JP3018220B2 - Oxidation ditch type wastewater treatment apparatus and its centralized management method - Google Patents

Oxidation ditch type wastewater treatment apparatus and its centralized management method

Info

Publication number
JP3018220B2
JP3018220B2 JP6049905A JP4990594A JP3018220B2 JP 3018220 B2 JP3018220 B2 JP 3018220B2 JP 6049905 A JP6049905 A JP 6049905A JP 4990594 A JP4990594 A JP 4990594A JP 3018220 B2 JP3018220 B2 JP 3018220B2
Authority
JP
Japan
Prior art keywords
tank
cod
water
raw water
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6049905A
Other languages
Japanese (ja)
Other versions
JPH07232191A (en
Inventor
敬藏 渡辺
Original Assignee
株式会社渡辺コンサルタンツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社渡辺コンサルタンツ filed Critical 株式会社渡辺コンサルタンツ
Priority to JP6049905A priority Critical patent/JP3018220B2/en
Publication of JPH07232191A publication Critical patent/JPH07232191A/en
Application granted granted Critical
Publication of JP3018220B2 publication Critical patent/JP3018220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、従来のオキシデーシ
ョンディッチ式廃水処理装置(以下、OD式廃水処理装
置とも記す。)に使用されている高価な流量指示積算計
の数を半減して放流する水の一日当りのCOD排出量を
求めることを可能にしたOD式廃水処理装置と、それら
の複数のOD式廃水処理装置から放流される水の一日当
りのCOD排出量を中央の1台の演算器で管理するOD
式の複数の廃水処理装置の集中管理方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a conventional oxidation-ditch type wastewater treatment apparatus (hereinafter, also referred to as an OD type wastewater treatment apparatus). to the OD type waste water treatment apparatus which enables the determination of the daily COD emissions of water, the daily discharge of COD water central one being released from their multiple OD type waste water treatment apparatus OD managed by arithmetic unit
The present invention relates to a centralized management method for a plurality of wastewater treatment devices of the type.

【0002】[0002]

【従来の技術】OD式廃水処理装置は、活性汚泥法や生
物膜法による廃水処理装置と共に、人口約1000人、
250戸程度の生活廃水を処理する農業集落向きの廃水
処理装置として、又、小規模都市下水の処理装置として
普及しつゝある。このOD式の廃水処理装置は、周知の
ように粗目のスクリーン、及び破砕機を通過した原水を
原水槽からオキシデーションディッチに移し、オキシデ
ーションディッチで原水を曝気処理したのち沈殿槽に移
して沈殿処理し、沈殿槽から水を消毒槽を経て放流す
る。上記従来のOD式廃水処理装置では原水槽からオキ
デーションディッチに移す流路、又、流量調整槽を原水
槽とオキシデーションディッチの間に設ける場合は、原
水槽から流量調整槽への流路に原水の流入量を計測する
ために流入側の流量指示積算計を設けている。又、消毒
の上流の水質測定槽にCOD測定器、消毒槽から放流
する水の流路に放流側の流量指示積算計を設け、上記C
OD測定器の出力と放流側の流量指示積算計の出力とに
より装置から放流される24時間当りのCOD排出量を
専用のCOD演算器、又はパソコンに入力して演算して
求めている。
2. Description of the Related Art An OD-type wastewater treatment apparatus has a population of about 1,000, together with a wastewater treatment apparatus based on an activated sludge method or a biofilm method.
It has become widespread as a wastewater treatment device for agricultural settlements that treats about 250 household wastewater, and as a small-scale city sewage treatment device. As is well known, this OD-type wastewater treatment device transfers raw water that has passed through a coarse screen and a crusher from a raw water tank to an oxidation ditch, aerated the raw water with the oxidation ditch, and then transferred to a sedimentation tank for sedimentation. After treatment, water is discharged from the sedimentation tank through the disinfection tank. In the above-mentioned conventional OD type wastewater treatment apparatus, a flow path for transferring from the raw water tank to the oxidation ditch, or, when a flow rate adjusting tank is provided between the raw water tank and the oxidation ditch, a flow path from the raw water tank to the flow rate adjusting tank. In order to measure the inflow of raw water, an inflow-side flow rate integrator is provided. In addition, a COD measuring device is provided in the water quality measuring tank upstream of the disinfecting tank, and a flow rate integrator on the discharge side is provided in the flow path of the water discharged from the disinfecting tank.
The output of the OD measuring device and the output of the flow-rate integrator on the discharge side are used to calculate the amount of COD emissions discharged from the device per 24 hours by inputting to a dedicated COD calculator or a personal computer and calculating the amount.

【0003】放流する水の24時間当りのCOD総排出
量を求める理由は、地域によって、水を一日50m3
以上、放流する施設では、施設ごとに一日当りのCOD
の排出量の許容値が定められ、一日当りのCODの排出
量が許容値以下であることの証明が義務付けられている
からであったり、COD≒BOD×1.6〜2.0で
あるためBODを計算で推定でき、これにより連続測定
できず、又、手で分析しなければ求めることができない
BODを求める代りにCODでBODを推定し、処理状
況を確認したり、CODの値によって曝気用のエアー
量や、返送汚泥の量を調節し、運転状態を良好、正常に
維持したりするためなどである。
[0003] The reason for calculating the total COD emission per 24 hours of discharged water is that, depending on the area, 50 m 3 of water per day is used.
As mentioned above, COD per day for each facility
Because the allowable value of COD emission is determined and the proof that the daily COD emission is below the allowable value is required, or because COD ≒ BOD × 1.6 to 2.0 The BOD can be estimated by calculation, whereby continuous measurement cannot be performed, and instead of calculating the BOD that cannot be obtained by manual analysis, the BOD is estimated by COD to check the processing status, and aeration is performed based on the value of COD. The purpose is to adjust the amount of air for use and the amount of returned sludge to maintain good and normal operating conditions.

【0004】[0004]

【発明が解決しようとする課題】上記従来の廃水処理装
置では原水の流入水量を測定するために流入側の流量指
示積算計を設置するほか、CODの排出量を計算するた
めに更にもう1台の流量指示積算計を放流側に設置して
いる。この流量指示積算計は非常に高価な機器であるた
め、装置の設置コストの上昇の原因になって居り、コス
トの低減が要望されている。又、上記従来の廃水処理装
置では、放流側の流量指示積算計と、COD測定器の出
力を専用のCOD演算器やパソコン等で演算して一日当
りのCOD排出量を求めている。従って、例えば10カ
所の廃水処理装置を集中管理する場合は、各廃水処理装
置ごとの10台の演算器の他に、中央の集計、記録用の
パソコン1台の計11台のパソコンが必要なので多額の
投資を要し、普及の妨げになっている。
In the above-mentioned conventional wastewater treatment apparatus, an inflow-side flow rate integrator is installed to measure the amount of inflow of raw water, and another one is used to calculate the amount of COD discharge. Is installed on the discharge side . Since this flow indicator integrator is a very expensive device, it causes an increase in the installation cost of the device, and a reduction in cost is demanded. Further, in the above-mentioned conventional wastewater treatment apparatus, the output of the flow rate integrator on the discharge side and the output of the COD measuring device are calculated by a dedicated COD calculator, a personal computer, or the like, to determine the amount of COD emission per day. Therefore, for example, in the case of centrally managing 10 wastewater treatment devices, a total of 11 personal computers, one for central counting and recording, are required in addition to the 10 arithmetic units for each wastewater treatment device. It requires a large amount of investment and hinders its spread.

【0005】[0005]

【課題を解決するための手段】本発明は上述した課題を
解消するためのもので、請求項1のOD式廃水処理装置
は、原水を原水槽からオキシデーションディッチに移
し、オキシデーションディッチで原水を曝気処理したの
ち沈殿槽に移して沈殿処理し、更に沈殿槽から消毒槽を
経て放流するオキシデーションディッチ式廃水処理装置
において、原水槽からオキシデーションディッチに移さ
れる原水の流入量を測定する流量指示積算計と、消毒槽
の上流の水質測定槽、又は消毒槽の下流の放流路に水の
COD値を測定するCOD測定器とを設けると共に、上
記流量指示積算計の出力と、COD測定器の出力とによ
って放流する水の24時間当りのCOD排出量を演算す
る演算器を設けたことを特徴とする。又、請求項2のO
D式廃水処理装置の集中管理方法は、原水を原水槽から
オキシデーションディッチに移し、オキシデーションデ
ィッチで原水を曝気処理したのち沈殿槽に移して沈殿処
理し、更に沈殿槽から消毒槽を経て放流するようにし、
前記原水槽からオキシデーションディッチに移される原
水の流入量を測定する流量指示積算計と、消毒槽の上流
の水質測定槽、又は消毒槽の下流の放流路にのCOD
値を測定するCOD測定器とを設けると共に、上記流量
指示演算計の出力と、COD測定器の出力とが入力され
る制御盤を設けた複数のオキシデーショディッチ式廃水
処理装置の、上記各制御盤を中央の演算器に回線で接続
し、中央の演算器で各廃水処理装置から放流される水の
24時間当りのCOD排出量を演算することを特徴とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an OD type wastewater treatment apparatus according to claim 1 transfers raw water from a raw water tank to an oxidation ditch, and converts the raw water into an oxidation ditch. Is transferred to a sedimentation tank after aeration treatment, and is subjected to sedimentation treatment. Further, in an oxidation ditch type wastewater treatment device that is discharged from the sedimentation tank through a disinfection tank, a flow rate for measuring an inflow amount of raw water transferred from the raw water tank to the oxidation ditch. Integrator and disinfection tank
And a COD measuring device for measuring the COD value of water is provided in a water quality measuring tank upstream of the tank or a discharge channel downstream of the disinfecting tank, and water discharged by the output of the flow rate indicating integrator and the output of the COD measuring device. And a calculator for calculating the amount of COD emission per 24 hours. In addition, O in claim 2
Centralized management of D-type waste water treatment apparatus, transfer the raw water from the raw water tank to the oxidation ditch, the raw water in oxidation ditch and precipitation treatment transferred to settling tank After aeration, discharged through the disinfecting bath from further sedimentation tank So that
A flow rate integrator that measures the inflow of raw water transferred from the raw water tank to the oxidation ditch, and upstream of the disinfection tank
COD of water in the water quality measurement tank or the discharge channel downstream of the disinfection tank
A COD measuring device for measuring the value, and a control panel to which the output of the flow rate indicating calculator and the output of the COD measuring device are input. The control panel is connected to a central processing unit via a line, and the central processing unit calculates COD emissions per 24 hours of water discharged from each wastewater treatment device.

【0006】[0006]

【実施例】図1,2はOD式廃水処理装置の代表的な一
例を示すもので、前述したように破砕機、粗目スクリー
ンを通過して原水槽10に流入した原水は、ポンプで循
環流路からなるオキシデーションディッチ11に供給す
る。原水はオキシデーションディッチ内を循環している
間に曝気装置12で曝気され、ディッチ内の微生物の働
きにより原水中の主として有機物を分解除去される。曝
気装置12は、図では水面上に配置され、回転するロー
タの羽根の一部が浸漬して水を攪拌し、曝気量はロータ
の回転数、羽根の浸漬深さ、ロータの断続回転等によっ
て加減調整できる機械式表面攪拌曝気装置を示したが、
他の型式の曝気装置でもよい。ディッチ内の水位はゲー
ト式の水位調節機13により定められているため、原水
はディッチ内に約24〜36時間滞溜した後、原水の流
入分だけ上記水位調節機をオーバーフローして沈殿槽1
4に流入し、こゝで汚泥を沈殿分離し、塩素消毒器16
を有する消毒槽15、放流槽17を経て放流される。オ
キシデーションディッチへの原水の1日当りの流入量
と、沈殿槽から消毒槽に流出する水の1日当りの流出量
は、多少の時間差はあるが一致している。
1 and 2 show a typical example of an OD type wastewater treatment apparatus. As described above, raw water flowing into a raw water tank 10 through a crusher and a coarse screen is circulated by a pump. It is supplied to an oxidation ditch 11 composed of a road. Raw water is aerated by the aeration device 12 while circulating in the oxidation ditch, and mainly organic matter in the raw water is decomposed and removed by the action of microorganisms in the ditch. The aeration device 12 is disposed on the water surface in the figure, and a part of the blades of the rotating rotor is immersed to agitate the water, and the amount of aeration is determined by the number of rotations of the rotor, the immersion depth of the blades, the intermittent rotation of the rotor, and the like. Although a mechanical surface stirring and aeration device that can be adjusted is shown,
Other types of aeration devices may be used. Since the water level in the ditch is determined by the gate type water level controller 13, the raw water stays in the ditch for about 24-36 hours, and then overflows the water level controller by the inflow of the raw water to settle the tank 1
Flows into the 4, separated precipitate fraction sludge in thisゝ, chlorination 16
The water is discharged through a disinfection tank 15 and a discharge tank 17 having The daily inflow of raw water into the oxidation ditch and the daily outflow of water flowing from the sedimentation tank to the disinfection tank are in agreement, albeit with some time lag.

【0007】沈殿槽14に沈殿した汚泥は、返送ポンプ
1 の運転により返送循環弁V2 を経て、1日最大汚水
量の100〜200%程度返送する。余剰汚泥はタイマ
ーで制御される排泥弁V1 の開で汚泥貯槽18に排出す
る。この排泥は、通常、1日に1〜2回、1回当り5〜
20分間行う。余剰汚泥の引抜き量はオキシデーション
ディッチ内の汚泥濃度により管理されるが、通常、1日
当りの引抜き量はほゞ一定で、その量は汚泥貯槽の液位
の変動を観察して正しい値を知ることができる。又、排
泥弁V1 の時間当りの流量は既知なので、該弁の開の時
間によっても余剰汚泥の引抜き量は分かる。
[0007] The precipitated sludge in the settling tank 14, through the return cycle valve V 2 by the operation of the return pump P 1, and returns 100 to 200% of the maximum sewage daily dose. Excess sludge is discharged to the sludge storage tank 18 by opening the Haidoroben V 1 which is controlled by a timer. This sludge is usually collected once or twice a day,
Perform for 20 minutes. The amount of excess sludge withdrawn is controlled by the concentration of sludge in the oxidation ditch. Usually, the amount of withdrawal per day is almost constant, and the amount is determined by observing fluctuations in the liquid level of the sludge storage tank. be able to. Further, the time per flow Haidoroben V 1 was known, withdrawal of excess sludge by opening time of the valve is seen.

【0008】原水槽10からオキシデーションディッチ
11に原水を汲上げて供給する管路には流量指示積算計
19が設けてあり、これによりオキシデーションディッ
チに流入する24時間当りの原水の全流入量と、時間毎
の流入量が分かり、これは後述の演算器に出力される。
[0008] A flow indicator integrator 19 is provided in a conduit for pumping and supplying raw water from the raw water tank 10 to the oxidation ditch 11, whereby the total inflow of raw water per 24 hours flowing into the oxidation ditch is provided. Then, the inflow amount for each time is known, and this is output to an arithmetic unit described later.

【0009】放流する24時間当りのCOD排出量を演
算して求めるため、消毒槽15の上流には水質測定槽2
3を設けてCOD測定器20、例えばCOD計、UV計
などを設置する他、上記COD測定器20の出力と、前
記流量指示積算計19の出力とを制御盤21を介して例
えば1時間毎に受ける演算器、例えばパソコン22を設
ける。尚、COD測定器20は、消毒槽の上流ではな
く、消毒槽以降の放流路中の、塩素の影響が無くなる地
点に設けてもよい。
In order to calculate and obtain the COD emission per 24 hours to be discharged , the water quality measurement tank 2 is provided upstream of the disinfection tank 15.
3 to install a COD measuring device 20, for example, a COD meter, a UV meter, etc., and output the output of the COD measuring device 20 and the output of the flow rate integrator 19 via a control panel 21, for example, every hour. , A personal computer 22 is provided. The COD measuring device 20 may be provided not at the upstream of the disinfection tank but at a point in the discharge channel after the disinfection tank where the influence of chlorine is eliminated.

【0010】系外に排出される余剰汚泥の1日当りの引
抜き量は、前述したようにほゞ一定で、分かっているの
で、1日に何回、どの時間帯に、1回当りどれだけの量
を引抜くかを演算器22に入力する。この汚泥の引抜き
量と、回数は、時々実態にあった数値を求め、演算器に
入力した値を補正する。これにより演算器は、流量指示
積算計19が出力する1時間毎の原水の流入量Qiから
汚泥引抜き量Qsを差し引いたQeと、COD測定器が
出力する1時間毎のCODの測定平均値Cと、入力され
た汚泥の引抜き量及び時間帯により1時間毎のCOD排
出量Ln、及びその24時間分の合計を次のようにし
て演算する。尚、汚泥引抜き量Qsが0の場合は、Qe
=Qiになる。 Ln =Qe ・C×10-3 kgCOD /時 ・・・・・・・・ (式1) Ln :COD排出量 〔kgCOD /時〕 Qe :水の放流量 〔m3 /時〕 C :放流する水のCOD平均値 〔mg/立〕 L =L1 +L2 + ・・・・・・・・ +L24 L :1日当りのCOD排出量 〔kgCOD /日〕 ここに である。
[0010] As described above, the amount of surplus sludge discharged to the outside of the system per day is almost constant, and it is known. Whether the amount is to be extracted is input to the calculator 22. The sludge withdrawal amount and the number of times are obtained by obtaining a numerical value that is sometimes true, and correcting the value input to the arithmetic unit. Thus calculator from inflow Qi of raw water 1 hour every flow indicator integrated meter 19 outputs
Qe obtained by subtracting the sludge withdrawal amount Qs, the measured average value C of hourly COD output by the COD measuring device, the hourly COD discharge amount Ln according to the input sludge withdrawal amount and time zone, and the like. The total L for 24 hours is calculated as follows. When the sludge withdrawal amount Qs is 0, Qe
= Qi . Ln = Qe · C × 10 -3 kgCOD / hr ........ (Equation 1) ln: COD emissions [KgCOD / h] Qe: discharge amount of water [m 3 / h] C: to discharge COD average value of water [mg / falling] L = L 1 + L 2 + ········ + L 24 L: COD emissions per day [KgCOD / day] wherein a It is.

【0011】表1は、流量指示積算計が演算器に出力し
た或る1日の時間毎の原水の流入量Qiと、汚泥の引抜
き量Qsを示す。余剰汚泥の引抜きは8時と20時の時
間帯に行い、1回の引抜き量は5m3 と、演算器に入力
してある。これにより、演算器は8時から9時の間の
の放流量Qeと、20時から21時の間の水の放流量Q
eを と演算する。
Table 1 shows the inflow amount Qi of raw water and the sludge withdrawal amount Qs output by the flow rate integrator to the calculator at each hour of a certain day. Excess sludge is extracted at 8:00 and 20:00, and the amount of one extraction is 5 m 3 , which is input to the calculator. Thus, computing unit 9 o'clock of water from 8:00
Discharge rate Qe and the water discharge rate Q between 20:00 and 21:00
e Is calculated.

【表1】 [Table 1]

【0012】表2は、同じ1日にCOD測定器が演算器
に出力した時間毎のCODの測定平均値Cである。演算
器は、その出力を受けると、表に示したように前述の式 Ln=Qe・C×10-3 から時間毎のCOD排出量を演算し、24時間経過する
と24時間当りのCOD排出量の合計を演算する。こう
してオキシデーションディッチ式廃水処理装置から垂れ
流し式に放流される水の24時間当りのCODの総排出
量を求めることができる。
Table 2 shows the average value C of the COD for each time output from the COD measuring device to the arithmetic unit on the same day. Upon receiving the output, the arithmetic unit calculates the COD emission amount per hour from the above-mentioned equation Ln = Qe · C × 10 −3 as shown in the table, and the COD emission amount per 24 hours after 24 hours have elapsed. Calculate the sum of In this manner, the total COD emission per 24 hours of the water discharged from the oxidation ditch type wastewater treatment apparatus in a hanging manner can be obtained.

【表2】 [Table 2]

【0013】上述の説明では系外に排出される余剰汚泥
の引抜き量Qsを原水の流入量Qiから減算すれば水の
放出量が求まる。それから前記式1によりCOD排出量
を求めたが、余剰汚泥の引抜き量は原水の流入量に比べ
て圧倒的に少ないため、余剰汚泥の引抜き量を無視し、
つまり余剰汚泥の引抜き量の減算をしないで、放流する
水の排出量を求め、次いで前記式1によりCODの排出
量を求めてもよい。その場合は表3に示したようにな
る。
In the above description, if the amount of excess sludge drawn out Qs from the system is subtracted from the amount of raw water inflow Qi, water
The amount of release is determined. Then, the COD emission amount was obtained by the above equation 1 , but since the amount of surplus sludge withdrawn was overwhelmingly smaller than the amount of inflow of raw water, the amount of surplus sludge withdrawal was ignored.
In other words, release the excess sludge without subtracting the amount
Calculate the amount of water discharged, and then discharge COD according to Equation 1 above.
The quantity may be determined . In that case, the results are as shown in Table 3.

【表3】 [Table 3]

【0014】原水の流入量から余剰汚泥の引抜き量を減
算してCODの排出量を演算するか、余剰汚泥の引抜き
量を減算しないでCODの排出量を演算するかは演算器
22で切替可能にしておくことが好ましい。
The calculator 22 can switch between calculating the COD emission amount by subtracting the excess sludge withdrawal amount from the raw water inflow amount, or calculating the COD emission amount without subtracting the excess sludge withdrawal amount. It is preferable to keep it.

【0015】以上で明らかなように、放流側に高価な流
量指示積算計を使用しないでも、OD式廃水処理装置か
ら放流される水の24時間当りのCOD排出量(COD
負荷)を正確に求めることができる。尚、24時間の起
算点は午前0時に限定されず、何時でもよい。又、原水
の流入量、及びCODの測定平均値を1時間毎に出力し
てCOD排出量を求めたが、これは30分毎でも、2時
間毎等でもよい。
As is apparent from the above, even if an expensive flow rate integrator is not used on the discharge side, the COD discharge amount (COD) per 24 hours of the water discharged from the OD type wastewater treatment apparatus is not required.
Load) can be determined accurately. The 24-hour starting point is not limited to midnight, and may be any time. Further, the inflow amount of raw water and the measured average value of COD are output every hour to obtain the COD emission amount, but this may be every 30 minutes, every 2 hours, or the like.

【0016】図3において、30は上述したOD式廃水
処理装置であり、複数の廃水処理装置30−1、30−
2…30−Nから夫々放流される処理水の24時間当り
のCOD排出量の演算を監視センター31にある1台の
演算器32によって行うことを示す。各廃水処理装置に
は流量指示積算計19、COD測定器20の出力を受け
る制御盤21を設けて演算器22は廃止し、各廃水処理
装置の制御盤21を電話回線網33を介して監視センタ
ー31の演算器32に接続してある。これにより複数の
廃水処理装置の処理水のCOD排出量を監視センターに
ある1台の演算器32で演算できる。
In FIG. 3, reference numeral 30 denotes the above-mentioned OD type wastewater treatment apparatus, and a plurality of wastewater treatment apparatuses 30-1 and 30-.
2 indicates that the calculation of the COD emission per 24 hours of the treated water discharged from each of the 30-N is performed by one calculator 32 in the monitoring center 31. Each wastewater treatment device is provided with a control panel 21 for receiving the outputs of the flow rate integrator 19 and the COD measuring device 20 and the computing unit 22 is abolished. The control panel 21 of each wastewater treatment device is monitored via a telephone network 33. It is connected to a computing unit 32 of the center 31. Thereby, the COD emissions of the treated water of the plurality of wastewater treatment devices can be calculated by one calculator 32 in the monitoring center.

【0017】従来は各廃水処理装置毎にCOD排出量を
演算する演算器を設け、この各演算器を監視センターに
ある演算器に電話回線網で接続していたため、廃水処理
装置が10施設ある場合は10台の演算器と、監視セン
ターの1台の演算器の合計11台の演算器を必要とし、
設備コストが非常に嵩んでいた。しかし、上記方法によ
り演算器は監視センターに1台設置するだけでよいた
め、設備コストは非常に低廉になる。
Conventionally, each of the wastewater treatment apparatuses is provided with an arithmetic unit for calculating the COD emission amount, and each of the arithmetic units is connected to an arithmetic unit at the monitoring center via a telephone network. Therefore, there are ten wastewater treatment units. In this case, a total of 11 computing units are required, including 10 computing units and one computing unit at the monitoring center.
Equipment costs were very high. However, according to the above method , only one arithmetic unit needs to be installed in the monitoring center, so that the equipment cost is very low.

【0018】[0018]

【発明の効果】請求項1により、COD排出量を演算す
るために放流する水の水量を測定した高価な流量指示積
算計を使用せず、オキシデーションディッチに流入する
原水の流入量を測定する流量指示積算計の出力と、放流
する水のCODを計測する安価なCOD測定器の出力を
演算器に入力し、放流する水の24時間当りのCOD排
出量を正確に求めることができる。又、高価な流量指示
積算計の使用を1台廃止した分、設備コストも低廉にな
る。請求項2により廃水処理装置に1台宛、設けていた
COD排出量の演算用演算器を廃し、中央の監視センタ
ーにある1台の演算器で、複数のOD式廃水処理装置か
ら放流されるの24時間当りのCOD排出量を、各O
D式廃水処理装置毎に演算して求め、集中管理すること
ができる。又、各OD式廃水処理装置に演算器を設けな
い分、設備コストは大幅に下がる。
The claim 1, according to the present invention, without using an expensive flow indicator integrated meter to measure the water amount of water discharged to calculate the COD emissions, measuring the inflow of raw water flowing into the oxidation ditch The output of the flow rate indicating integrator and the output of an inexpensive COD measuring device for measuring the COD of the discharged water can be input to the arithmetic unit, and the COD emission per 24 hours of the discharged water can be accurately obtained. In addition, the equipment cost is reduced because the use of one expensive flow rate integrator is eliminated. According to the second aspect, the computing unit for calculating the COD emission amount provided to one of the wastewater treatment apparatuses is abolished, and discharged from a plurality of OD type wastewater treatment apparatuses by one computing unit at the central monitoring center. COD emissions per 24 hours of water
It can be calculated and obtained for each D-type wastewater treatment device and can be centrally managed. In addition, the equipment cost is greatly reduced because a computing unit is not provided in each OD type wastewater treatment apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のOD式廃水処理装置の一実施例のフロ
ーシートである。
FIG. 1 is a flow sheet of an embodiment of an OD type wastewater treatment apparatus according to the present invention.

【図2】図1の廃水処理装置平面図である。FIG. 2 is a plan view of the wastewater treatment apparatus of FIG.

【図3】本発明による複数のOD式廃水処理装置の集中
管理方法の説明図である。
FIG. 3 is an explanatory diagram of a centralized management method for a plurality of OD type wastewater treatment apparatuses according to the present invention.

【符号の説明】[Explanation of symbols]

10 原水槽 11 オキシデーションディッチ 12 曝気装置 13 ゲート式水位調節機 14 沈殿槽 15 消毒槽 16 塩素消毒器 17 放流槽 18 汚泥貯槽 19 流量指示積算計 20 COD測定器 21 制御盤 22 演算器(パソコン)23 水質測定槽 30 OD式廃水処理装置 31 監視センター 32 演算器(パソコン) 33 電話回線網DESCRIPTION OF SYMBOLS 10 Raw water tank 11 Oxidation ditch 12 Aeration device 13 Gate type water level controller 14 Sedimentation tank 15 Disinfection tank 16 Chlorine disinfector 17 Discharge tank 18 Sludge storage tank 19 Flow rate integrator 20 COD measuring instrument 21 Control panel 22 Calculator (PC) 23 water quality measuring tank 30 OD type wastewater treatment equipment 31 monitoring center 32 computing unit (PC) 33 telephone network

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原水を原水槽からオキシデーションディ
ッチに移し、オキシデーションディッチで原水を曝気処
理したのち沈殿槽に移して沈殿処理し、更に、沈殿槽か
消毒槽を経て放流するオキシデーションディッチ式廃
水処理装置において、原水槽からオキシデーションディ
ッチに移される原水の流入量を測定する流量指示積算計
と、消毒槽の上流の水質測定槽、又は消毒槽の下流の
流路にのCOD値を測定するCOD測定器とを設ける
と共に、上記流量指示積算計の出力と、COD測定器の
出力とによって放流する水の24時間当りのCOD排出
量を演算する演算器を設けたことを特徴とするオキシデ
ーションディッチ式廃水処理装置。
1. A transferred raw water from the raw water tank to the oxidation ditch, and precipitation treatment transferred to settling tank after the raw water was aerated with oxidation ditch, further, or sedimentation tank
In an oxidation ditch type wastewater treatment device that discharges water through a disinfection tank, a flow indicator integrator that measures the inflow of raw water transferred from the raw water tank to the oxidation ditch, and a water quality measurement tank upstream of the disinfection tank or a disinfection tank A COD measuring device for measuring the COD value of water is provided in a downstream discharge flow path of the water , and the output of the water discharged per 24 hours by the output of the flow rate indicating integrator and the output of the COD measuring device is provided. An oxidation ditch type wastewater treatment apparatus comprising a calculator for calculating COD emissions.
【請求項2】 原水を原水槽からオキシデーションディ
ッチに移し、オキシデーションディッチで原水を曝気処
理したのち沈殿槽に移して沈殿処理し、沈殿槽から消毒
を経て放流するようにし、前記原水槽からオキシデー
ションディッチに移される原水の流入量を測定する流量
指示積算計と、消毒槽の上流の水質測定槽、又は消毒槽
の下流の放流路に水のCOD値を測定するCOD測定器
とを設けると共に、上記流量指示積算計の出力と、CO
D測定器の出力とが入力される制御盤を設けた複数のオ
キシデーションディッチ式廃水処理装置の、上記各制御
盤を中央の演算器に回線で接続し、中央の演算器で各廃
水処理装置から放流される水の24時間当りのCOD排
出量を演算することを特徴とするオキシデーションディ
ッチ式廃水処理装置の集中管理方法
2. A transferred raw water from the raw water tank to the oxidation ditch, and precipitation treatment transferred raw water in oxidation ditch to settler After aeration, disinfecting the settling tank
So as to discharge through the bath, said a flow indicator integrated meter for measuring the inflow of raw water is transferred to oxidation ditch from the raw water tank, upstream of the water quality measuring tank of disinfecting bath or disinfecting bath
A COD measuring device for measuring the COD value of water is provided in the discharge channel downstream of
Each of the plurality of oxidation-ditch type wastewater treatment apparatuses provided with a control panel to which the output of the D measuring device is input is connected to a central processing unit via a line, and each wastewater treatment apparatus is connected to the central processing unit. Centralized control method for an oxidation-ditch type wastewater treatment apparatus, comprising calculating a COD emission amount per 24 hours of water discharged from a wastewater treatment apparatus.
JP6049905A 1994-02-24 1994-02-24 Oxidation ditch type wastewater treatment apparatus and its centralized management method Expired - Fee Related JP3018220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6049905A JP3018220B2 (en) 1994-02-24 1994-02-24 Oxidation ditch type wastewater treatment apparatus and its centralized management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6049905A JP3018220B2 (en) 1994-02-24 1994-02-24 Oxidation ditch type wastewater treatment apparatus and its centralized management method

Publications (2)

Publication Number Publication Date
JPH07232191A JPH07232191A (en) 1995-09-05
JP3018220B2 true JP3018220B2 (en) 2000-03-13

Family

ID=12844033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6049905A Expired - Fee Related JP3018220B2 (en) 1994-02-24 1994-02-24 Oxidation ditch type wastewater treatment apparatus and its centralized management method

Country Status (1)

Country Link
JP (1) JP3018220B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303009C (en) * 2004-09-30 2007-03-07 中国科学院生态环境研究中心 Cleaning type integrated effluent disposal system and operation method
JP5042805B2 (en) * 2007-12-25 2012-10-03 フジクリーン工業株式会社 Water quality monitoring system
US9902927B2 (en) 2013-09-30 2018-02-27 Flextank International Limited Fluid container assembly with corner reinforcing posts

Also Published As

Publication number Publication date
JPH07232191A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
JP3018220B2 (en) Oxidation ditch type wastewater treatment apparatus and its centralized management method
JP2002267657A (en) System for charging drain-discharging person
CN109542150A (en) A kind of adjusting method of rural domestic sewage treatment facility influent load
JP2003136086A (en) Water quality control unit for sewage disposal plant
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP4132921B2 (en) Anaerobic treatment facility and monitoring method thereof
JP4620391B2 (en) Sewage treatment equipment
JP3214489B2 (en) Sewage treatment method and sewage treatment device
JP2808230B2 (en) Batch type wastewater treatment equipment and its centralized management method
JP2657940B2 (en) Wastewater treatment equipment and centralized management of multiple wastewater treatment equipment
JP3384951B2 (en) Biological water treatment method and equipment
JP7103598B2 (en) Water treatment control device and water treatment system
KR101017869B1 (en) Average Water Quality Measuring System of Water Storage Tank
JP3104763B2 (en) Return sludge flow control device
Watts et al. Process audit and asset assessment using on-line instrumentation
JPH11683A (en) Operation method for small-scale waste water treatment equipment
JP2018178621A (en) Sewage draining method and sewage purification system
JP3654742B2 (en) Sludge dewatering method
JPH05309387A (en) Method for monitoring accumulation of final settled sludge of activated sludge treatment apparatus
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JP2002086182A (en) Method for obtaining inflow of raw water in batch water treatment apparatus
KR20230053017A (en) Water quality monitoring system of small scale sewage treatment plant of upper stream of dam
JP3579300B2 (en) Sewage flow prediction control device
JPH06328091A (en) Sludge capacity index estimating method in control system for biological treatment device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees