力は同じにしてある
ため、予備ポンプ1台の稼働時の汲み上げ量は常用2台
の1/2になる。こゝでは、運転状況として単純な常用
1台、予備1台の場合について具体的に説明する。図7
は流量調整槽の常用ポンプは水位がMになると1台運転
してLで停止。水位がHHになると常用、予備の2台で
運転し、Hで常用1台になるという全く一般的な制御方
法である。この場合図7に示したように、5:30には
ANN(警報水位)となり6:00迄原水はオーバーフ
ローで次の処理槽へ溢入する。10:20まで流量調整
槽のポンプは常用、予備の2台で運転し、10:20か
らは常用1台の運転になる。常用の1台は14時53分
に停止し、再度18時12分から23時迄運転する。こ
の間の常用、予備の両ポンプの送水量は図7の上に示す
通りであり、汲み上げ量は450m3 である。流量調整
槽から処理槽へのオーバーフローは10m3 となり、合
計すると460m3 /日となる。これは通常流入パター
ンのまゝでは異常流入パターンに対応できず、流量調整
槽から処理槽に原水10m3 が溢入し、放流する処理水
の水質を悪化させることを示す。 【0025】一方、原水ピットのポンプP1 ,P1 ′の
稼働状態により異常流入であるかも知れないことを判断
し、それによる対応をした例が図8,図9である。図8
は、図6の0:00〜1:00,1:00〜2:00の
それぞれ原水ピットの常用ポンプの1回の運転があった
事で異常の可能性を判断し、次の2:30の運転で異常
と判断し、流量調整槽のポンプP2 にスタートを命令す
る。更に、3:30に常用ポンプP1 が断続から連続に
なったときに予備ポンプP2 ′にもスタートを命令す
る。図9は0:00〜1:00,1:00〜2:00の
それぞれ1回づつの原水ピットの常用ポンプP1 の運転
で異常流入があるかも知れないことを判断し、次の2:
00〜3:00迄の運転で異常の可能性があると判断
し、所定の時間、例えば合計3時間を経過した時点で流
量調整槽の常用と予備の2台のポンプP2 ,P 2 ′に同
時にスタートを命令する。 【0026】このように、図8の対応1、図9の対応2
のどちらの場合も図7と異なって、流量調整槽から処理
槽へオーバーフローをさせずに原水を供給することがで
きる。その結果、図10に示すように対応1,2の場合
は異常流入があっても処理水は放流基準値を満足してい
るが、対応していない図7の場合は6時を過ぎる頃より
急激に水質(ここではBODとする)が悪化する。一度
悪化すると、半日〜1.5日程度はもとの水質に戻らな
い。 【0027】このように原水ピットのポンプP1
1 ′の稼働状況により、異常流入があるかどうかを判
断し、異常流入があると判断したときは演算器が流量調
整槽の常用、予備の水中ポンプP2 ,P2 ′をコントロ
ールする場合と、異常流入であるかないか全く感知せず
に流量調整槽の水位(レベルスイッチ)と連動してポン
プを稼働する場合とではその処理水への影響は大分異な
ったものとなり、前者では処理水の水質悪化が生じない
のに対し、後者では処理水の水質は悪化する。 【0028】公共用水域へ放流するに際し、その地域の
放流基準値を満足するものとする事は守らなければなら
ない事項であるが、本発明のように放流側にだけ流量計
を設置し、原水ピットのポンプの稼働状況により流入量
を知って、異常流入状態での対応をする事は十分可能と
なる。尚、通常の場合、流入水量と処理水量は同じであ
るので原水ポンプの吐出量(=処理水量/原水ポンプ稼
働時間)は常に確認され、かつ経時変化によりその量は
修正されているものとする。 【0029】段落0018で述べたように原水ピットの
常用ポンプP1 と、予備ポンプP1′は同一メーカの同
一機種を同一条件で使用するが、尚、ポンプP1
1 ′に性能の差がある場合は、ポンプ係数を(9)式
に与えて調整する。又、計算に用いる処理水の流出量、
及びポンプP1 ,P1 ′の稼動時間は1週間程度(場合
によっては更に長くしてもよい)の期間のデータを蓄積
しておき、その平均(日々更新していく稼動平均)を用
いることが好ましい。 【0030】 【発明の効果】以上で明らかなように、従来の垂れ流し
式廃水処理装置では浄化処理装置への原水の流入水量、
及び浄化処理装置からの処理水の放流量を知るために浄
化処理装置の入口と出口にそれぞれ個別に非常に高価な
流量指示積算記録計を設置して制御盤に接続し、流入水
量、放流量を演算器に入力していたが、本発明では浄化
処理装置の出口側に設置した1台の流量指示積算記録計
で処理水の放流量を知ることができると共に、原水ピッ
トの常用、予備の水中ポンプの稼働状況(運転回数)に
より浄化処理装置への原水の流入水量を知り、異常流入
パターンに対応し、処理水の水質の悪化を防ぐことがで
きる。つまり、原水ピットのポンプP1 ,P1 ′の稼働
回数が分かれば、高級なパターン認識をしなくても原水
の通常流入時、異常流入時の判断が簡単に可能になる。
そして、高価な流量計を1台で済ませることができ、設
置工事費、計器のメンテナンス費用も1台分で済む。更
に、この流量計は汚れた原水ではなく、処理されて清く
済んだ処理水に接触するため、原水と接触する場合より
も綺麗に保たれ、汚れが少ないので維持管理が容易であ
ると共に、誤作動することがない。そして、原水の異常
流入に対して素早く対応できる。つまり、異常状態をい
ち早く知り、異常事態にならないように対応できると共
に、異常流入へのいち早い対応を自動的に行い、処理水
の水質悪化を防止することができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION The present invention relates to
The raw water (sewage) flowing into the water pit is pumped into the raw water pit.
P1, P1′ To supply it to a purification treatment device for purification treatment,
Purification equipment for the amount of raw water supplied to the purification equipment
Drainage wastewater that discharges and discharges treated water from
Treatment plant, typically activated sludge process, oxidation
Operation of the drainage type wastewater treatment plant by the switch method (OD method)
An outlet-side flow meter that detects the discharge flow rate of the treated water
Pump P for supplying raw water from the water pit to the purification system1,
P1′ And a runoff wastewater treatment plant controlled by
The present invention relates to an operation control method for a hall. [0002] 2. Description of the Related Art FIG. 2 shows a population of about 700 to 800, 200
For example, in rural areas that biologically purify household wastewater
General of activated sludge wastewater treatment plants for settlement wastewater treatment.
Flow sheet from the sewer line 21 to the wastewater treatment plant
The raw water tank at the entrance of the building, or the final
Raw water tank (raw water tank and final manhole collectively)
Notation 1 ) Flows into one of the raw water pits.
Service pump P1And one spare pump P1′ To adjust flow rate
Pump into tank 2. Raw water is pumped from the flow control tank to the tank
PTwo, PTwo′, Pump it up to the measuring tank 4 and remove it from the measuring tank.
Treatment tank 5 (in this case, aeration tank with blower B)
And activated sludge or biofilm in the treatment tank.
Perform biological treatment and clean up. Water treated in the treatment tank
Is the amount of raw water supplied to the treatment tank from the measuring tank.
The wastewater is introduced into the settling tank 6 of the purification treatment device in
And sludge, and the supernatant water is introduced into the sterilization tank 7 for disinfection.
And treat it as treated water. Before the supernatant water flows into the sterilization tank
The COD is measured by a COD measuring instrument 10 such as a COD meter and a UV meter.
D is measured. Next, the sterilized treated water is released from the sterilization tank.
Introduced into flow tank 8 and pump PThree, PThree′ And pumped out
I do. Part of the sludge generated in the sedimentation tank is returned to the treatment tank
I do. [0003] As shown in FIG.
The capacity between -L is 10-1 of the maximum inflow (Qmax) over time.
About 5 minutes (about 45 minutes of daily average inflow Q), Q = 2
40mThree/ Day, Qmax = 28.9mThree/ Sometimes 4.
8mThree~ 7.2mThreeSo here is 5.0mThreeAnd This
On the other hand, the capacity between the water level HL of the flow control tank 2 is the daily average flow rate.
6 hours or more, generally 6 to 9 hours, Q = 24
0mThree/ Day, here is 60m for 6 hoursThreeAnd original
In the water pit, it is possible to pump inflowed wastewater in a short time
The discharge amount that can be made, more precisely, the maximum inflow time (Qmax)
Two submersible pumps that can be pumped for regular use and spare
P1And P1'Is provided. There are two units in the flow control tank 2
One regular or one spare submersible pump
PTwo, PTwo'Is provided. Regular pump for flow control tank 2
PTwoAnd the spare pump PTwo'Is discharged through a measuring tank
Supply a small amount of raw water to the tank to rapidly increase the load on the treatment tank.
Therefore, it is possible to pump more than the daily average amount of sewage.
In the case of settlement drainage treatment, when there are two regular pumps, one for each
Service pump PTwoThe discharge amount of the raw water pit regular pump P
11/6 of the time, and the discharge amount is
One third of the water pit's regular pump. [0004] As shown in FIG.
Two or one regular pump PTwoAnd the spare pump PTwo
Is normally controlled by a level switch LS2 provided in the tank.
And service pump PTwoStarts operation when the water level reaches 1 m
Start and stop when the water level drops to L
Two'Starts operation when water level rises to 3.5m HH
Then, when the water level drops to 3mH, it stops. Of raw water pit
Service pump P1And backup pump P1'In the pit
The service pump P controlled by the level switch LS11Is water
When the water level becomes 2.0 m, the operation starts and the water level becomes 0 m.
When it falls to L, it stops. The raw water pit is as described above.
Since the volume is small and the discharge amount of the pump is large,
P1ON and OFF are frequently repeated. Raw water pit schedule
Pump P1′ Is lucky when the water level rises to 2.5m HH.
Rolling starts and stops when the water level drops to H of 2.0 m.
ANN where each level switch LS1, LS2 issues an alarm
The water level was 4.5m in the flow control tank and 3.0m in the raw water pit.
is there. [0005] The applicant of the present invention is Japanese Patent Application No. 7-70476.
FIG. 2 shows the configuration shown in FIG.
So, from raw water pit 1 to pump P1, P1′ To adjust the flow rate
Electromagnetic inlet-side flow indication for piping for pumping raw water into tank 2
An integrating recorder 11 (also referred to as an inlet-side flow meter) is provided.
A COD meter is installed in the water channel that leads the supernatant water from the tongue tank 6 to the sterilization tank 7,
A COD measuring device 10 such as a UV meter is processed from the discharge tank 8.
Pump P to release waterThree, PThree
An electromagnetic outlet-side flow indicator integrating recorder (outlet-side flow meter)
Also described. ), And the inlet-side flow meter 11
The raw water supplied from the raw water pit 1 to the flow control tank 2
For example, the amount of water sent every 10 minutes and the amount of water
Hourly discharge of treated water output by the mouth-side flow meter 12,
And the total discharge amount for one day, 1 output by the COD measuring device 10
Control COD value (mg / litre) of treated water every
A computing unit 9 such as a personal computer and a sequencer
Was disclosed. [0006] The input of the outlet side flow meter 12 is calculated by the arithmetic unit 9.
And the input of the COD measuring device 10 for one day of treated water
Calculate and calculate the total COD emission (kgCOD / day)
It became possible to memorize and record. CO of treated water
The reason for calculating the total daily emissions of D is dependent on the region.
50m of treated water a dayThreeAs mentioned above,
The COD emissions per day per facility
Is determined and COD emissions per day are below the allowable value
Because proof of something is required,
COD ≒ BOD × 1.6-2.0, and BOD is
While COD can be estimated by calculation, COD cannot be measured continuously,
In addition, since it cannot be obtained unless it is analyzed by hand,
Estimate COD with BOD instead of OD and process
Check the condition and use the air for aeration according to the COD value.
Adjust the amount of sludge and the amount of returned sludge to ensure good and normal operation.
And to maintain. [0007] Raw water (sewage) flowing into the raw water pit 1
Average daily inflow (Q) is about 24
0mThreeThen, as shown by the solid line in FIG.
Then the inflow is almost 0, and the peak of inflow is around 10
Until the hour and twice from 6:00 to 8:00 in the evening, during the daytime
Small peak after lunch in the valley between morning and evening peaks
However, at other times, it flows in a lazy way. This normal inflow pattern
As long as the water level does not increase due to abnormal weather such as torrential rain,
Repeat daily. Therefore, the arithmetic unit 9 normally has an inflow pattern.
Of raw water from raw water pit 1 to flow control tank 2
The supply amount for every 10 minutes of time is stored, and the arithmetic unit is
The actual supply amount input by the inlet flowmeter 11 and the
Calculate the memory supply amount at the same time, and store the actual water supply amount
When the supply amount exceeds a predetermined amount for a predetermined time (for example, 30 minutes),
The calculator calculates the amount of raw water supplied from the raw water pit to the flow control tank.
It becomes a monitoring system to monitor the increase and decrease, and the actual supply amount is stored and stored.
The supply amount is further exceeded by a predetermined amount for a predetermined time (for example, 2 hours)
And the computing unit determines that water will increase,
Tomo service pump P TwoTo the tank water level (level switch LS2
 ) Regardless of the operation, the raw water in the flow control tank is
Pumps up and flows forward before the increased water flows into the raw water pit.
Lower the water level in the volume adjustment tank, and the increased water flows from the raw water pit
Enter the flow control tank beyond the adjustment capacity of the flow control tank and process
Treated water whose quality has deteriorated has overflowed from the treatment tank
Or the water level in the flow control tank reaches the ANN level and an alarm is issued.
To avoid being overwhelmed by the response. [0009] In addition, when entering in a normal inflow pattern,
The side flow meter outputs the actual supply amount to the computing unit.
Because the difference between the calculator and the memory supply amount at that time is small, the
PTwo, PTwo'Is not performed. Therefore, the normal inflow pattern
Pump P1, P1′ Is the limit of the raw water pit
With the switch LS1, the pump PTwo, PTwo′ Of the flow control tank
The operation is controlled by the limit switch LS2. [0010] SUMMARY OF THE INVENTION The above-mentioned conventional apparatus has a
COD measurement at the outlet side to know the COD load of treated water
A measuring instrument 10 and a flow rate indicating integrating recorder 12 are installed.
The wastewater flows into the wastewater treatment plant and is supplied to the purification equipment.
Knowing the amount of raw water supply
Entrance to prevent deterioration of the quality of the treated water discharged at the time of rising water
The side flow indicator integrating recorder 11 is installed.
Since the indicator integrating recorder is a very expensive device, two
The cost of setting up a drainage wastewater treatment plant
It is causing the rise. Also, the flow meter on the inlet side is always in contact with dirty raw water.
Dirt adheres due to touch, and the original
The amount of raw water supplied from the water pit to the flow control tank, and
Correct the amount of raw water flowing into the drainage wastewater treatment plant.
There is a possibility that it will not be output to the control panel 3 or the computing unit 9,
Therefore, even though the raw water is flowing normally as usual,
The computing unit judged that there was an abnormal inflow and grasped the monitoring system
Conversely, despite the abnormal inflow,
May not be aware of the monitoring
There is a fear that it will be frustrated. [0012] SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems.
It was developed to solve the problem
The raw water flowing into the raw water pit according to the water level in the raw water pit.
Service pump P1And the spare pump P1
It is supplied to the treatment tank from the flow rate adjustment tank of the purification
To the amount of raw water supplied to the purification
Drainage to discharge and discharge treated water from the treatment equipment
In the operation control method of the wastewater treatment plant, the treated water discharged
Outlet-side flow meter that detects and outputs the discharge flow of
Counts the flow rate of treated water discharged in response to the output of the side flow meter
And also purifies the raw water flowing into the raw water pit.
Service pump P to be supplied to the device1And the spare pump P1′ Earning
An operator is provided to input the operating time, and the discharged treated water is released.
Flow rate and service pump P1And the spare pump P1′ Operating time
And the raw water supplied to the purificationSupplyThe above computing unit
The water flowing into the raw water pit obtained
Based on the normal inflow pattern of water at predetermined time intervals of 24 hours a day
Then, the regular pump P of the raw water pit1And a spare pump
P1′ Determines the abnormal inflow based on the operating status of the
Pump P1And the spare pump P1'And the pump in the flow control tank
From the flow control tank of the purification system to the processing tank
Supply raw water without overflow to reduce the load on the treatment tank
It is characterized by not being raised sharply. [0013] FIG. 1 shows an embodiment of the present invention.
The same reference numerals are used for the same elements as in the conventional example of FIG.
No. is attached. In the present invention, the flow rate indication integrating recorder (flow rate
Meter 12) is provided only on the outlet side where the treated water is discharged.
No. In FIG. 1 (A), as in FIG.
Is discharged from the discharge tank 8 by the limit switch LS3.
Flow pump PThree, PThree′ To pump up and release treated water
Is provided in the discharge channel 8 ', as shown in FIG.
The treated water disinfected from the sterilization tank 7 flows naturally through the discharge tank 8
If it can be discharged under, discharge pump PThree, PThree′ Omitted
And a discharge pipe 7 ′ for discharging the treated water from the sterilization tank 7 to the discharge tank 8.
The outlet side flow meter 12 may be installed inside the
No. The outlet side flow meter 12 is similar to the conventional example shown in FIG.
The discharge rate of the treated water is input to the calculator 9 via the control panel 3.
Therefore, when knowing the COD load of treated water,
COD of supernatant water before sterilization from sedimentation tank 6 as in the previous case
Is measured by a COD measuring instrument 10 such as a COD meter and a UV meter,
The output is sent to a personal computer, sequencer, etc. via the control panel 3.
Input to the calculator 9, the calculator 9 determines the input and the flow rate on the outlet side.
Processed from integration of treated water output from total 12
Calculate and calculate the total COD emission per day of water, store it,
Can be recorded. Water level HL of raw water pit 1 and flow control tank 2
The capacity between the raw water pipes is as shown in paragraph 0003 above.
Service pump P1, Backup pump P1′, And flow control
Regular tank pump PTwo, Backup pump PTwo′ Is in operation
Level switch LS1 provided in pit 1 and tank 2 of
LS2 is controlled as described in paragraph 0004.
You. In addition, regular use of raw water pit 1 and backup pump P1, P
1', And the regular pump for the flow control tank 2 and the preliminary pump PTwo, P
Two'Is connected to the control panel 3 and its operation status is input to the arithmetic unit.
And level switches for raw water pits and flow control tanks
LS1 and LS2 are also connected to control panel 3, and pit 1, tank
2 (level switches L, M, H, HH, AN
N, etc.) are also input to the computing unit 9.
You. In the present invention, the raw water pit 1 is normally used and is
Pump P1, P1′ Control the operating status (operating time)
3 and input to the arithmetic unit 9. Because of this, the pump
P1, P 1′, Connect an operating hour meter to each
The data may be input to a computing unit via a control panel using a running hour meter. or,
The outlet flow meter 12 controls the instantaneous discharge flow rate of the treated water discharged.
The data is input to the arithmetic unit 9 via the control panel 3. Arithmetic unit is on the outlet side
Receiving the input of the meter 12, processing every hour for 24 hours a day
Calculate the discharge rate of water and calculate the total discharge rate Qe of treated water per day
mThreeCalculate / day. Qe = q1+ QTwo+ ・ ・ ・ ・ ・ ・ ・ + qtwenty four・ ・ ・ ・ ・ ・ ・ (1) q1: Discharge of treated water for 1 hour from 0:00 to 1:00
[MThree/time〕 qTwo: Discharge of treated water for 1 hour from 1:00 to 2:00
[MThree/time〕 ∫ qtwenty four: Discharge of treated water for 1 hour from 23:00 to 24:00
Flow rate [mThree/time〕 The arithmetic unit is used for the raw water pit 1 for regular use and for backup.
Submersible pump P1, P1′ Input for each pump
P1, P1′ Is calculated.   TP1= T1P1+ TTwoP1+ ・ ・ ・ ・ ・ ・ ・ + Ttwenty fourP1..... (2) TP1: Common pump P1Operating hours per day [hours /
Day〕 t1P1: Pump P11 hour from 0:00 to 1:00
Uptime tTwoP1: Pump P11 hour from 1:00 to 2:00
Uptime ∫ ttwenty fourP1: Pump P11 from 23:00 to 24:00
Working hours of time   TP1'= T1P1'+ TTwoP1'+ ... + ttwenty fourP1'... (3) TP1': Reserve pump P1'Working hours per day [hours
Between / day) t1P1': Pump P1'1 from 00:00 to 1:00
Working hours of time tTwoP1': Pump P1'From 1 to 2:00
Working hours of time ∫ ttwenty fourP1': Pump P1'From 23:00 to 24:00
One hour working time Raw water flows in the normal inflow pattern shown by the solid line in FIG.
When entering, the amount of raw water supplied to the purification
The treated water drips from the purification system and is discharged and discharged.
And the discharge rate Qem of treated water per dayThree/ Day and 1 day allowance
Raw water inflow QimThree/ Days are consistent. Qi = Qe (4) Regular pump P for raw water pit1QP
1, The same preliminary pump P1'Is the daily pumping amount of Q
P1′ Qi = QP1+ QP1'... (5) QP1= TP1・ QAVP1・ ・ ・ ・ ・ ・ (6) QP1'= TP1'・ QAVP1'... (7) QP1: Pump P1Pumping amount per day [mThree/Day〕 QAVP1: Pump P1Average amount of pumped water per hour [mThree
/time〕 QP1': Pump P1Pumping amount per day [mThree/Day〕 QAVP1': Pump P1'Average pumped water per hour
[MThree/time〕 From the above equations (4), (5), (6) and (7)
Ri   Qe = Qi = QP1+ QP1′             = TP1・ QAVP1+ TP1'・ QAVP1'... (8) Here, in general, the service pump P1And backup pump P1′ Is the same
Use the same model from one manufacturer under the same conditions. Therefore QAVP1= QAVP1'... (9) Then Qe = (TP1+ TP1') ・ QAVP1 QAVP1= (Qe) / (TP1+ TP1') (= QAVP
1′) ································································································································
1And the spare pump P1AVP1, Q AVP1
And the discharge amount Qe of the treated water input by the outlet side flow meter 12;
Pump P1, P 1′ Can be obtained from the operating time
You. The above items will be specifically described. Fig. 4 Normal inflow
Regular pump P at raw water pit in case of pattern (solid line)
15 is shown in FIG. Here, regular use of the raw water pit, spare
50m discharge rate per pumpThree/ Hour (H)
And the water volume of the raw water pit between the water levels H and L is described in paragraph 0.
5m as shown in 003ThreeIt is. From 5:00 to 6:00
50mThree/ P capacity pump P for raw water pit
1Operated for 6 minutes × 2 times = 12 minutes. Pumping volume is 50mThree
/ H × 1 / 5H = 10mThree/ Hour. Like seven o'clock
From 8:00 to 50mThree/ H × 2 / 5H = 20mThree
Becomes Thereafter, the process proceeds in the same manner. As described above, the raw water pick-up in the normal inflow pattern
Service pump P1  The pumping amount of
Become like     0:00 to 1:00 0mThree     1:00 to 2:00 0mThree     2:00 to 3:00 0mThree     3:00 to 4:00 0mThree     4:00 to 5:00 0mThree     5:00 to 6:00 50mThree/ H × (6/60 × 2 times) H = 10mThree     6:00 to 7:00 50mThree/ H × (6/60 × 2 times) H = 10mThree     7:00 to 8:00 50mThree/ H × (6/60 × 4 times) H = 20mThree     8:00 to 9:00 50mThree/ H × (6/60 × 6 times) H = 30mThree     9: 00-10: 00 50mThree/ H × (6/60 × 8 times) H = 40mThree   10:00 to 11:00 50mThree/ H × (6/60 × 2 times) H = 10mThree   11:00 to 12:00 50mThree/ H × (6/60 × 1 time) H = 5mThree   12: 00-13: 00 50mThree/ H × (6/60 × 1 time) H = 5mThree   13:00 to 14:00 50mThree/ H × (6/60 × 2 times) H = 10mThree   14:00 to 15:00 50mThree/ H × (6/60 × 1 time) H = 5mThree   15: 00-16: 00 50mThree/ H × (6/60 × 1 time) H = 5mThree   16: 00-17: 00 50mThree/ H × (6/60 × 1 time) H = 5mThree   17:00 to 18:00 50mThree/ H × (6/60 × 1 time) H = 5mThree   18:00 to 19:00 50mThree/ H × (6/60 × 4 times) H = 20mThree   19:00 to 20:00 50mThree/ H × (6/60 × 6 times) H = 30mThree   20: 00-21: 00 50mThree/ H × (6/60 × 2 times) H = 10mThree   21:00 to 22:00 50mThree/ H × (6/60 × 2 times) H = 10mThree   22:00 to 23:00 50mThree/ H × (6/60 × 2 times) H = 10mThree   23:00 to 24:00 0mThree By this, total pumping from 0:00 to 24:00
240mThree/ Day. On the other hand, from 0 o'clock to 7 o'clock in FIG.
Regular use at the raw water pit in the case of a turn (dash-dot line), and
The operation of the backup pump is shown in FIG. 0:00 to 1:00, 1:00
2 o'clock and 50m eachThree/ H × 1 / 10H = 5mThreeAddressed to
Pumped up, 50m from 2:00 to 3:00Three/ H × 1 / 5H = 1
0mThreePump it up. From 3 o'clock to 4 o'clock, FIG.
After 6 minutes from 3:06 to 3:12 as shown in the figure, 3:00
It is a continuous operation for 42 minutes from 18 minutes to 4:00.
The pumping amount during this period is 50mThree/ H × (6 + 42) / 6
0H = 40mThreeBecomes This is shown from 0:00 to 24:00.
It looks like below.   0:00 to 1:00 50mThree/ H × (6/60 × 1 time) H = 5mThree   1:00 to 2:00 50mThree/ H × (6/60 × 1 time) H = 5mThree   2:00 to 3:00 50mThree/ H × (6/60 × 2 times) H = 10mThree   3:00 to 3:30 50mThree/ H × (6/60 × 3 times) H = 15mThree   3:30-4:00 50mThree/ H × (30/60 × 1 time) H = 25mThree   4:00 to 5:00 50mThree/ H × (60/60 + 6/60 × 6 times) H                           = 80mThree     5:00 to 6:00 50mThree/ H × (60/60 + 10/60 × 2 times)                           H = 60mThree     6:00 to 7:00 50mThree/ H × (6/60 × 8 times) H = 40mThree   7:00 to 8:00 50mThree/ H × (6/60 × 4 times) H = 20mThree   8:00 to 9:00 50mThree/ H × (6/60 × 6 times) H = 30mThree   9: 00-10: 00 50mThree/ H × (6/60 × 8 times) H = 40mThree 10:00 to 11:00 50mThree/ H × (6/60 × 2 times) H = 10mThree 11:00 to 12:00 50mThree/ H × (6/60 × 1 time) H = 5mThree 12: 00-13: 00 50mThree/ H × (6/60 × 1 time) H = 5mThree 13:00 to 14:00 50mThree/ H × (6/60 × 2 times) H = 10mThree 14:00 to 15:00 50mThree/ H × (6/60 × 1 time) H = 5mThree 15: 00-16: 00 50mThree/ H × (6/60 × 1 time) H = 5mThree 16: 00-17: 00 50mThree/ H × (6/60 × 1 time) H = 5mThree 17:00 to 18:00 50mThree/ H × (6/60 × 1 time) H = 5mThree 18:00 to 19:00 50mThree/ H × (6/60 × 4 times) H = 20mThree 19:00 to 20:00 50mThree/ H × (6/60 × 6 times) H = 30mThree 20: 00-21: 00 50mThree/ H × (6/60 × 2 times) H = 10mThree 21:00 to 22:00 50mThree/ H × (6/60 × 2 times) H = 10mThree 22:00 to 23:00 50mThree/ H × (6/60 × 2 times) H = 10mThree 23:00 to 24:00 0mThree By this, total pumping from 0:00 to 24:00
The amount is 460mThree/ Day. Such a normal inflow pattern and an abnormal inflow
For the operation status of the pump in the raw water pit during the pattern
The water level in the flow control tank and the flow from the flow control tank to the treatment tank.
Figures 7, 8, and 9 show the amount of water supply. Figure 7 shows a general control method
8 and 9 show the abnormal inflow patterns, respectively.
This is a corresponding example. FIGS. 7, 8, and 9 show the inside of the flow control tank.
The explanation is for the case of one regular pump and one spare pump.
You. When there are three pumps in this flow control tank, two pumps are always used.
One is spare. In addition, the two regular ones are pump life
Switch for a certain period of time, for example, every two weeks to extend your life
It is often obtained. The switching method is three underwater
Assuming that the pumps are A, B, and C, A and B are used for two weeks.
During the period, C is reserved, B and C are regular for the next two weeks, A is reserved,
For the next two weeks, C and A are in regular use and B is in reserve.
For three pumps, each pump has the same capacity
Therefore, the pumping volume of one spare pump during operation is two regular
Of の. Here, the driving situation is simple
One case and one spare unit will be specifically described. FIG.
Is one of the regular pumps in the flow control tank when the water level reaches M
And stopped at L. When the water level reaches HH
A completely general control method of driving and using one at H
Is the law. In this case, as shown in FIG.
ANN (alarm water level) and raw water overflows until 6:00
Spill into the next processing tank with a low. Flow adjustment until 10:20
The tank pump is operated by two regular and spare pumps.
Are operating one regular service. One regular car is 14:53
And then run again from 18:12 to 23:00. This
The amount of water supplied by both regular and spare pumps during the period is shown in the upper part of FIG.
And the pumping amount is 450mThreeIt is. Flow adjustment
10m overflow from tank to processing tankThreeBecomes
460m when measuredThree/ Day. This is usually the inflow putter
Unable to cope with abnormal inflow pattern, flow rate adjustment
Raw water 10m from tank to treatment tankThreeTreated water that overflows and discharges
Indicates that the water quality of the water is deteriorated. On the other hand, pump P for raw water pit1, P1'of
Judge that abnormal inflow may occur depending on operating conditions
FIG. 8 and FIG. 9 show an example in which a corresponding action is taken. FIG.
Are 0:00 to 1:00 and 1:00 to 2:00 in FIG.
There was one operation of the service pump of each raw water pit
Judgment of the possibility of abnormalities in the event, abnormal in the next 2:30 operation
And the pump P of the flow control tankTwoCommand start
You. In addition, regular pump P at 3:301From intermittent to continuous
When the pump becomesTwo′ To start
You. FIG. 9 shows the case of 0:00 to 1:00 and 1:00 to 2:00.
Regular pump P for one raw water pit each time1Driving
Judge that there may be an abnormal inflow in the next two:
Judgment that there is a possibility of abnormality in the operation from 00 to 3:00
After a predetermined period of time, for example, three hours,
Two pumps P for regular use and spare for volume adjustment tankTwo, P TwoSame as ′
Sometimes command start. As described above, correspondence 1 in FIG. 8 and correspondence 2 in FIG.
In both cases, different from FIG.
Raw water can be supplied without overflowing to the tank.
Wear. As a result, as shown in FIG.
Means that even if there is an abnormal inflow, the treated water satisfies the discharge standard value.
However, in the case of FIG. 7 which does not correspond,
Water quality (BOD here) deteriorates rapidly. one time
If it gets worse, it will not return to the original water quality for half a day to 1.5 days
No. As described above, the raw water pit pump P1,
P1′ To determine if there is an abnormal inflow.
If it is determined that there is an abnormal inflow,
Regular and spare submersible pump PTwo, PTwo′ To control
And no detection of abnormal inflow
At the same time as the water level (level switch) in the flow control tank
The effect on treated water is very different from
In the former, the quality of treated water does not deteriorate
On the other hand, in the latter, the quality of treated water deteriorates. Upon release to public waters,
Satisfying the discharge standard value must be observed
Although it is not a matter, there is a flow meter only on the discharge side as in the present invention.
Is installed, and the inflow rate depends on the operation status of the pump in the raw water pit.
Knowing that it is possible to respond in an abnormal inflow condition
Become. In the normal case, the amount of inflow water and the amount of treated water are the same.
Therefore, the discharge amount of raw water pump (= treated water amount / raw water pump
Working time) is always confirmed, and the amount of
It has been corrected. As described in paragraph 0018, the raw water pit
Service pump P1And the spare pump P1′ Is the same
One model is used under the same conditions.1,
P1′, There is a difference in performance, the pump coefficient is calculated by equation
To adjust. Also, the amount of treated water used for calculation,
And pump P1, P1′ For about one week
May be longer depending on the time)
Use the average (operating average updated daily)
Is preferred. [0030] As is clear from the above, the conventional run-off
In the type wastewater treatment equipment, the amount of raw water flowing into the purification treatment equipment,
And purification of the treated water from the purification
Very expensive separately at the inlet and outlet of
Install a flow rate indicator integrating recorder, connect it to the control panel,
Although the amount and discharge rate were input to the computing unit, the present invention
One flow rate indicator integrated recorder installed at the exit side of the processing equipment
To know the discharge rate of treated water,
To the operating status (number of operations) of regular and spare submersible pumps
Knowing the amount of raw water flowing into the purification treatment equipment
Corresponding to the pattern, it is possible to prevent the deterioration of treated water quality
Wear. In other words, pump P of raw water pit1, P1′ Operation
If you know the number of times, you can use raw water without sophisticated pattern recognition.
It is possible to easily determine the normal inflow and the abnormal inflow.
And one expensive flow meter can be used,
Installation costs and instrument maintenance costs are reduced to one unit. Change
In addition, this flow meter is not dirty water, it is treated and clean
Because it comes into contact with the treated water,
Is also kept clean and easy to maintain because there is little dirt.
And does not malfunction. And the raw water abnormality
Can respond quickly to inflow. In other words, the abnormal state
Being able to know quickly and respond so that
Automatically responds quickly to abnormal inflows,
Water quality can be prevented.

【図面の簡単な説明】 【図1】(A)は本発明により運転される活性汚泥法の
垂れ流し式廃水処理場の一実施形態の説明図、(B)は
本発明により運転される垂れ流し式廃水処理場の他の実
施形態の要部の説明図。 【図2】従来の活性汚泥法の垂れ流し式廃水処理場の説
明図。 【図3】図1の原水ピットと、流量槽、及び処理槽の一
部の断面図。 【図4】(A)は原水ピットへの一日の原水の通常流入
パターンと、或る異常流入パターンを示す図、(B)は
同上の異常流入パターンの一部の拡大図。 【図5】図4の通常流入パターンにおける原水ピットの
ポンプの稼働状況の説明図。 【図6】図5の通常流入パターンでの原水ピットのポン
プの稼働状況に、図4の異常流入パターンにおける原水
ピットのポンプの稼働状況を重畳した説明図。 【図7】図4の通常流入パターンと、異常流入パターン
における流量調整槽から処理槽への原水の供給状態の説
明図。 【図8】(A)はポンプP2 ,P2 ′による図4の異常
流入パターンに対応した一例の流量調整槽から処理槽へ
の原水の供給量を示す図、(B)は同上における流量調
整槽内の水位の変動を示す図(括弧内の数字は水位、括
弧外の数字は水量を表わす)。 【図9】(A)はポンプP2 ,P2 ′による図4の異常
流入パターンに対応した他の例の流量調整槽から処理槽
への原水の供給量を示す図、(B)は同上における流量
調整槽内の水位の変動を示す図(括弧内の数字は水位、
括弧外の数字は水量を表わす)。 【図10】異常流入パターンに対応しないときと、対応
したときの処理水の水質の変化を示す図。 【符号の説明】 1 原水ピット P1 原水ピットの常用ポンプ P1 ′ 原水ピットの予備ポンプ 2 流量調整槽 P2 流量調整槽の常用ポンプ P2 ′ 流量調整槽の予備ポンプ 3 制御盤 4 計量槽 5 浄化処理装置(処理槽) 6 沈殿槽 7 消毒用滅菌槽 8 放流槽 9 演算器(パソコン、シーケンサー) 10 COD測定器(COD計、UV計、等) 12 出口側流量計(電磁式流量指示積算流量計) 21 下水管路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (A) is an explanatory view of one embodiment of a activated sludge run-off type wastewater treatment plant operated according to the present invention, and FIG. 1 (B) is a run-down type run-down type waste water treatment plant operated according to the present invention. Explanatory drawing of the principal part of other embodiment of the wastewater treatment plant. FIG. 2 is an explanatory view of a conventional activated sludge run-off type wastewater treatment plant. 3 is a cross-sectional view of a part of a raw water pit, a flow tank, and a treatment tank in FIG. 1; 4A is a diagram showing a normal inflow pattern of raw water in a raw water pit for a day and an abnormal inflow pattern, and FIG. 4B is an enlarged view of a part of the abnormal inflow pattern of the above. FIG. 5 is an explanatory diagram of an operation state of a raw water pit pump in the normal inflow pattern of FIG. 4; 6 is an explanatory diagram in which the operation state of the pump of the raw water pit in the abnormal inflow pattern of FIG. 4 is superimposed on the operation state of the pump of the raw water pit in the normal inflow pattern of FIG. 5; FIG. 7 is an explanatory diagram of a supply state of raw water from a flow rate adjustment tank to a treatment tank in a normal inflow pattern and an abnormal inflow pattern in FIG. 4; 8A is a diagram showing an example of the supply amount of raw water from the flow rate adjustment tank to the treatment tank corresponding to the abnormal inflow pattern of FIG. 4 by the pumps P 2 and P 2 ′, and FIG. The figure which shows the fluctuation | variation of the water level in an adjustment tank (the number in a parenthesis represents a water level, and the number outside a parenthesis shows a water quantity). 9A is a diagram showing the supply amount of raw water from the flow control tank to the processing tank in another example corresponding to the abnormal inflow pattern in FIG. 4 by the pumps P 2 and P 2 ′, and FIG. Figure showing the fluctuation of the water level in the flow control tank in (The number in parentheses is the water level,
The numbers outside the parentheses indicate the amount of water). FIG. 10 is a diagram showing changes in the quality of treated water when the abnormal water flow pattern does not correspond to the abnormal inflow pattern and when the abnormal flow pattern corresponds to the abnormal inflow pattern. [Description of Signs] 1 Raw water pit P 1 Regular pump for raw water pit P 1 ′ Preliminary pump for raw water pit 2 Flow regulating tank P 2 Regular pump for flow regulating tank P 2 ′ Spare pump for flow regulating tank 3 Control panel 4 Measuring tank Reference Signs List 5 Purification treatment equipment (treatment tank) 6 Sedimentation tank 7 Sterilization tank for disinfection 8 Discharge tank 9 Computing unit (PC, sequencer) 10 COD measuring instrument (COD meter, UV meter, etc.) 12 Outlet-side flow meter (electromagnetic flow rate indicator (Integrated flow meter) 21 Sewage pipeline

Claims (1)

(57)【特許請求の範囲】 【請求項1】 下水管路から原水ピットに流入する原水
を原水ピット中の水位に応じて稼動する常用ポンプP1
と、予備ポンプP1′を介し浄化処理装置の流量調整槽
から処理槽へ供給して浄化処理し、浄化処理装置に供給
した原水の供給量宛、浄化処理装置から処理水を垂れ流
して排出、放流する垂れ流し式廃水処理場の運転制御方
法において、放流する処理水の放流量を検出して出力す
る出口側流量計と、上記出口側流量計の出力を受けて放
流した処理水の放流量を集計すると共に、前記原水ピッ
トに流入した原水を浄化処理装置に供給する常用ポンプ
1と、予備ポンプP1′の稼動時間が入力される演算器
を設け、放流した処理水の放流量と、常用ポンプP
1と、予備ポンプP1′の稼動時間とで浄化処理装置に供
給する原水の供給量を上記演算器で演算して求め、得ら
れた前記原水ピットに流入した原水の1日24時間の所
定時間毎の通常流入パターンに基づいて、原水ピットの
常用ポンプP1と、予備ポンプP1′の稼働状態により異
常流入を判断し、前記常用ポンプP1と、予備ポンプ
1′や流量調整槽のポンプをコントロールして浄化処
理装置の流量調整槽から処理槽へオーバーフローをさせ
ずに原水を供給し処理槽の負荷を急激に高めないように
したことを特徴とする垂れ流し式廃水処理場の運転制御
方法。
(57) [Claims 1] A regular pump P 1 that operates raw water flowing from a sewer pipe into a raw water pit according to the water level in the raw water pit.
Then, the purified water is supplied to the treatment tank from the flow control tank of the purification treatment device via the preliminary pump P 1 ′ to perform the purification treatment, and the treated water is dripped and discharged from the purification treatment device to the supply amount of the raw water supplied to the purification treatment device. In the operation control method of the draining wastewater treatment plant to be discharged, the outlet flowmeter that detects and outputs the discharge flow rate of the treated water discharged, and the discharge flow rate of the treated water discharged and received by the output of the outlet flow meter. with aggregate, wherein the common pump P 1 supplies the raw water that has flowed into the raw water pit purification treatment unit, a computing unit provided operation time of the preliminary pump P 1 'is input, a discharge amount of discharge and treated water, Service pump P
1 and the operating time of the backup pump P 1 ′, the supply amount of raw water to be supplied to the purification treatment device is calculated by the above-mentioned computing unit, and the obtained raw water flowing into the raw water pit is obtained for a predetermined period of 24 hours a day. based on normal inflow pattern for every time, a conventional pump P 1 of raw water pit, 'determines the abnormal inflow by operating status of, and the conventional pump P 1, preliminary pump P 1' spare pump P 1 and the flow regulation tank The operation of a run-down type wastewater treatment plant characterized by controlling the pump and supplying raw water without overflowing from the flow control tank of the purification treatment device to the treatment tank so that the load on the treatment tank is not suddenly increased. Control method.
JP34536798A 1998-12-04 1998-12-04 Operation control method of run-down wastewater treatment plant Expired - Fee Related JP3512348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34536798A JP3512348B2 (en) 1998-12-04 1998-12-04 Operation control method of run-down wastewater treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34536798A JP3512348B2 (en) 1998-12-04 1998-12-04 Operation control method of run-down wastewater treatment plant

Publications (2)

Publication Number Publication Date
JP2000167580A JP2000167580A (en) 2000-06-20
JP3512348B2 true JP3512348B2 (en) 2004-03-29

Family

ID=18376124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34536798A Expired - Fee Related JP3512348B2 (en) 1998-12-04 1998-12-04 Operation control method of run-down wastewater treatment plant

Country Status (1)

Country Link
JP (1) JP3512348B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130583A (en) * 2005-11-10 2007-05-31 Fuji Clean Kogyo Kk Apparatus and method for treating water
JP5042805B2 (en) * 2007-12-25 2012-10-03 フジクリーン工業株式会社 Water quality monitoring system
CN107990934B (en) * 2017-11-21 2020-01-07 浙江农林大学 Intelligent supervision system for sewage discharge of live pig breeding industry
US11795088B2 (en) * 2021-06-02 2023-10-24 Galiper Industrial Sa De Cv Automated, mobile, low power consumption with a hybrid power capacity wastewater treatment facility

Also Published As

Publication number Publication date
JP2000167580A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP6845775B2 (en) Water treatment control device and water treatment system
JP3512348B2 (en) Operation control method of run-down wastewater treatment plant
JP2004249200A (en) Water quality control device of sewerage equipment
JP3134177B2 (en) Operation control method of wastewater treatment plant
JP7122989B2 (en) Water treatment plant operation support device and water treatment plant
JP4358101B2 (en) Sewage inflow water quality prediction method and rainwater drainage support system
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP4485043B2 (en) Sewage treatment system, inflow water treatment arithmetic device, inflow water treatment method, and storage medium
JP7171445B2 (en) water treatment system
CN112020479B (en) Sequencing batch reactor system and method
KR102065694B1 (en) Wastewater discharge device and management system for it
JP7103598B2 (en) Water treatment control device and water treatment system
JP2004042016A (en) Operation controller for water purification plant
JP3134176B2 (en) Operation control method of wastewater treatment plant
JP2018111977A (en) Monitoring controller of sewerage facility and operation control method of sewage pump station
JP6621866B2 (en) Operation support device and operation support method for sewage treatment plant using activated sludge method
JPH10131869A (en) Displacement control device
JP2021013891A (en) Operation support device of water treatment plant
JP2009154060A (en) Water quality monitoring system
JP3018220B2 (en) Oxidation ditch type wastewater treatment apparatus and its centralized management method
JP3242005B2 (en) Operation control method of oxidation ditch type wastewater treatment plant
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JP7478656B2 (en) Sewage Treatment System
JPH11256676A (en) Foreign matter accumulation prevention device
JP2808230B2 (en) Batch type wastewater treatment equipment and its centralized management method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees