JP3511881B2 - Crystal grain size measuring device - Google Patents
Crystal grain size measuring deviceInfo
- Publication number
- JP3511881B2 JP3511881B2 JP02491098A JP2491098A JP3511881B2 JP 3511881 B2 JP3511881 B2 JP 3511881B2 JP 02491098 A JP02491098 A JP 02491098A JP 2491098 A JP2491098 A JP 2491098A JP 3511881 B2 JP3511881 B2 JP 3511881B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal grain
- grain size
- light
- measured
- calculation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims description 235
- 238000004364 calculation method Methods 0.000 claims description 81
- 239000002245 particle Substances 0.000 claims description 34
- 238000003384 imaging method Methods 0.000 claims description 27
- 230000003287 optical effect Effects 0.000 claims description 27
- 230000001678 irradiating effect Effects 0.000 claims description 16
- 230000003247 decreasing effect Effects 0.000 claims description 11
- 230000035945 sensitivity Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 8
- 238000005286 illumination Methods 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 70
- 229910000831 Steel Inorganic materials 0.000 description 53
- 239000010959 steel Substances 0.000 description 53
- 238000010586 diagram Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 238000007781 pre-processing Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000007747 plating Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 101100444142 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dut-1 gene Proteins 0.000 description 7
- 229910018137 Al-Zn Inorganic materials 0.000 description 6
- 229910018573 Al—Zn Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 238000013139 quantization Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000004035 construction material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、画像処理により金
属表面の結晶粒径を測定する結晶粒径測定装置に関し、
特にメッキ表面に析出するスパングルの粒径を測定する
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal grain size measuring device for measuring a crystal grain size on a metal surface by image processing,
In particular measuring the particle size of the spangle precipitated on the plating surface
Regarding the device .
【0002】[0002]
【従来の技術】例えば、自動車の外装材及び内装材,家
庭用電化製品の外装材,並びに建築用材として広く用い
られている表面処理鋼板は、冷延薄鋼板の表面に防錆性
及び耐食性の強化を目的として、亜鉛,鉄,アルミニウ
ム,及び錫を主成分とした合金でメッキ処理し、さらに
防錆性を高めるために、無色又は極淡黄色のクロメート
等のコーティング材で表面を被覆することにより製造さ
れ、特に自動車及び家庭用電化製品に用いられる表面処
理鋼板は、塗料との親和性の高いコーティング材を用い
て表面コーティングされた後で塗装処理される。2. Description of the Related Art For example, surface-treated steel sheets, which are widely used as exterior and interior materials for automobiles, exterior materials for household appliances, and construction materials, have rust-proof and corrosion-resistant properties on the surface of cold-rolled thin steel sheets. Plating with an alloy containing zinc, iron, aluminum, and tin as the main components for the purpose of strengthening, and then coating the surface with a coating material such as colorless or extremely pale yellow chromate to enhance rust prevention. The surface-treated steel sheet produced in accordance with the present invention, which is particularly used for automobiles and household appliances, is surface-coated with a coating material having a high affinity for paints, and then applied with coating.
【0003】最近では、メッキ処理技術の進歩により、
耐食性が著しく優れた表面処理鋼板の製造が可能とな
り、特に家庭用電化製品の外装材及び建築用材において
は、塗装を要しないAl−Zn合金メッキを用いた表面
処理鋼板が既に製品化されている。Recently, due to the progress of plating technology,
It has become possible to manufacture surface-treated steel sheets with extremely excellent corrosion resistance, and particularly for household electrical appliances exterior materials and construction materials, surface-treated steel sheets using Al-Zn alloy plating that does not require painting have already been commercialized. .
【0004】このような塗装を要しない表面処理鋼板に
おいては、メッキ剤塗布後の冷却過程で鋼板表面にスパ
ングルと呼ばれる結晶粒が不可避的に析出するため、メ
ッキ処理された鋼板表面が無色又は極淡黄色のコーティ
ング膜を通した外観上の品質が損なわれるという問題が
あり、この結晶粒の粒径を均一にして外観上の品質低下
を抑制する試みがなされている。なお、ここでいう粒径
とは、結晶粒の面積に相当する大きさの円の直径の平均
値である。In such a surface-treated steel sheet which does not require coating, crystal grains called spangles are inevitably deposited on the surface of the steel sheet during the cooling process after the plating agent is applied, so that the plated steel sheet surface is colorless or polar. There is a problem in that the appearance quality through the light yellow coating film is impaired, and attempts have been made to suppress the deterioration in appearance quality by making the grain size of the crystal grains uniform. The grain size here is the average value of the diameter of a circle having a size corresponding to the area of the crystal grain.
【0005】一方、結晶粒径のフィードバック制御及び
検査の観点から、製造ライン上で結晶粒径の自動測定を
実現する試みがなされており、特開平5−45138号
公報には、被測定面をカメラ等の撮像器を用いて撮像し
た後で2値化し、2値化画像情報における直交2方向の
投影データから所定幅の累積値を演算し、各方向の累積
値をさらに所定の閾値に応じて2値化し、この2値化情
報における0から1に変化する点の個数と被測定面の大
きさとに基づいて結晶粒径を演算する結晶粒径測定装置
が開示されている。On the other hand, from the viewpoints of feedback control and inspection of the crystal grain size, attempts have been made to realize automatic measurement of the crystal grain size on the production line, and Japanese Patent Application Laid-Open No. 5-45138 discloses the measured surface. After the image is picked up by using an image pickup device such as a camera, it is binarized and a cumulative value of a predetermined width is calculated from projection data of orthogonal two directions in the binarized image information, and the cumulative value of each direction is further determined according to a predetermined threshold value. There is disclosed a crystal grain size measuring device which binarizes the grain size and calculates the grain size based on the number of points changing from 0 to 1 in the binarized information and the size of the surface to be measured.
【0006】[0006]
【発明が解決しようとする課題】ところが、上述の如き
結晶粒径測定装置においては、スパングル及びその他の
結晶粒との濃淡差が小さい場合、撮像画像データを2値
化したときに粒界が不鮮明となり、正確な結晶粒径の測
定ができないという問題があった。However, in the crystal grain size measuring device as described above, when the difference in density between the spangle and other crystal grains is small, the grain boundary is unclear when the captured image data is binarized. Therefore, there is a problem that the crystal grain size cannot be accurately measured.
【0007】本願発明者は、メッキ表面においてスパン
グル等の測定対象とする結晶粒を含む全ての種類の結晶
粒が、固有の光学的指向性を有する樹枝状結晶であるこ
とに着目し、光源から上述の如きメッキ表面に光を照射
したとき、スパングルからの反射光のみを撮像器に取込
むことにより、撮像の段階にて撮像領域の背景を略黒色
とし、かつ、スパングルのみを略白色として抽出するこ
とができることを知り得たものである。The inventor of the present application paid attention to the fact that all kinds of crystal grains, including crystal grains to be measured such as spangles, on the plating surface are dendritic crystals having a unique optical directivity. When the plated surface is irradiated with light as described above, only the reflected light from the spangle is captured by the image sensor, so that the background of the imaging area is made substantially black and only the spangle is made substantially white at the stage of imaging. I knew what I could do.
【0008】本発明は斯かる知見に鑑みてなされたもの
であり、光源から前記被測定面へ照射される光を、スパ
ングルの如き測定対象とする結晶粒の表面にて反射さ
せ、その反射方向に撮像器を設けて撮像することによ
り、スパングル及びその他の結晶粒との濃淡差が小さい
場合においても、正確なスパングルの結晶粒径の測定が
できる結晶粒径測定装置を提供することを目的とする。The present invention has been made in view of the above findings, and the light emitted from the light source to the surface to be measured is reflected on the surface of the crystal grain to be measured, such as spangle, and the reflection direction thereof is reflected. By providing an image pickup device in the image pickup device, the object of the present invention is to provide a crystal grain size measuring device capable of accurately measuring the crystal grain size of spangle even when the difference in density between spangle and other crystal grains is small. To do.
【0009】[0009]
【課題を解決するための手段】第1発明に係る結晶粒径
測定装置は、撮像器を用いて被測定物の表面を撮像し、
撮像結果から被測定面に析出する所定種類の結晶粒の粒
径を算出することで前記結晶粒の粒径を測定する結晶粒
径測定装置において、前記撮像結果を量子化する量子化
手段と、該量子化手段の量子化結果を所定の輝度閾値に
基づいて2値化することによって前記所定種類の結晶粒
を識別する2値化/識別手段と、該2値化/識別手段に
識別された前記所定種類の結晶粒の画素を計数する計数
手段と、該計数手段の計数結果に応じた面積を演算する
面積演算手段と、該面積演算手段の演算結果に対応する
円の直径を演算する直径演算手段と、該直径演算手段の
演算結果に基づいて前記粒径を演算する粒径演算手段
と、前記被測定面へ光を照射する光照射手段と、該光照
射手段の光量を、撮像される前記所定種類の結晶粒とそ
の他の結晶粒との濃淡差を明確にすべく前記撮像器の感
度に応じて増減する光量増減手段と、該光量増減手段が
前記光量を増減する都度、前記粒径演算手段により演算
される前記粒径と所定値との偏差を演算する偏差演算手
段と、該偏差演算手段の演算結果が最小となる前記光照
射手段の光量を選択する光量選択手段とを備えることを
特徴とする。A crystal grain size measuring apparatus according to a first aspect of the present invention captures an image of a surface of an object to be measured using an imager,
In a crystal grain size measuring device for measuring the grain size of the crystal grain by calculating the grain size of a predetermined type of crystal grain deposited on the surface to be measured from the image pickup result, a quantization for quantizing the image pickup result.
Means and the quantization result of the quantizing means to a predetermined brightness threshold
Binarization based on the above
And a binarizing / identifying means for identifying
Counting for counting the identified pixels of the predetermined type of crystal grain
And an area corresponding to the counting result of the counting means
Corresponding to the area calculation means and the calculation result of the area calculation means
Diameter calculating means for calculating the diameter of a circle, and the diameter calculating means
Particle size calculating means for calculating the particle size based on the calculation result
And a light irradiation means for irradiating the surface to be measured with light, and the light irradiation means.
The amount of light from the projection means is compared with that of the crystal grains of the predetermined type to be imaged.
Of the image sensor in order to clarify the difference in density with other crystal grains of
The light amount increasing / decreasing means for increasing / decreasing according to the
Each time the amount of light is increased or decreased, calculation is performed by the particle size calculation means.
Deviation calculator for calculating the deviation between said particle size and a predetermined value
Stage, and the above-mentioned illumination device that minimizes the calculation result of the deviation calculating means.
And a light quantity selection means for selecting the light quantity of the projection means .
【0010】[0010]
【0011】第2発明に係る結晶粒径測定装置は、撮像
器を用いて被測定物の表面を撮像し、撮像結果から被測
定面に析出する所定種類の結晶粒の粒径を算出すること
で前記結晶粒の粒径を測定する結晶粒径測定装置におい
て、前記撮像結果を量子化する量子化手段と、該量子化
手段の量子化結果を所定の輝度閾値に基づいて2値化す
ることによって前記所定種類の結晶粒を識別する2値化
/識別手段と、該2値化/識別手段に識別された前記所
定種類の結晶粒の画素を計数する計数手段と、該計数手
段の計数結果に応じた面積を演算する面積演算手段と、
該面積演算手段の演算結果に対応する円の直径を演算す
る直径演算手段と、該直径演算手段の演算結果に基づい
て前記粒径を演算する粒径演算手段と、前記被測定面へ
光を照射する光照射手段と、該光照射手段の前記被測定
面への照射角度又は前記撮像器の前記被測定面に対する
光軸角度を、撮像される前記所定種類の結晶粒とその他
の結晶粒との濃淡差を明確にすべく前記撮像器の感度に
応じて変更する角度変更手段と、該角度変更手段が前記
光照射手段の照射角度又は前記撮像器の光軸角度を変更
する都度、前記粒径演算手段により演算される前記粒径
と所定値との偏差を演算する偏差演算手段と、該偏差演
算手段の演算結果が最小となる前記光照射手段の照射角
度又は前記撮像器の光軸角度を選択する角度選択手段と
を備えることを特徴とする。The crystal grain size measuring apparatus according to the second aspect of the present invention uses the image pickup device to image the surface of the object to be measured, and calculates the grain size of a predetermined type of crystal grain deposited on the surface to be measured from the imaged result. In a crystal grain size measuring apparatus for measuring the grain size of the crystal grains, a quantizing means for quantizing the image pickup result, and binarizing the quantizing result of the quantizing means based on a predetermined brightness threshold value. A binarization / identification means for identifying the predetermined type of crystal grains, a counting means for counting the pixels of the predetermined type of crystal grains identified by the binarization / identification means, and a counting result of the counting means Area calculation means for calculating the area according to
Diameter calculation means for calculating the diameter of a circle corresponding to the calculation result of the area calculation means, particle size calculation means for calculating the particle size based on the calculation result of the diameter calculation means, and light to the surface to be measured. Light irradiating means for irradiating, and the measured object
Illumination angle to the surface or the measured surface of the imager
The optical axis angle, and the angle changing means for changing in accordance with the sensitivity of the imager so as to clarify the shading difference between the predetermined type of grains and other grains to be imaged, said that the angle changing means
Deviation calculation means for calculating a deviation between the particle size calculated by the particle size calculation means and a predetermined value each time the irradiation angle of the light irradiation means or the optical axis angle of the imaging device is changed ; Deviation performance
Irradiation angle of the light irradiation means that minimizes the calculation result of the calculation means
Characterized in that it comprises a time or angle selecting means for selecting the optical axis angle of the imager.
【0012】[0012]
【0013】[0013]
【0014】第3発明に係る結晶粒径測定装置は、撮像
器を用いて被測定物の表面を撮像し、撮像結果から被測
定面に析出する所定種類の結晶粒の粒径を算出すること
で前記結晶粒の粒径を測定する結晶粒径測定装置におい
て、前記撮像結果を量子化する量子化手段と、該量子化
手段の量子化結果を所定の輝度閾値に基づいて2値化す
ることによって前記所定種類の結晶粒を識別する2値化
/識別手段と、該2値化/識別手段に識別された前記所
定種類の結晶粒の画素を計数する計数手段と、該計数手
段の計数結果に応じた面積を演算する面積演算手段と、
該面積演算手段の演算結果に対応する円の直径を演算す
る直径演算手段と、該直径演算手段の演算結果に基づい
て前記粒径を演算する粒径演算手段と、前記被測定面へ
光を照射する光照射手段と、該光照射手段の光量を、撮
像される前記所定種類の結晶粒とその他の結晶粒との濃
淡差を明確にすべく前記撮像器の感度に応じて増減する
光量増減手段と、前記光照射手段の前記被測定面への照
射角度又は前記撮像器の前記被測定面に対する光軸角度
を、撮像される前記所定種類の結晶粒とその他の結晶粒
との濃淡差を明確にすべく前記撮像器の感度に応じて変
更する角度変更手段と、前記光量増減手段が前記光量を
増減する都度、及び前記角度変更手段が前記光照射手段
の照射角度又は前記撮像器の光軸角度を変更する都度、
前記粒径演算手段により演算される前記粒径と所定値と
の偏差を演算する偏差演算手段と、該偏差演算手段の演
算結果が最小となる前記光照射手段の光量及び前記光照
射手段の照射角度又は前記撮像器の光軸角度を選択する
光量/角度選択手段とを備えることを特徴とする。The crystal grain size measuring device according to the third aspect of the present invention is an image pickup device.
Image the surface of the object to be measured with a measuring instrument and
To calculate the grain size of a certain type of crystal grain that precipitates on a fixed surface
In the crystal grain size measuring device for measuring the grain size of the crystal grain by
A quantizing means for quantizing the imaging result, and the quantizing means
The quantization result of the means is binarized based on a predetermined brightness threshold
Binarization for identifying the above-mentioned predetermined type of crystal grain by
/ Discriminating means and the location discriminated by the binarizing / identifying means
Counting means for counting pixels of a fixed type of crystal grain, and the counting hand
Area calculation means for calculating an area according to the counting result of the step,
The diameter of the circle corresponding to the calculation result of the area calculation means is calculated.
Based on the calculation result of the diameter calculating means and the diameter calculating means
Particle size calculating means for calculating the particle size, and to the surface to be measured
The light irradiation means for irradiating light and the light quantity of the light irradiation means are photographed.
Concentration of the predetermined type of crystal grains and other crystal grains to be imaged
Increase or decrease according to the sensitivity of the imager to clarify the difference
The light amount increasing / decreasing means and the light irradiation means for illuminating the surface to be measured.
Angle of incidence or optical axis angle of the imager with respect to the measured surface
, The predetermined type of crystal grains to be imaged and other crystal grains
In order to clarify the difference in density between the
Further, the angle changing means and the light quantity increasing / decreasing means change the light quantity.
Each time it increases or decreases, and the angle changing means is the light irradiation means.
Each time the irradiation angle of or the optical axis angle of the imager is changed ,
A deviation calculating means for calculating a deviation between the particle diameter and the predetermined value which is calculated by the particle-diameter calculation means, Starring the deviation calculating means
Quantity of the light irradiation unit that calculation results is minimized and the light irradiation
Select the irradiation angle of the shooting means or the optical axis angle of the imager
A light quantity / angle selecting means is provided .
【0015】第4発明に係る結晶粒径測定装置は、第1
乃至第3発明の結晶粒径測定装置のいずれかにおいて、
前記輝度閾値を変更する閾値変更手段と、前記輝度閾値
を選択する閾値選択手段とを更に備え、前記閾値選択手
段は、前記閾値変更手段が前記輝度閾値を変更する都
度、前記偏差演算手段により演算される前記粒径と所定
値との偏差が最小となる輝度閾値を選択するようにして
あることを特徴とする。The crystal grain size measuring apparatus according to the fourth invention is the first
To any of the crystal grain size measuring devices of the third invention ,
Threshold changing means for changing the brightness threshold, and the brightness threshold
Further comprising a threshold selection means for selecting
Stage, each time the threshold value changing means changes the luminance threshold, as the deviation between the particle diameter and the predetermined value which is calculated by said deviation calculation means selects a brightness threshold becomes minimum
Characterized in that there.
【0016】[0016]
【0017】第1発明に係る結晶粒径測定装置では、撮
像器を用いて撮像した被測定面の画像情報が量子化さ
れ、この量子化結果が所定の輝度閾値に基づいて2値化
されることによってスパングル等の所定種類の結晶粒が
その他の結晶粒から識別され、識別されたスパングルの
画素が計数され、計数結果に応じた面積が演算され、こ
の演算結果に対応する円の直径が演算され、この演算結
果に基づいてスパングルの結晶粒径が演算される。更
に、被測定面へ光を照射する光照射手段の光量が撮像さ
れるスパングルとその他の結晶粒との濃淡差を明確にす
べく撮像器の感度に応じて増減される都度、演算された
スパングルの結晶粒径と所定値との偏差が演算される。
そして、これらの演算が光量の増減に応じて繰り返さ
れ、演算された粒径の中から偏差が最小となる光量が選
択される。[0017] In the crystal grain size measuring apparatus according to the first aspect of the present invention, shooting
The image information of the surface to be measured captured by the imager is quantized.
This quantization result is binarized based on a predetermined brightness threshold.
By doing so, certain types of crystal grains such as spangles
Of spangles identified from other grains
Pixels are counted and the area is calculated according to the counting result.
The diameter of the circle corresponding to the calculation result of is calculated, and this calculation result
The crystal grain size of spangle is calculated based on the fruit. Change
In addition, the amount of light from the light irradiation means that irradiates the surface to be measured is imaged.
Clarify the difference in shade between spangles and other crystal grains
Therefore, it is calculated each time it is increased or decreased according to the sensitivity of the imager.
A deviation between the spangle crystal grain size and a predetermined value is calculated.
Then, these calculations are repeated as the amount of light increases or decreases.
The light amount with the smallest deviation is selected from the calculated particle size.
Is selected .
【0018】[0018]
【0019】第2発明に係る結晶粒径測定装置では、撮
像器を用いて撮像した被測定面の画像情報が量子化さ
れ、この量子化結果が所定の輝度閾値に基づいて2値化
されることによってスパングル等の所定種類の結晶粒が
その他の結晶粒から識別され、識別されたスパングルの
画素が計数され、計数結果に応じた面積が演算され、こ
の演算結果に対応する円の直径が演算され、この演算結
果に基づいてスパングルの結晶粒径が演算される。更
に、被測定面へ光を照射する光照射手段の照射角度又は
撮像器の光軸角度が撮像されるスパングルとその他の結
晶粒との濃淡差を明確にすべく撮像器の感度に応じて変
更される都度、演算されたスパングルの結晶粒径と所定
値との偏差が演算される。そして、これらの演算が光照
射手段の照射角度又は撮像器の光軸角度の変更に応じて
繰り返され、演算された粒径の中から偏差が最小となる
光照射手段の照射角度又は前記撮像器の光軸角度が選択
される。In the crystal grain size measuring apparatus according to the second aspect of the invention, the image information of the surface to be measured which is picked up by the image pickup device is quantized, and the quantized result is binarized based on a predetermined brightness threshold value. By doing this, a specified type of crystal grain such as spangle is identified from other crystal grains, the pixels of the identified spangle are counted, the area corresponding to the count result is calculated, and the diameter of the circle corresponding to this calculation result is calculated. Then, the crystal grain size of the spangle is calculated based on this calculation result. Furthermore, the irradiation angle of the light irradiation means for irradiating the light to the surface to be measured or
Varying in accordance with the sensitivity of the imaging device in order to clarify the shading difference between the spangle and other grains optical axis angle of the imager is captured
Each being further, deviation between the grain size and the predetermined value of the computed spangle is calculated. And these operations are illuminated
Repeated in response to changes in the irradiation angle of the shooting means or the optical axis angle of the imaging device, the deviation from the calculated particle size is minimized.
The irradiation angle of the light irradiation means or the optical axis angle of the image pickup device is selected.
【0020】[0020]
【0021】[0021]
【0022】第3発明に係る結晶粒径測定装置では、撮
像器を用いて撮像した被測定面の画像情報が量子化さ
れ、この量子化結果が所定の輝度閾値に基づいて2値化
されることによってスパングル等の所定種類の結晶粒が
その他の結晶粒から識別され、識別されたスパングルの
画素が計数され、計数結果に応じた面積が演算され、こ
の演算結果に対応する円の直径が演算され、この演算結
果に基づいてスパングルの結晶粒径が演算される。更
に、被測定面へ光を照射する光照射手段の光量が撮像さ
れるスパングルとその他の結晶粒との濃淡差を明確にす
べく撮像器の感度に応じて増減される都度、及び光照射
手段の照射角度又は撮像器の光軸角度が撮像されるスパ
ングルとその他の結晶粒との濃淡差を明確にすべく撮像
器の感度に応じて変更される都度、演算されたスパング
ルの結晶粒径と所定値との偏差が演算される。そして、
これらの演算が光照射手段の光量の増減及び照射角度又
は撮像器の光軸角度の変更に応じて繰り返され、演算さ
れた粒径の中から偏差が最小となる光照射手段の光量及
び照射角度又は撮像器の光軸角度が選択される。[0022] In the crystal grain size measuring apparatus according to the third invention, shooting
The image information of the surface to be measured captured by the imager is quantized.
This quantization result is binarized based on a predetermined brightness threshold.
By doing so, certain types of crystal grains such as spangles
Of spangles identified from other grains
Pixels are counted and the area is calculated according to the counting result.
The diameter of the circle corresponding to the calculation result of is calculated, and this calculation result
The crystal grain size of spangle is calculated based on the fruit. Change
In addition, the amount of light from the light irradiation means that irradiates the surface to be measured is imaged.
Clarify the difference in shade between spangles and other crystal grains
Therefore, every time it is increased or decreased according to the sensitivity of the image pickup device, and the irradiation angle of the light irradiation means or the optical axis angle of the image pickup device is imaged.
Image to clarify the difference in density between the single crystal and other crystal grains
Calculated spang each time it is changed according to the sensitivity of the vessel
The deviation between the crystal grain size of the aluminum and the predetermined value is calculated. And
These calculations are performed to increase or decrease the light amount of the light irradiation means and the irradiation angle or
Is repeated according to the change of the optical axis angle of the image pickup device, and the amount of light of the light irradiation means that minimizes the deviation from the calculated particle size
And the irradiation angle or the optical axis angle of the imager is selected.
【0023】第4発明に係る結晶粒径測定装置では、第
1乃至第3発明の結晶粒径測定装置のいずれかにおい
て、2値化に用いる輝度閾値が変更される都度、結晶の
粒径と所定値との偏差が演算される。そして、これらの
演算が輝度閾値の変更に応じて繰り返され、演算された
偏差が最小となる輝度閾値が選択される。 [0023] In the crystal grain size measuring apparatus according to the fourth invention, the
In any of the crystal grain size measuring devices of the first to third inventions, the crystal of the crystal is changed every time the brightness threshold value used for binarization is changed.
The deviation between the particle size and the predetermined value is calculated. Then, these calculations are repeated and calculated according to the change of the brightness threshold .
The brightness threshold that minimizes the deviation is selected .
【0024】[0024]
【発明の実施の形態】実施の形態1.以下本発明をその
実施の形態を示す図面に基づいて詳述する。図1は、実
施の形態1に係る結晶粒径測定装置の構成を示すブロッ
ク図である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment thereof. FIG. 1 is a block diagram showing the configuration of the crystal grain size measuring apparatus according to the first embodiment.
【0025】図1において、1は、例えば表面コーティ
ング処理後のAl−Znメッキ処理鋼板を用いてなる被
測定物であり、被測定物1の被測定面11側には、被測
定面11への照射角度θ及び光量の調整可能な光源2が
設けられ、また、同側には、カメラ,CCD等の撮像器
3が被測定面11に対向して設けられている。撮像器3
による撮像画像データは、画像処理装置4に与えられ、
画像処理装置4により被測定面11における結晶粒径が
演算されるようになっている。なお、光源2には被測定
面11に均一な光量を照射すべく線光源又は面光源を用
いるのが望ましい。In FIG. 1, reference numeral 1 denotes an object to be measured, which is made of, for example, an Al—Zn plated steel plate after surface coating, and the surface to be measured 11 is located on the surface 11 to be measured. A light source 2 whose irradiation angle θ and light amount can be adjusted is provided, and an imager 3 such as a camera and a CCD is provided on the same side so as to face the surface 11 to be measured. Imager 3
The picked-up image data of is given to the image processing device 4,
The image processing device 4 calculates the crystal grain size on the surface 11 to be measured. It is desirable to use a linear light source or a surface light source as the light source 2 in order to irradiate the surface 11 to be measured with a uniform amount of light.
【0026】画像処理装置4は、A/D変換器,フレー
ムメモリ等を具備した撮像器3のインターフェースとし
ての画像入力部41と、画像入力部41から与えられた
画像データを2値化する2値化処理部42と、ノイズ除
去,穴埋め等の前処理を行なう前処理部43と、前処理
後の2値化データに基づいて結晶粒径を演算する結晶粒
径演算部44とを備えてなる。なお、結晶粒径演算部4
4にて演算された結晶粒径は、図示しない表示装置に表
示させることができるほか、結晶粒径を制御する制御装
置へのフィードバック値としても利用することができ
る。The image processing device 4 binarizes the image data input from the image input unit 41 and the image input unit 41 as an interface of the image pickup device 3 provided with an A / D converter, a frame memory and the like 2 A binarization processing unit 42, a preprocessing unit 43 that performs preprocessing such as noise removal and hole filling, and a crystal grain size calculation unit 44 that calculates the crystal grain size based on the binarized data after the preprocessing are provided. Become. The crystal grain size calculation unit 4
The crystal grain size calculated in 4 can be displayed on a display device (not shown) and can also be used as a feedback value to a control device for controlling the crystal grain size.
【0027】図2,図3は、被測定面11の撮像画像の
一例を示す模式図であり、特に図2は、上述の如き構成
の結晶粒径測定装置における光源2を用いず、自然光を
被測定面11に照射した状態での撮像結果を示し、図3
は、本発明に係る結晶粒径測定装置による撮像結果を夫
々示している。FIGS. 2 and 3 are schematic views showing an example of a picked-up image of the surface 11 to be measured, and in particular, FIG. 2 does not use the light source 2 in the crystal grain size measuring apparatus having the above-mentioned configuration and natural light is emitted. FIG. 3 shows an image pickup result when the surface to be measured 11 is irradiated.
3A and 3B respectively show imaging results by the crystal grain size measuring device according to the present invention.
【0028】図2において、最も濃い黒色の部分(クロ
スハッチング部分)がスパングルs,s,…であり、図
2に示す如く自然光による撮像画像では、スパングル
s,s,…及びその他の結晶粒(ハッチング部分)との
濃淡差が少なく、この状態の撮像画像を画像処理装置4
に与えても前述の如く正確な結晶粒径を測定することは
困難であるが、本発明に係る結晶粒径測定装置では、後
述する所定の照射角度θ及び所定の光量に設定された光
源2を設けることにより、図3に示す如く被測定面11
を撮像する段階にてスパングルs,s,…(クロスハッ
チング部分)及びその他の結晶粒(白色部分)との濃淡
差を大きくすることができるようになっている。In FIG. 2, the darkest black portion (cross hatching portion) is the spangles s, s, ..., As shown in FIG. 2, in the image captured by natural light, the spangles s, s ,. The hatched portion) has a small difference in density and the captured image in this state is captured by the image processing device 4
It is difficult to accurately measure the crystal grain size as described above even when the light source 2 is set to a light source 2 set to a predetermined irradiation angle θ and a predetermined light amount, which will be described later. As shown in FIG. 3, the measured surface 11 is provided by providing
It is possible to increase the difference in density between the spangles s, s, ... (Cross hatching portion) and other crystal grains (white portion) at the stage of imaging.
【0029】図4は、Al−Znメッキ鋼板を被測定物
1としたときの照射角度θと、その際の撮像画像から得
られる結晶粒径の測定誤差との関係を示すグラフであ
り、横軸に照射角度θ(°)、縦軸に結晶粒径測定誤差
(mm)を夫々配置している。また、図5は、Al−Z
nメッキ鋼板を被測定物1としたときの、光源2による
被測定面11の照度wと、その際の撮像画像から得られ
る結晶粒径の測定誤差との関係を示すグラフであり、横
軸に照度w(kLux)、縦軸に結晶粒径測定誤差(m
m)を夫々配置している。FIG. 4 is a graph showing the relationship between the irradiation angle θ when an Al-Zn plated steel sheet is used as the DUT 1 and the measurement error of the crystal grain size obtained from the captured image at that time. The irradiation angle θ (°) is arranged on the axis, and the crystal grain size measurement error (mm) is arranged on the vertical axis. In addition, FIG.
6 is a graph showing the relationship between the illuminance w of the surface 11 to be measured by the light source 2 and the measurement error of the crystal grain size obtained from the captured image when the n-plated steel plate is the object to be measured 1; Is the illuminance w (kLux), and the vertical axis is the crystal grain size measurement error (m
m) are arranged respectively.
【0030】これらのグラフは、まず、照射角度θ又は
照度wの何れか一方の値を粒径が測定可能な範囲内で適
当な値に固定した状態で、他方の値を調整し、撮像画像
を表示装置で観察しながら視覚的にスパングルとその他
の結晶粒が図3に示す如く明瞭に区別できる状態となる
値で前記他方の値を固定し、前記一方の値を変化させつ
つ測定したものである。In these graphs, first, with either one of the irradiation angle θ and the illuminance w fixed at an appropriate value within the measurable range of the particle size, the other value is adjusted to obtain a captured image. While observing with a display device, the other value is fixed at a value at which the spangle and other crystal grains can be clearly distinguished as shown in FIG. 3, and the one value is measured while changing the other value. Is.
【0031】図4,図5に夫々示す如く、照射角度θが
13°<θ<23°、照度wが13kLux<w<25
kLuxのときに結晶粒径測定誤差が夫々±約0.1m
mとなり、実用に十分耐えうる測定精度を有しているこ
とがわかる。従って、Al−Znメッキ鋼板に限らず、
同様の結晶構造を有する被測定物1に対して、上述の如
き照射角度θ及び照度wの関係を実験的に測定してお
き、この範囲の照射角度θ及び照度となるように光源2
の光軸角度を設定しておくことにより、撮像器3にて得
られる撮像画像における特定の結晶粒とそれ以外の結晶
粒との濃淡差を大きくして、各結晶粒が有する本来の配
光性の相違を強調して特定の結晶粒のみを抽出すること
ができる。As shown in FIGS. 4 and 5, the irradiation angle θ is 13 ° <θ <23 ° and the illuminance w is 13 kLux <w <25.
When kLux, the crystal grain size measurement error is ± 0.1m each
It is m, which means that the measurement accuracy is sufficiently high for practical use. Therefore, not only Al-Zn plated steel sheet,
The relationship between the irradiation angle θ and the illuminance w as described above is experimentally measured with respect to the DUT 1 having the same crystal structure, and the light source 2 is controlled so that the irradiation angle θ and the illuminance fall within this range.
By setting the optical axis angle of each crystal grain in the captured image obtained by the image pickup device 3, the difference in shade between the specific crystal grain and the other crystal grain is increased, and the original light distribution of each crystal grain is obtained. Only specific crystal grains can be extracted by emphasizing the difference in sex.
【0032】図6は、画像処理装置4における粒径演算
の処理手順を示すフローチャートである。まず、撮像器
3から画像入力部41に与えられた図3の如き撮像画像
データを量子化し(ステップ1)、2値化処理部42に
て図7に示す如く2値化する(ステップ2)。FIG. 6 is a flow chart showing the processing procedure of the particle size calculation in the image processing apparatus 4. First, the captured image data as shown in FIG. 3 given from the image pickup device 3 to the image input unit 41 is quantized (step 1) and binarized by the binarization processing unit 42 as shown in FIG. 7 (step 2). .
【0033】図7は、図3に示した撮像画像を画像処理
装置4にて2値化した結果を示す模式図である。上述の
如き範囲に光源2から被測定面11に照射される光の照
射角度θと、この照射光による被測定面11での照度w
を予め設定した状態においては、図7に示す如く、被測
定面11の撮像画像データからスパングルs,s,…の
みを白色で抽出することができる。FIG. 7 is a schematic diagram showing the result of binarizing the captured image shown in FIG. 3 by the image processing device 4. The irradiation angle θ of the light emitted from the light source 2 to the surface 11 to be measured within the above-described range, and the illuminance w on the surface 11 to be measured by this irradiation light.
7 is preset, only the spangles s, s, ... Can be extracted in white from the captured image data of the surface 11 to be measured.
【0034】次いで、2値化画像データにノイズ除去及
び穴埋め等の前処理を行なった(ステップ3)後、図7
に示す如きスパングルに相当する白色の部分を構成する
画素数を演算し(ステップ4)、この画素数に基づいて
面積を演算し(ステップ5)、この面積に相当する円の
直径を演算する(ステップ6)。ステップ4〜ステップ
6を全てのスパングルについて行ったか否かを確認し
(ステップ7)、全てのスパングルについて行った場合
には、ステップ6にて演算された直径の平均値を演算し
(ステップ8)、これをスパングルの結晶粒径とする。
なお、ステップ7にて全てのスパングルについて行って
いない場合には、ステップ4〜ステップ7を繰り返す。Next, the binarized image data is subjected to pre-processing such as noise removal and hole filling (step 3), and then FIG.
The number of pixels forming the white portion corresponding to the spangle as shown in (4) is calculated (step 4), the area is calculated based on this number of pixels (step 5), and the diameter of the circle corresponding to this area is calculated ( Step 6). It is confirmed whether steps 4 to 6 have been performed for all spangles (step 7), and if they have been performed for all spangles, the average value of the diameters calculated in step 6 is calculated (step 8). Let this be the crystal grain size of spangle.
If all spangles have not been processed in step 7, steps 4 to 7 are repeated.
【0035】図8は、本発明に係る結晶粒径測定装置の
測定精度を示すグラフであり、横軸にはJIS G 0
551に準拠した方法にて測定された平均粒径測定値
(mm)を配置し、縦軸には横軸に対応する本発明に係
る結晶粒径測定装置により測定された平均粒径測定値
(mm)を夫々配置してある。FIG. 8 is a graph showing the measurement accuracy of the crystal grain size measuring apparatus according to the present invention, where the horizontal axis is JIS G 0.
The average particle size measurement value (mm) measured by the method according to 551 is arranged, and the vertical axis corresponds to the horizontal axis and the average particle size measurement value (measured by the crystal grain size measuring device according to the present invention ( mm) are arranged respectively.
【0036】図8に示す如く、横軸及び縦軸の平均粒径
測定値の関係は略直線上に収束しており、本発明に係る
結晶粒径測定装置は、特定の結晶粒とそれ以外の結晶粒
との濃淡差が小さい場合でも特定の結晶粒のみを抽出し
て高精度に結晶粒径を測定できることがわかる。As shown in FIG. 8, the relationship between the measured values of the average grain sizes on the horizontal axis and the vertical axis converges on a substantially straight line, and the crystal grain size measuring apparatus according to the present invention has a specific crystal grain and other grains. It can be seen that even if the difference in density from the crystal grains is small, only specific crystal grains can be extracted to measure the crystal grain size with high accuracy.
【0037】以上の実施の形態において、光源2の被測
定面11への照射角度θを変更できる構成としたが、こ
れに限らず、光源2を所定の照射角度θで固定してお
き、これに応じて撮像器3の被測定面11に対する光軸
角度を変更する構成とすることもできるのはいうまでも
ない。In the above embodiment, the irradiation angle θ of the light source 2 onto the surface 11 to be measured can be changed. However, the present invention is not limited to this, and the light source 2 is fixed at a predetermined irradiation angle θ. It goes without saying that the optical axis angle of the image pickup device 3 with respect to the measured surface 11 can be changed according to the above.
【0038】さらに、表面コーティング処理後にてスパ
ングル等の特定の結晶粒の粒径を測定する構成とした
が、表面コーティング処理前に測定を行なう構成とする
こともできるのはいうまでもなく、また、測定対象をス
パングルに限るものではない。Further, although the grain size of specific crystal grains such as spangles is measured after the surface coating treatment, it goes without saying that the grain size may be measured before the surface coating treatment. , The measurement target is not limited to the spangle.
【0039】実施の形態2.図9は、実施の形態2に係
る結晶粒径測定装置の構成を示すブロック図である。図
9において、被測定物1の被測定面11側には、光源制
御装置5によって、被測定面11への照射角度θ及び光
量の調整可能な光源2が設けられ、また、同側には、C
CDを用いてなる撮像器3が被測定面11に対向して設
けられている。撮像器3による撮像画像データは、画像
処理装置4に与えられ、画像処理装置4により被測定面
11における結晶粒径が演算されるようになっている。Embodiment 2. FIG. 9 is a block diagram showing the configuration of the crystal grain size measuring apparatus according to the second embodiment. In FIG. 9, a light source 2 that is capable of adjusting the irradiation angle θ and the amount of light to the measured surface 11 is provided on the measured surface 11 side of the measured object 1 by the light source control device 5, and on the same side. , C
An imager 3 including a CD is provided so as to face the surface 11 to be measured. Image data captured by the image pickup device 3 is supplied to the image processing device 4, and the image processing device 4 calculates the crystal grain size on the surface 11 to be measured.
【0040】光源2は、図示しない支持フレームに照射
角度θを0°〜90°の範囲で変更可能なように支持さ
れている。光源2には、スポット,ライン,面,リング
等のあらゆる形態を有するものが使用可能であるが、被
測定面11に均一な光量で照射し、撮像器3による撮像
視野内でのシェーディングの影響を最小限とするため
に、ライン光源又は面光源を用いるのが望ましい。ま
た、光源2には、ハロゲン,メタルハライド,キセノン
等の白色光源を用いることができるが、寿命が比較的に
長く、約100W以上の大きいものを用いることが望ま
しい。なお、被測定面11における照度については、光
源2と被測定面11との距離,撮像視野の大きさ等によ
って変動することは言うまでもない。さらに、被測定面
11が移動するような場合には、瞬時発光が可能なスト
ロボ型のものを用いることにより、撮像ぶれを抑制する
ことができる。The light source 2 is supported by a support frame (not shown) so that the irradiation angle θ can be changed within the range of 0 ° to 90 °. As the light source 2, any shape such as a spot, a line, a surface, or a ring can be used, but the measured surface 11 is irradiated with a uniform light amount, and the influence of shading in the imaging visual field by the imaging device 3 is exerted. It is desirable to use a line light source or an area light source in order to minimize As the light source 2, a white light source such as halogen, metal halide, or xenon can be used, but it is preferable to use a white light source having a relatively long life and about 100 W or more. It goes without saying that the illuminance on the surface 11 to be measured varies depending on the distance between the light source 2 and the surface 11 to be measured, the size of the imaging field of view, and the like. Further, when the surface 11 to be measured moves, a stroboscopic type capable of instantaneous light emission is used to suppress image blurring.
【0041】光源2の照射角度θ及び光量を調整制御す
る光源制御装置5は、外部に設けられたテンキー等の入
力手段からの照射角度θ,光量の各指示値と、画像処理
装置4に予め入力された2値化閾値(輝度閾値)と、被
測定物1の標準サンプルにおいて予め求めたスパングル
の結晶粒径(結晶粒径真値)との入力により、最適な照
射角度θ,光量,2値化閾値を演算して光源2を調整制
御するほか、この演算に際して、演算した2値化閾値を
画像処理装置2へ与えるようにしてあるとともに、画像
処理装置2へトリガ信号を与える。なお、前述の如く、
ストロボ型の光源2を用いている場合には、照射角度
θ,光量のほかに、発光周期,パルス幅等が制御できる
構成とするのが望ましい。この光源制御装置5によって
制御される光源2の照射角度(入射角度)θは鋭角であ
るほうが、例えば被測定面11に析出したスパングルの
結晶粒径を測定する場合に、このスパングルの光学的特
性によってスパングルでの反射光を増加させて強調する
ことができるが、これは光源2の光量,画像処理装置4
における2値化の閾値等によって定常的な効果ではな
い。The light source control device 5 for adjusting and controlling the irradiation angle θ and the light amount of the light source 2 has the irradiation angle θ and the light amount instruction values from an external input means such as a ten-key pad, and the image processing device 4 stored in advance. By inputting the input binarization threshold value (luminance threshold value) and the spangle crystal grain size (crystal grain size true value) obtained in advance in the standard sample of the DUT 1, the optimum irradiation angle θ, light amount, 2 In addition to calculating the binarization threshold value and adjusting and controlling the light source 2, the binarization threshold value that has been computed is supplied to the image processing device 2 and a trigger signal is supplied to the image processing device 2 during this computation. As mentioned above,
When the stroboscopic light source 2 is used, it is desirable that the light emitting period, the pulse width, etc. can be controlled in addition to the irradiation angle θ and the light amount. When the irradiation angle (incident angle) θ of the light source 2 controlled by the light source control device 5 is an acute angle, for example, when measuring the crystal grain size of spangles deposited on the surface 11 to be measured, the optical characteristics of the spangles are measured. The reflected light at the spangle can be increased and emphasized by the light quantity of the light source 2 and the image processing device 4.
It is not a steady effect due to the threshold value of binarization in.
【0042】被測定面11を撮像する撮像器3は、フル
フレームメモリ(1画面分)を備えた一般的なCCDで
あり、被測定面11から十分に離隔して設けてあるが、
微小なスパングルの結晶粒径測定に応じて、ズーム倍率
(ズーム比)が手動又は自動により調整可能なズームレ
ンズを備えたものが望ましい。また、光源2からの光が
被測定面11で正反射する光軸上(図9における破線
a)又はその近傍にある場合には、撮像される画像にハ
レーションが生じ、また撮像される被測定面11のスパ
ングルに見掛けの変形が生じるので、撮像器3は被測定
面11に垂直な光軸上(図9における破線b)に設けら
れている。The image pickup device 3 for picking up the surface 11 to be measured is a general CCD equipped with a full frame memory (for one screen), and is provided sufficiently distant from the surface 11 to be measured.
It is desirable to have a zoom lens whose zoom magnification (zoom ratio) can be manually or automatically adjusted according to the measurement of a minute spangle crystal grain size. Further, when the light from the light source 2 is on or near the optical axis where the surface 11 to be measured is regularly reflected (broken line a in FIG. 9), halation occurs in the imaged image, and the imaged object to be measured is imaged. Since an apparent deformation occurs in the spangle of the surface 11, the imager 3 is provided on the optical axis perpendicular to the surface 11 to be measured (broken line b in FIG. 9).
【0043】画像処理装置4は、図示しないA/D変換
器等を具備し、光源2の制御パラメータ,画像処理装置
4の測定パラメータ等の後述するパラメータの最適化に
先立って、光源制御装置5から与えられるトリガ信号に
応じて、撮像器3から与えられる被測定面11の撮像画
像データをA/D変換し、光源制御装置5から与えられ
た2値化閾値に基づいて2値化し、前処理(ノイズ除
去,穴埋め等)し、前処理結果に基づいて結晶粒径を演
算することができる機能を有しており、演算結果(結晶
粒径測定値)を光源制御装置5へフィードバックする。
なお、上述の各パラメータの設定後における安定的な結
晶粒径の連続演算を行なうような場合には、光源制御装
置5からのトリガ信号なしに、内部タイマによって所定
周期で結晶粒径の演算処理を行なう。The image processing device 4 includes an A / D converter (not shown) and the like, and prior to optimizing parameters to be described later such as control parameters of the light source 2 and measurement parameters of the image processing device 4, the light source control device 5 is provided. In accordance with the trigger signal given from the image pickup device 3, the picked-up image data of the measured surface 11 given from the image pickup device 3 is A / D converted, and binarized based on the binarization threshold given from the light source control device 5, It has a function of performing processing (noise removal, hole filling, etc.) and calculating the crystal grain size based on the pretreatment result, and feeds back the calculation result (crystal grain size measurement value) to the light source control device 5.
When performing a stable continuous calculation of the crystal grain size after setting the above-mentioned parameters, the internal timer calculates the crystal grain size in a predetermined cycle without a trigger signal from the light source control device 5. Do.
【0044】図10,図11は、光源制御装置5におけ
る照射角度θ,光量,2値化閾値の決定処理を示すフロ
ーチャートである。まず、入力された各値を照射角度
θ,2値化閾値を仮設定(固定)し(ステップ1,
2)、光量を予め設定された初期値に調整(変更)し
(ステップ3)、この状態におけるスパングルの結晶粒
径を演算させるべく、画像処理装置4へトリガ信号を出
力する(ステップ4)。次いで、画像処理装置4からフ
ィードバックされた結晶粒径測定値を、対応する光量と
ともに図示しない内部メモリに記憶し、全ての光量での
結晶粒径の測定が完了したか否かを確認する(ステップ
5)。全ての光量での結晶粒径の測定が完了していない
場合には、予め設定されたインクリメントで光量を変更
してステップ3〜ステップ5を繰り返す。FIG. 10 and FIG. 11 are flowcharts showing the process of determining the irradiation angle θ, the light amount, and the binarization threshold value in the light source control device 5. First, each input value is temporarily set (fixed) to the irradiation angle θ and the binarization threshold value (step 1,
2) The light amount is adjusted (changed) to a preset initial value (step 3), and a trigger signal is output to the image processing device 4 to calculate the spangle crystal grain size in this state (step 4). Next, the crystal grain size measurement value fed back from the image processing device 4 is stored in an internal memory (not shown) together with the corresponding light amount, and it is confirmed whether or not the measurement of the crystal grain size with all the light amounts is completed (step 5). When the measurement of the crystal grain size is not completed for all the light amounts, the light amount is changed in a preset increment and steps 3 to 5 are repeated.
【0045】ステップ5で、全ての光量での結晶粒径の
測定が完了している場合には、内部メモリに記憶した各
結晶粒径測定値と入力された結晶粒径真値との誤差を夫
々演算し(ステップ6)、これらの中から最小の誤差に
対応する光量を選択する(ステップ7)。In step 5, when the measurement of the crystal grain size with all the light quantities is completed, the error between each crystal grain size measurement value stored in the internal memory and the input crystal grain size true value is calculated. Each is calculated (step 6), and the light quantity corresponding to the smallest error is selected from these (step 7).
【0046】今度は、ステップ7で選択された光量を固
定し、照射角度θを予め設定された初期値に調整し(ス
テップ8)、この状態におけるスパングルの結晶粒径を
演算させるべく、画像処理装置4へトリガ信号を出力す
る(ステップ9)。次いで、画像処理装置4からフィー
ドバックされた結晶粒径測定値を、対応する照射角度θ
とともに内部メモリに記憶し、全ての照射角度θでの結
晶粒径の測定が完了したか否かを確認する(ステップ1
0)。全ての照射角度θでの結晶粒径の測定が完了して
いない場合には、予め設定されたインクリメントで照射
角度θを変更してステップ8〜ステップ10を繰り返
す。This time, the amount of light selected in step 7 is fixed, the irradiation angle θ is adjusted to a preset initial value (step 8), and image processing is performed to calculate the spangle crystal grain size in this state. A trigger signal is output to the device 4 (step 9). Then, the crystal grain size measurement value fed back from the image processing device 4 is used as the corresponding irradiation angle θ.
It is also stored in the internal memory together with whether or not the measurement of the crystal grain size at all irradiation angles θ is completed (step 1
0). When the measurement of the crystal grain size at all irradiation angles θ has not been completed, the irradiation angle θ is changed in a preset increment and steps 8 to 10 are repeated.
【0047】そして、ステップ10で、全ての照射角度
θでの結晶粒径の測定が完了している場合には、内部メ
モリに記憶した各結晶粒径測定値と入力された結晶粒径
真値との誤差を夫々演算し(ステップ11)、これらの
中から最小の誤差に対応する照射角度θを選択する(ス
テップ12)。Then, in step 10, when the measurement of the crystal grain size at all irradiation angles θ is completed, each crystal grain size measurement value stored in the internal memory and the input crystal grain size true value are stored. Are calculated (step 11), and the irradiation angle θ corresponding to the smallest error is selected from these (step 12).
【0048】次に、ステップ12で選択された照射角度
θを固定し、ステップ12における最小誤差が予め設定
された閾値を越えているか否かを確認する(ステップ1
3)。Next, the irradiation angle θ selected in step 12 is fixed, and it is confirmed whether or not the minimum error in step 12 exceeds a preset threshold value (step 1).
3).
【0049】ステップ12における最小誤差が前記閾値
を越えていない場合には、2値化閾値を予め設定された
初期値に調整し(ステップ14)、この状態におけるス
パングルの結晶粒径を演算させるべく、まず2値化閾値
を画像処理装置4へ出力し(ステップ15)、続いて画
像処理装置4へトリガ信号を出力する(ステップ1
6)。次いで、画像処理装置4からフィードバックされ
た結晶粒径測定値を、対応する2値化閾値とともに内部
メモリに記憶し、全ての2値化閾値での結晶粒径の測定
が完了したか否かを確認する(ステップ17)。全ての
2値化閾値での結晶粒径の測定が完了していない場合に
は、予め設定されたインクリメントで2値化閾値を変更
してステップ14〜ステップ17を繰り返す。If the minimum error in step 12 does not exceed the threshold value, the binarization threshold value is adjusted to a preset initial value (step 14) to calculate the spangle crystal grain size in this state. First, the binarization threshold value is output to the image processing device 4 (step 15), and then the trigger signal is output to the image processing device 4 (step 1).
6). Next, the crystal grain size measurement value fed back from the image processing device 4 is stored in an internal memory together with the corresponding binarization threshold value, and whether or not the measurement of the crystal grain size with all the binarization threshold values is completed is performed. Confirm (step 17). When the measurement of the crystal grain size is not completed for all the binarization thresholds, the binarization threshold is changed by a preset increment and steps 14 to 17 are repeated.
【0050】次に、ステップ17で、全ての2値化閾値
での結晶粒径の測定が完了している場合には、内部メモ
リに記憶した各結晶粒径測定値と入力された結晶粒径真
値との誤差を夫々演算し(ステップ18)、これらの中
から最小の誤差に対応する2値化閾値を選択する(ステ
ップ19)。また、ステップ13で、最小誤差が前記閾
値を越える場合には、又はステップ19の後で、終了と
なる。Next, in step 17, when the measurement of the crystal grain size at all the binarization threshold values has been completed, each crystal grain size measurement value stored in the internal memory and the input crystal grain size. The error from the true value is calculated (step 18), and the binarization threshold value corresponding to the smallest error is selected from these (step 19). When the minimum error exceeds the threshold value in step 13, or after step 19, the process ends.
【0051】なお、以上の決定処理において、照射角度
θをまず固定として光量を変化させ、次に光量を固定と
して照射角度θを変化させる構成としたが、これとは逆
に光量をまず固定として照射角度θを変化させ、次に照
射角度θを固定として光量を変化させる構成とすること
もできる。In the above determination process, the irradiation angle θ is first fixed and the light amount is changed, and then the light amount is fixed and the irradiation angle θ is changed. However, conversely, the light amount is first fixed. It is also possible to change the irradiation angle θ and then fix the irradiation angle θ to change the light amount.
【0052】以上の如き構成とすることにより、得られ
た最適な照射角度θ,光量,2値化閾値に基づいて、安
定的な測定を行なうことができ、実施の形態1と対応す
る部分には同一の参照符号を付して説明を省略する。With the above-described structure, stable measurement can be performed based on the obtained optimum irradiation angle θ, light quantity, and binarization threshold, and the parts corresponding to those of the first embodiment can be obtained. Are denoted by the same reference symbols and description thereof will be omitted.
【0053】図12は、Zn−55%Alメッキ鋼板を
被測定物1とした場合の、図10,図11のステップ3
〜ステップ6において変化させた光量に対応する被測定
面11の照度wと、その際に撮像画像から得られる結晶
粒径測定誤差との関係を示すグラフであり、横軸に照度
w(kLux)、縦軸に結晶粒径測定誤差(mm)を夫
々配置してある。また、図13は、Zn−55%Alメ
ッキ鋼板を被測定物1とした場合の、図10,図11の
ステップ8〜ステップ11において変化させた照射角度
θと、その際に撮像画像から得られる結晶粒径測定誤差
との関係を示すグラフであり、横軸に照射角度θ
(°)、縦軸に結晶粒径測定誤差(mm)を夫々配置し
ている。FIG. 12 shows Step 3 of FIGS. 10 and 11 when the Zn-55% Al plated steel plate is used as the DUT 1.
Is a graph showing the relationship between the illuminance w of the measured surface 11 corresponding to the amount of light changed in step 6 and the crystal grain size measurement error obtained from the captured image at that time, and the abscissa represents the illuminance w (kLux) The crystal grain size measurement error (mm) is arranged on the vertical axis. Further, FIG. 13 shows the irradiation angle θ changed in step 8 to step 11 of FIGS. 10 and 11 when the Zn-55% Al plated steel plate is used as the DUT 1, and obtained from the captured image at that time. 2 is a graph showing the relationship between the measured crystal grain size error and the irradiation angle θ on the horizontal axis.
(°) and the crystal grain size measurement error (mm) are arranged on the vertical axis.
【0054】図12,図13に夫々示す如く、例えば設
定する結晶粒径測定誤差を±0.1mm以内とした場
合、照度wが12kLux〜25kLux、照射角度θ
が13°〜23°の範囲で最適な値が得られることにな
る。なお、この際の画像処理装置4における2値化閾値
は80であった。As shown in FIGS. 12 and 13, for example, when the set crystal grain size measurement error is within ± 0.1 mm, the illuminance w is 12 kLux to 25 kLux and the irradiation angle θ.
The optimum value is obtained in the range of 13 ° to 23 °. The binarization threshold value in the image processing device 4 at this time was 80.
【0055】図14は、結晶粒径真値と画像処理装置4
において得られた結晶粒径測定値との関係をグラフであ
り、横軸には結晶粒径真値(mm)を配置し、縦軸には
横軸に対応する結晶粒径測定値(mm)を夫々配置して
ある。FIG. 14 shows the true value of crystal grain size and the image processing apparatus 4.
2 is a graph showing the relationship with the crystal grain size measurement value obtained in Fig. 4, in which the abscissa axis is the crystal grain size true value (mm), and the ordinate axis is the crystal grain size measurement value (mm) corresponding to the abscissa axis. Are arranged respectively.
【0056】図14に示す如く、結晶粒径測定値の結晶
粒径真値に対する誤差は±0.1mm程度であり、十分
な実用性を有していることがわかる。As shown in FIG. 14, the error of the measured crystal grain size with respect to the true crystal grain size is about ± 0.1 mm, and it can be seen that it has sufficient practicality.
【0057】なお、結晶粒径真値の求め方については、
図15を参照して説明する。図15は、結晶粒径真値の
求め方を説明するための説明図であり、撮像器3によっ
て撮像されたスパングルs,s,…の一部を示してい
る。図15において、被測定面11上で任意の長さ及び
方向の線分A−Aを設定し、この線分A−Aが横切るス
パングルs,s,…の個数を目視で計数する。そして、
線分A−Aの長さを上述のスパングルs,s,…の個数
で除すことによって結晶粒径真値を求めることができ
る。Regarding the method of obtaining the true value of the crystal grain size,
This will be described with reference to FIG. FIG. 15 is an explanatory diagram for explaining how to determine the true value of the crystal grain size, and shows a part of the spangles s, s, ... 15, a line segment AA having an arbitrary length and direction is set on the surface 11 to be measured, and the number of spangles s, s, ... Crossed by the line segment AA is visually counted. And
The true value of the crystal grain size can be obtained by dividing the length of the line segment AA by the number of the above-mentioned spangles s, s, ....
【0058】実施の形態3.図16は、実施の形態3に
係る結晶粒径測定装置の構成を示すブロック図である。
図16において、この結晶粒径測定装置は、Al−Zn
メッキ処理後に次工程へ搬送される鋼板(被測定物)1
の表面(被測定面)11に析出するスパングルの結晶粒
径を測定すべく設けられている。Third Embodiment FIG. 16 is a block diagram showing the configuration of the crystal grain size measuring apparatus according to the third embodiment.
In FIG. 16, the crystal grain size measuring apparatus is
Steel plate (measurement object) that is transported to the next process after plating 1
It is provided to measure the crystal grain size of spangles deposited on the surface (surface to be measured) 11 of.
【0059】帯状に成形された鋼板1は、2つのローラ
r,rにより搬送されており、これらローラr,rの中
途における鋼板1へ光を照射する照明プローブ21が照
射角度(入射角度)θを0°〜90°の範囲で変更可能
なように図示しない支持フレームに支持されており、照
明プローブ21は、光ファイバ22を介して光源2に接
続されている。The strip-shaped steel plate 1 is conveyed by two rollers r, r, and the illumination probe 21 for irradiating the steel plate 1 in the middle of these rollers r, r emits light (incident angle) θ. Is supported by a support frame (not shown) so that it can be changed in the range of 0 ° to 90 °, and the illumination probe 21 is connected to the light source 2 via an optical fiber 22.
【0060】照明プローブ21には、スポット,ライ
ン,面,リング等のあらゆる形態を有するものが使用可
能であるが、実施の形態1と同様の理由により、ライン
光源又は面光源の如き形態とするのが望ましい。さら
に、本実施の形態においては、鋼板1の搬送に伴って被
測定面11が移動するために、瞬時発光が可能なストロ
ボ型のものを用いて撮像ぶれを抑制してある。発光周期
は、予め設定した周期で固定することもできるが、本実
施の形態においては、光源2に接続されたカメラ制御部
53によって、鋼板1の搬送速度の変動に応じて調整さ
れるようになっている。As the illumination probe 21, any shape such as spot, line, surface, ring, etc. can be used, but for the same reason as in the first embodiment, it is set to a shape such as a line light source or a surface light source. Is desirable. Furthermore, in the present embodiment, since the surface 11 to be measured moves as the steel sheet 1 is conveyed, a stroboscopic type capable of instantaneous light emission is used to suppress image blur. The light emission cycle can be fixed at a preset cycle, but in the present embodiment, the camera control unit 53 connected to the light source 2 adjusts the light emission cycle according to the variation in the transport speed of the steel plate 1. Has become.
【0061】カメラ(撮像器)3は、撮像周期を調整す
る画像フリーザ31に接続されており、画像フリーザ3
1は、鋼板1の搬送速度と光源2の発光周期とに応じて
撮像ぶれが少なくなるように撮像周期を決定し、カメラ
3に撮像させるためのトリガ信号を出力し、またカメラ
3によって撮像された画像をフレーム単位で処理し、処
理結果を画像処理部4へ与える。なお、光源2の発光周
期が鋼板1の搬送速度に対して十分小さい場合には、撮
像ぶれが少ないので、この画像フリーザ31を省略する
ことができる。The camera (image pickup device) 3 is connected to the image freezer 31 for adjusting the image pickup cycle.
1 determines an image pickup cycle in accordance with the conveyance speed of the steel plate 1 and the light emission cycle of the light source 2 so as to reduce the image pickup shake, outputs a trigger signal for making the camera 3 pick up an image, and is picked up by the camera 3. The processed image is processed in frame units, and the processing result is given to the image processing unit 4. When the light emission period of the light source 2 is sufficiently smaller than the conveying speed of the steel plate 1, the image blurring is small, and thus the image freezer 31 can be omitted.
【0062】画像処理部4は、マイクロプロセッサから
なり、画像フリーザ31から与えられる被測定面11の
画像データを量子化し、量子化した画像データをCRT
42に出力して撮像画像データを表示させるとともに、
更にこの画像データを2値化,前処理(ノイズ除去,穴
埋め等)し、前処理結果に基づいて結晶粒径を演算した
後で、演算結果(結晶粒径測定値)をカメラ制御部53
へ与える。また、画像処理部4は、必要に応じて演算結
果,撮像画像データを画像記憶部43に格納する。The image processing section 4 is composed of a microprocessor, quantizes the image data of the surface 11 to be measured, which is given from the image freezer 31, and quantizes the quantized image data on the CRT.
42 to display the captured image data, and
Further, this image data is binarized, pre-processed (noise removal, hole filling, etc.), and the crystal grain size is calculated based on the pre-processing result, and then the calculation result (crystal grain size measurement value) is calculated.
Give to. Further, the image processing unit 4 stores the calculation result and the captured image data in the image storage unit 43 as needed.
【0063】カメラ制御部53は、画像処理部4とは別
のマイクロプロセッサからなり、画像処理部4から与え
られた結晶粒径測定値をモデム,ルータ等からなる通信
制御部52を介して、図示しない上位コンピュータへ送
出するようになっている。また、上位コンピュータから
は同様にして通信制御部52を介して鋼板1の搬送速度
の情報が受信され、カメラ制御部53は、この搬送速度
の情報をカメラ3へ与える。カメラ制御部53は更に以
上の動作状態をCRT51に出力する。The camera control unit 53 is composed of a microprocessor different from the image processing unit 4, and the crystal grain size measurement value given from the image processing unit 4 is transmitted via the communication control unit 52 including a modem, a router, etc. It is designed to be sent to a host computer (not shown). Similarly, information on the transport speed of the steel sheet 1 is received from the host computer via the communication control unit 52, and the camera control unit 53 gives this information on the transport speed to the camera 3. The camera control unit 53 further outputs the above operating state to the CRT 51.
【0064】なお、カメラ制御部53の上位コンピュー
タへの送信は、カメラ3による撮像周期と一致させるこ
ともでき、また所定回数分の撮像画像からの結晶粒径測
定値の平均値を演算し、これを前記所定回数毎の撮像周
期で送出する構成とすることもできる。但し、送信速度
は画像処理部4及びカメラ制御部53の処理速度によっ
て左右されるものであるが、実際には鋼板1の搬送方向
へのスパングル結晶粒径の変動は急激でないため、数H
z〜数十Hzに対応した周期で実用上十分である。The transmission of the camera control section 53 to the host computer can be made to coincide with the image pickup cycle of the camera 3, and the average value of the crystal grain size measurement values from a predetermined number of image pickup images is calculated, It is also possible to adopt a configuration in which this is sent out at the imaging cycle of the predetermined number of times. However, the transmission speed depends on the processing speeds of the image processing unit 4 and the camera control unit 53, but in reality, the fluctuation of the spangle crystal grain size in the transport direction of the steel sheet 1 is not abrupt, and therefore several H
A period corresponding to z to several tens Hz is practically sufficient.
【0065】なお、本実施の形態においては、Al−Z
nメッキ処理後に次工程へ搬送される途中の鋼板1を撮
像する構成としたが、撮像位置はこれに限るものではな
い。但し、結晶粒径測定値の迅速なフィードバックと、
搬送される鋼板1のバタツキ,板伸び等による結晶粒径
の測定誤差の回避とを達成するために、撮像位置は可及
的にメッキポット後の凝固完了位置に近い位置とするの
が望ましく、また鋼板1のパスライン安定化のために、
何れかのロールr,r近傍が望ましい。In the present embodiment, Al-Z
Although the steel plate 1 is imaged while being conveyed to the next step after the n-plating process, the imaging position is not limited to this. However, with quick feedback of the measured grain size,
In order to avoid the measurement error of the crystal grain size due to the flapping of the conveyed steel plate 1, the plate elongation, etc., it is desirable that the imaging position be as close to the solidification completion position as possible after the plating pot. In order to stabilize the pass line of steel plate 1,
It is desirable that one of the rolls r, r is in the vicinity thereof.
【0066】図17は、画像処理部4における結晶粒径
演算の処理手順を示すフローチャートである。まず、画
像フリーザ31から与えられた画像データを量子化し
(ステップ1)、実施の形態2に示したような手順で予
め設定された閾値を用いて2値化し(ステップ2)、2
値化画像データに一般的な画像処理手法である孤立点除
去及び穴埋め等の前処理を行なう(ステップ3)。次い
で、スパングルに相当する部分の画素数を演算し(ステ
ップ4)、この画素数と予め演算された1画素の実寸値
とに基づいて、この画素に相当する面積を演算し(ステ
ップ5)、演算した面積に相当する円の直径を演算する
(ステップ6)。そして、ステップ4〜ステップ6を全
てのスパングルについて行ったか否かを確認し(ステッ
プ7)、全てのスパングルについて行った場合には、予
め設定された閾値に基づいて、直径の小さいスパングル
を排除する(ステップ8:面積除去)。ステップ8にて
除去されず残ったスパングルの直径の平均値を演算し
(ステップ9)、これをスパングルの結晶粒径とする。
なお、ステップ7にて全てのスパングルについて行って
いない場合には、ステップ4〜ステップ6を繰り返す。FIG. 17 is a flow chart showing the processing procedure of the crystal grain size calculation in the image processing section 4. First, the image data given from the image freezer 31 is quantized (step 1) and binarized using a threshold value set in advance by the procedure as described in the second embodiment (step 2), 2
Preprocessing such as isolated point removal and hole filling, which is a general image processing method, is performed on the binarized image data (step 3). Next, the number of pixels in the portion corresponding to the spangle is calculated (step 4), and the area corresponding to this pixel is calculated based on this number of pixels and the actual size value of one pixel calculated in advance (step 5), The diameter of the circle corresponding to the calculated area is calculated (step 6). Then, it is confirmed whether or not steps 4 to 6 have been performed for all spangles (step 7), and if they have been performed for all spangles, spangles having a small diameter are excluded based on a preset threshold value. (Step 8: area removal). The average value of the diameters of the spangles remaining without being removed in step 8 is calculated (step 9), and this is used as the crystal grain size of spangles.
If all spangles have not been processed in step 7, steps 4 to 6 are repeated.
【0067】なお、ステップ8における閾値には、スパ
ングルが析出していない状態(ゼロスパングル)で予め
上述と同様の結晶粒径測定を行ない、このときの測定値
を用いてある。The threshold in step 8 is the same as the above-mentioned grain size measurement in the state where no spangle is precipitated (zero spangle), and the measured value at this time is used.
【0068】図18は、前述のステップ3の前処理にお
ける孤立点除去を説明するための説明図であり、ステッ
プ2における2値化後の状態を模式的に示してある。図
18において、被測定面11の撮像領域は格子状となっ
ており、格子で区切られた各矩形の領域が夫々1画素を
示している。各画素において、2値化後のスパングルは
「1」で示され、それ以外の部分は「0」で示される
が、被測定面11のごみ,撮像時の何らかのノイズ等の
要因により、スパングル以外の部分でも「1」で表示さ
れる場合がある。そこで、この孤立点除去では、「1」
の画素に着目し、その画素を取り囲む8つの画素が全て
「0」である場合に、この画素を「0」に置換すること
により、上述の如き影響を排除することができる。FIG. 18 is an explanatory view for explaining the removal of isolated points in the preprocessing of step 3 described above, and schematically shows the state after binarization in step 2. In FIG. 18, the imaging area of the surface to be measured 11 has a grid shape, and each rectangular area divided by the grid represents one pixel. In each pixel, the spangle after binarization is indicated by "1", and the other portions are indicated by "0", but due to factors such as dust on the surface 11 to be measured, some noise at the time of imaging, etc. The part may be displayed as "1". So, in this isolated point removal, "1"
When the eight pixels surrounding the pixel are all "0" and the pixel is replaced with "0", the influence as described above can be eliminated.
【0069】図19は、前述のステップ3の前処理にお
ける穴埋めを説明するための説明図であり、図18と同
様にステップ2における2値化後の状態を模式的に示し
てある。図19において、連続した「1」の画素群はス
パングルを示しており、それを取り囲む「0」の画素群
はその他の部分を示している。ところが、前述の孤立点
除去と同様の理由にてスパングルの画素群に「0」の画
素群が混在する場合がある。そこで、「1」の画素群に
囲まれた「0」の画素又はその画素群に着目し、この
「0」の画素又は画素群を「1」に置換することによ
り、上述の如き影響を排除することができる。FIG. 19 is an explanatory view for explaining filling in the preprocessing of the above-mentioned step 3, and schematically shows the state after the binarization in step 2 as in FIG. In FIG. 19, consecutive "1" pixel groups indicate a spangle, and surrounding "0" pixel groups indicate the other part. However, for the same reason as the above-described removal of isolated points, the pixel group of "0" may be mixed in the pixel group of spangle. Therefore, by focusing on the pixel of “0” surrounded by the pixel group of “1” or the pixel group and replacing the pixel or pixel group of “0” with “1”, the above influence is eliminated. can do.
【0070】図20は、実施の形態3に係る結晶粒径測
定装置によって鋼板1のスパングル結晶粒径を測定した
結果とこれに対応する鋼板1の搬送速度との関係を示す
グラフであり、横軸には鋼板1の測定長(搬送方向長
さ:km)を配置し、縦軸には横軸に対応する結晶粒径
測定値(mm)と、搬送速度(m/min)を夫々配置
してある。また、結晶粒径測定値のグラフ上には、任意
の測定長間隔にて結晶粒径真値を求めた結果が、X印で
プロットしてある。さらに、被測定対象となる鋼板1に
は、まず板厚0.7mmの鋼板1aが用いられ、測定長
が約0.58kmの時点で板厚1.3mmの鋼板1bに
切り替えてある。FIG. 20 is a graph showing the relationship between the result of measuring the spangle crystal grain size of the steel sheet 1 by the crystal grain size measuring apparatus according to the third embodiment and the corresponding transport speed of the steel sheet 1. The measured length of the steel sheet 1 (length in the conveying direction: km) is arranged on the axis, and the crystal grain size measurement value (mm) corresponding to the horizontal axis and the conveying speed (m / min) are arranged on the vertical axis. There is. Further, on the graph of the crystal grain size measurement value, the result of obtaining the crystal grain size true value at an arbitrary measurement length interval is plotted by the X mark. Further, as the steel plate 1 to be measured, a steel plate 1a having a plate thickness of 0.7 mm is first used, and when the measurement length is about 0.58 km, it is switched to a steel plate 1b having a plate thickness of 1.3 mm.
【0071】図20に示す如く、搬送速度の変動に拘わ
らず結晶粒径測定値が結晶粒径真値と一致していること
がわかる。As shown in FIG. 20, it can be seen that the measured crystal grain size agrees with the true crystal grain size regardless of the change in the transport speed.
【0072】本実施の形態は以上の如き構成としてあ
り、実施の形態2に対応する部分には同一の参照符号を
付して説明を省略する。The present embodiment is configured as described above, and the portions corresponding to those of the second embodiment are designated by the same reference numerals and the description thereof will be omitted.
【0073】実施の形態4.図21は、実施の形態4に
係る結晶粒径測定装置の構成を示すブロック図である。Fourth Embodiment FIG. 21 is a block diagram showing the configuration of the crystal grain size measuring apparatus according to the fourth embodiment.
【0074】図21において、可動機構部34は、鋼板
1の搬送方向と平行に配置され、また鋼板1に接離する
方向(白抜矢符方向)への移動自在に設けられたビーム
341と、前記白抜矢符方向へビーム341を貫通して
穿設されたネジ孔に螺合するガイドねじ342とからな
り、ガイドねじ342には、これを回転駆動するモータ
33がその出力軸をガイドねじ342に同軸的に設けら
れている。また、ビーム341の中途部にはカメラ3が
鋼板1に対向して設けられている。In FIG. 21, the movable mechanism portion 34 is arranged in parallel with the conveying direction of the steel plate 1 and is provided with a beam 341 movably provided in a direction of approaching and separating from the steel plate 1 (a hollow arrow direction). , A guide screw 342 that is screwed into a screw hole that penetrates the beam 341 in the direction of the hollow arrow and is screwed into the screw hole. A motor 33 that rotates the guide screw 342 guides its output shaft. It is provided coaxially with the screw 342. A camera 3 is provided in the middle of the beam 341 so as to face the steel plate 1.
【0075】ビーム341の中途部には、更に測距計3
2が鋼板1に対向して設けられている。この測距計32
は、レーザを鋼板1の表面に照射し、その反射光に基づ
いて光学的にカメラ3と鋼板1の表面との距離(測定距
離)を測定するものであり、所定の時間周期で測定し、
この測定結果を画像処理部4へ与える。なお、測距計3
2には、上述したレーザ式のほかに、接触式,超音波
式,渦電流式等の一般的な測距手段を用いることが可能
であるが、鋼板1に傷をつけないように非接触式が望ま
しい。In the middle of the beam 341, the rangefinder 3
2 is provided to face the steel plate 1. This rangefinder 32
Is to irradiate the surface of the steel plate 1 with a laser, and optically measure the distance (measurement distance) between the camera 3 and the surface of the steel plate 1 based on the reflected light thereof.
This measurement result is given to the image processing unit 4. In addition, rangefinder 3
In addition to the above-mentioned laser type, a general distance measuring means such as a contact type, an ultrasonic type, an eddy current type, etc. can be used for 2, but it is a non-contact type so as not to scratch the steel plate 1. Expression is preferred.
【0076】画像処理部4は、実施の形態3の画像処理
部4と同様の機能を有するとともに、前処理結果と測距
計32からの測距結果とに基づいて結晶粒径を演算した
後で、演算結果(結晶粒径測定値)をカメラ制御部53
へ与える。The image processing unit 4 has the same function as the image processing unit 4 of the third embodiment, and after calculating the crystal grain size based on the preprocessing result and the distance measurement result from the distance meter 32. Then, the calculation result (measurement value of crystal grain size) is displayed as the camera control unit 53.
Give to.
【0077】図22は、画像処理部4における結晶粒径
演算の処理手順を示すフローチャートである。まず、実
施の形態3における図17のステップ1〜3と同様に量
子化,2値化,前処理を行なう(ステップ1〜3)。続
いて、測距計32による測距結果(測定距離)を読込み
(ステップ4)、読込結果に基づいて1画素の実寸法を
演算する(ステップ5)。そして、図17のステップ4
〜9と同様の処理を行う(ステップ6〜11)。FIG. 22 is a flow chart showing the processing procedure of the crystal grain size calculation in the image processing section 4. First, quantization, binarization, and preprocessing are performed as in steps 1 to 3 of FIG. 17 in the third embodiment (steps 1 to 3). Then, the distance measurement result (measurement distance) by the distance meter 32 is read (step 4), and the actual size of one pixel is calculated based on the read result (step 5). Then, step 4 in FIG.
9 to 9 are performed (steps 6 to 11).
【0078】図23は、前述のステップ5における1画
素の実寸法の演算を説明するための説明図である。図2
3において、pは1画素の大きさを示しており、1,1
は鋼板を示している。鋼板1は通常bの位置(基準位
置)にあるが、バタツキ,厚みの変動等により、被測定
面11である鋼板1の表面の位置とカメラ3との距離
(測定距離)が変動するために、画素の大きさを基準に
演算される被測定面11のスパングルの大きさは上述の
測定距離の変動に応じて補正する必要がある。鋼板1が
基準位置bにある場合には、この基準位置bとカメラ3
との距離をDb(基準測定距離)とし、そのときの1画
素の寸法をXb(基準画素寸法)とする。そして、例え
ば図23に示す如く鋼板1がsの位置に移動した場合、
測距計32で測定される位置bとカメラ3との距離をD
sとしたときの1画素の実寸法Xsは、
Xs=(Xb/Db)・Ds
の式で求めることができる。なお、基準測定距離Db,
基準画素寸法Xbについては、実測することにより予め
容易に得ることができるものである。FIG. 23 is an explanatory diagram for explaining the calculation of the actual size of one pixel in step 5 described above. Figure 2
3, p represents the size of one pixel, and 1,1
Indicates a steel plate. Although the steel plate 1 is normally at the position b (reference position), the distance between the surface of the steel plate 1 which is the surface 11 to be measured and the camera 3 (measurement distance) changes due to flapping, fluctuations in thickness, and the like. The size of the spangle of the surface 11 to be measured, which is calculated based on the size of the pixel, needs to be corrected according to the variation in the above-described measurement distance. When the steel plate 1 is at the reference position b, the reference position b and the camera 3
The distance between and is Db (reference measurement distance), and the size of one pixel at that time is Xb (reference pixel size). Then, for example, when the steel plate 1 is moved to the position s as shown in FIG. 23,
D is the distance between the position b measured by the distance meter 32 and the camera 3.
The actual size Xs of one pixel when s can be obtained by the formula Xs = (Xb / Db) · Ds. The reference measurement distance Db,
The reference pixel size Xb can be easily obtained in advance by actual measurement.
【0079】図24は、実施の形態4に係る結晶粒径測
定装置によって鋼板1のスパングル結晶粒径を測定した
結果とこれに対応する測定距離との関係を示すグラフで
あり、横軸には鋼板1の測定長(搬送方向長さ:km)
を配置し、縦軸には横軸に対応する結晶粒径測定値(m
m)と、前述の如き基準測定距離に対する測定距離偏差
(mm)とを夫々配置してある。また、結晶粒径測定値
のグラフ上には、任意の測定長間隔にて結晶粒径真値を
求めた結果が、X印でプロットしてある。FIG. 24 is a graph showing the relationship between the results of measuring the spangle crystal grain size of the steel sheet 1 by the crystal grain size measuring apparatus according to the fourth embodiment and the corresponding measurement distances. Measured length of steel plate 1 (length in conveyance direction: km)
Are arranged, and the vertical axis indicates the measured crystal grain size (m
m) and the measurement distance deviation (mm) from the reference measurement distance as described above are respectively arranged. Further, on the graph of the crystal grain size measurement value, the result of obtaining the crystal grain size true value at an arbitrary measurement length interval is plotted by the X mark.
【0080】図24に示す如く、測定距離の変動に拘わ
らず結晶粒径測定値が結晶粒径真値と一致していること
がわかる。As shown in FIG. 24, it can be seen that the measured crystal grain size agrees with the true crystal grain size regardless of the variation in the measurement distance.
【0081】本実施の形態は以上の如き構成としてあ
り、実施の形態3に対応する部分には同一の参照符号を
付して説明を省略する。The present embodiment is configured as described above, and the portions corresponding to those of the third embodiment are designated by the same reference numerals and the description thereof will be omitted.
【0082】[0082]
【発明の効果】以上詳述した如く第1発明に係る結晶粒
径測定装置によれば、撮像される所定種類の結晶粒(ス
パングル)とその他の結晶粒との濃淡差を更に明確にす
ることができ、撮像されるスパングル及びその他の結晶
粒の濃淡差を明確にする最適な光量の選択が可能とな
り、撮像画像から正確な結晶粒径の演算結果を安定的に
得ることができる。As described in detail above, according to the crystal grain size measuring apparatus according to the first aspect of the present invention, the difference in shade between a predetermined type of crystal grain (spangle) to be imaged and other crystal grains is further clarified .
That it can, spangle and other crystals that are imaged
It is possible to select the optimum amount of light to clarify the difference in light and shade of grains.
Therefore, the accurate calculation result of the crystal grain size can be stably obtained from the captured image .
【0083】[0083]
【0084】また、第2発明に係る結晶粒径測定装置に
よれば、撮像される所定種類の結晶粒(スパングル)と
その他の結晶粒との濃淡差を更に明確にすることがで
き、撮像されるスパングル及びその他の結晶粒の濃淡差
を明確にする最適な光照射手段の照射角度又は撮像器の
光軸角度の選択が可能となり、撮像画像から正確な結晶
粒径の演算結果を安定的に得ることができる。Further, according to the crystal grain size measuring apparatus of the second aspect of the present invention, it is possible to further clarify the shade difference between the predetermined type of crystal grain (spangle) to be imaged and the other crystal grain, and the image is captured. Of the optimum light irradiation means or the image pickup device to clarify the difference in density of spangles and other crystal grains .
The optical axis angle can be selected, and the accurate calculation result of the crystal grain size can be stably obtained from the captured image.
【0085】[0085]
【0086】[0086]
【0087】また、第3発明に係る結晶粒径測定装置に
よれば、撮像される所定種類の結晶粒(スパングル)と
その他の結晶粒との濃淡差を更に明確にすることがで
き、撮像されるスパングル及びその他の結晶粒の濃淡差
を明確にする光照射手段の最適な光量及び照射角度又は
撮像器の光軸角度の選択が可能となり、撮像画像から正
確な結晶粒径の演算結果を安定的に得ることができる。Further, according to the crystal grain size measuring apparatus of the third aspect of the present invention, it is possible to further clarify the difference in shade between the predetermined type of crystal grain (spangle) to be imaged and other crystal grains.
Difference in density of spangles and other crystal grains imaged
The optimum light amount and irradiation angle of the light irradiation means or
It can be selected optical axis angle of the imager and Do Ri, positive from a captured image
An accurate calculation result of the crystal grain size can be stably obtained .
【0088】さらに、第4発明に係る結晶粒径測定装置
によれば、撮像される所定種類の結晶粒(スパングル)
とその他の結晶粒との濃淡差を明確にする最適な輝度閾
値の選択が可能となる等、本発明は優れた効果を奏す
る。 Further, according to the crystal grain size measuring apparatus of the fourth invention, a predetermined type of crystal grain (spangle) to be imaged.
The present invention has excellent effects such as the selection of an optimum brightness threshold value that makes clear the difference in density between the crystal grain and other crystal grains .
【図1】本発明に係る結晶粒径測定装置の構成を示すブ
ロック図である。FIG. 1 is a block diagram showing a configuration of a crystal grain size measuring apparatus according to the present invention.
【図2】自然光のもとで撮像された被測定面の撮像画像
の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a captured image of a surface to be measured captured under natural light.
【図3】本発明に係る結晶粒径測定装置により撮像され
た被測定面の撮像画像の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a captured image of a surface to be measured, which is captured by a crystal grain size measuring apparatus according to the present invention.
【図4】Al−Znメッキ鋼板を被測定物としたときの
照射角度θと、その際の撮像画像から得られる結晶粒径
の測定誤差との関係を示すグラフである。FIG. 4 is a graph showing a relationship between an irradiation angle θ when an Al—Zn plated steel sheet is used as a measured object and a measurement error of a crystal grain size obtained from a captured image at that time.
【図5】Al−Znメッキ鋼板を被測定物としたときの
被測定面の照度wと、その際の撮像画像から得られる結
晶粒径の測定誤差との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the illuminance w of the surface to be measured when an Al—Zn plated steel sheet is used as the object to be measured, and the measurement error of the crystal grain size obtained from the captured image at that time.
【図6】画像処理装置における粒径演算の処理手順を示
すフローチャートである。FIG. 6 is a flowchart showing a processing procedure of particle size calculation in the image processing apparatus.
【図7】図3に示した撮像画像の2値化結果を示す模式
図である。FIG. 7 is a schematic diagram showing a binarization result of the captured image shown in FIG.
【図8】本発明に係る結晶粒径測定装置の測定精度を示
すグラフである。FIG. 8 is a graph showing the measurement accuracy of the crystal grain size measuring apparatus according to the present invention.
【図9】実施の形態2に係る結晶粒径測定装置の構成を
示すブロック図である。FIG. 9 is a block diagram showing a configuration of a crystal grain size measuring device according to a second embodiment.
【図10】光源制御装置における照射角度θ,光量,2
値化閾値の決定処理を示すフローチャートである。FIG. 10: Irradiation angle θ, light quantity, 2 in the light source control device
It is a flowchart which shows the determination process of a threshold value.
【図11】光源制御装置における照射角度θ,光量,2
値化閾値の決定処理を示すフローチャートである。FIG. 11: Irradiation angle θ, light quantity, 2 in the light source control device
It is a flowchart which shows the determination process of a threshold value.
【図12】Zn−55%Alメッキ鋼板を被測定物1と
した場合の、図10,図11のステップ3〜ステップ6
において変化させた光量に対応する被測定面の照度と、
その際に撮像画像から得られる結晶粒径測定誤差との関
係を示すグラフである。FIG. 12 shows steps 3 to 6 of FIGS. 10 and 11 when a Zn-55% Al plated steel plate is used as the DUT 1.
The illuminance of the measured surface corresponding to the amount of light changed in
It is a graph which shows the relationship with the crystal grain size measurement error obtained from a captured image at that time.
【図13】Zn−55%Alメッキ鋼板を被測定物1と
した場合の、図10,図11のステップ8〜ステップ1
1において変化させた照射角度と、その際に撮像画像か
ら得られる結晶粒径測定誤差との関係を示すグラフであ
る。FIG. 13: Steps 8 to 1 of FIGS. 10 and 11 when a Zn-55% Al plated steel plate is used as the DUT 1.
3 is a graph showing the relationship between the irradiation angle changed in 1 and the crystal grain size measurement error obtained from the captured image at that time.
【図14】結晶粒径真値と画像処理装置において得られ
た結晶粒径測定値との関係をグラフである。FIG. 14 is a graph showing a relationship between a true crystal grain size and a crystal grain size measurement value obtained by an image processing apparatus.
【図15】結晶粒径真値の求め方を説明するための説明
図である。FIG. 15 is an explanatory diagram for explaining how to determine a true value of a crystal grain size.
【図16】実施の形態3に係る結晶粒径測定装置の構成
を示すブロック図である。FIG. 16 is a block diagram showing a configuration of a crystal grain size measuring apparatus according to a third embodiment.
【図17】画像処理部における結晶粒径演算の処理手順
を示すフローチャートである。FIG. 17 is a flowchart showing a processing procedure of a crystal grain size calculation in the image processing unit.
【図18】前述のステップ3の前処理における孤立点除
去を説明するための説明図である。FIG. 18 is an explanatory diagram for explaining isolated point removal in the preprocessing of step 3 described above.
【図19】前述のステップ3の前処理における穴埋めを
説明するための説明図である。FIG. 19 is an explanatory diagram for explaining hole filling in the preprocessing of step 3 described above.
【図20】実施の形態3に係る結晶粒径測定装置によっ
て鋼板のスパングル結晶粒径を測定した結果とこれに対
応する鋼板の搬送速度との関係を示すグラフである。FIG. 20 is a graph showing the relationship between the result of measuring the spangle crystal grain size of the steel sheet by the crystal grain size measuring apparatus according to the third embodiment and the corresponding transport speed of the steel sheet.
【図21】実施の形態4に係る結晶粒径測定装置の構成
を示すブロック図である。FIG. 21 is a block diagram showing a configuration of a crystal grain size measuring device according to a fourth embodiment.
【図22】画像処理部における結晶粒径演算の処理手順
を示すフローチャートである。FIG. 22 is a flowchart showing a processing procedure for calculating a crystal grain size in the image processing unit.
【図23】前述のステップ5における1画素の実寸法の
演算を説明するための説明図である。FIG. 23 is an explanatory diagram for explaining calculation of an actual size of one pixel in step 5 described above.
【図24】実施の形態4に係る結晶粒径測定装置によっ
て鋼板のスパングル結晶粒径を測定した結果とこれに対
応する測定距離との関係を示すグラフである。FIG. 24 is a graph showing the relationship between the result of measuring the spangle crystal grain size of a steel sheet by the crystal grain size measuring apparatus according to the fourth embodiment and the corresponding measurement distance.
1 被測定物 2 光源 3 撮像器 4 画像処理装置 11 被測定面 41 画像入力部 42 2値化処理部 43 前処理部 44 粒径演算部 1 DUT 2 light sources 3 imager 4 Image processing device 11 Surface to be measured 41 Image input section 42 Binarization processing unit 43 Pretreatment section 44 Particle size calculator
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−72317(JP,A) 特開 平7−294452(JP,A) 特開 昭59−99304(JP,A) 特開 昭54−128756(JP,A) 特開 平7−139930(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G01N 15/02 G01N 21/00 - 21/958 G01N 33/20 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-11-72317 (JP, A) JP-A-7-294452 (JP, A) JP-A-59-99304 (JP, A) JP-A-54- 128756 (JP, A) JP-A-7-139930 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01B 11/00-11/30 G01N 15/02 G01N 21/00- 21/958 G01N 33/20
Claims (4)
し、撮像結果から被測定面に析出する所定種類の結晶粒
の粒径を算出することで前記結晶粒の粒径を測定する結
晶粒径測定装置において、前記撮像結果を量子化する量子化手段と、 該量子化手段の量子化結果を所定の輝度閾値に基づいて
2値化することによって前記所定種類の結晶粒を識別す
る2値化/識別手段と、 該2値化/識別手段に識別された前記所定種類の結晶粒
の画素を計数する計数手段と、 該計数手段の計数結果に応じた面積を演算する面積演算
手段と、 該面積演算手段の演算結果に対応する円の直径を演算す
る直径演算手段と、 該直径演算手段の演算結果に基づいて前記粒径を演算す
る粒径演算手段と、 前記被測定面へ光を照射する光照射手段と、 該光照射手段の光量を、撮像される前記所定種類の結晶
粒とその他の結晶粒との濃淡差を明確にすべく前記撮像
器の感度に応じて増減する光量増減手段と、 該光量増減手段が前記光量を増減する都度、前記粒径演
算手段により演算される前記粒径と所定値との偏差を演
算する偏差演算手段と、 該偏差演算手段の演算結果が最小となる前記光照射手段
の光量を選択する光量選択手段とを備えること を特徴と
する結晶粒径測定装置。1. The grain size of the crystal grain is measured by imaging the surface of the object to be measured with an imager and calculating the grain size of a predetermined type of crystal grain deposited on the surface to be measured from the imaging result. In a crystal grain size measuring device , a quantizing means for quantizing the imaging result and a quantizing result of the quantizing means based on a predetermined brightness threshold value.
The predetermined type of crystal grains are identified by binarization.
Binarizing / identifying means, and the predetermined type of crystal grain identified by the binarizing / identifying means
Means for counting the number of pixels, and area calculation for calculating an area according to the counting result of the counting means
Means and a diameter of a circle corresponding to the calculation result of the area calculation means.
And a diameter calculation means for calculating the particle diameter based on the calculation result of the diameter calculation means.
Grain size calculating means, light irradiating means for irradiating the surface to be measured, and light amount of the light irradiating means, and the crystal of the predetermined type to be imaged
The image is taken to clarify the difference in density between the grain and other crystal grains.
The light quantity increasing / decreasing means that increases / decreases according to the sensitivity of the container, and the particle size control means each time the light quantity increasing / decreasing means increases / decreases the light quantity.
The deviation between the particle size calculated by the calculation means and the predetermined value is calculated.
Deviation calculation means for calculating, and the light irradiation means for minimizing the calculation result of the deviation calculation means
And a light amount selecting means for selecting the light amount of the crystal grain size measuring device .
し、撮像結果から被測定面に析出する所定種類の結晶粒
の粒径を算出することで前記結晶粒の粒径を測定する結
晶粒径測定装置において、 前記撮像結果を量子化する量子化手段と、 該量子化手段の量子化結果を所定の輝度閾値に基づいて
2値化することによって前記所定種類の結晶粒を識別す
る2値化/識別手段と、 該2値化/識別手段に識別された前記所定種類の結晶粒
の画素を計数する計数手段と、 該計数手段の計数結果に応じた面積を演算する面積演算
手段と、 該面積演算手段の演算結果に対応する円の直径を演算す
る直径演算手段と、 該直径演算手段の演算結果に基づいて前記粒径を演算す
る粒径演算手段と、 前記被測定面へ光を照射する光照射手段と、該光照射手段の前記被測定面への照射角度又は前記撮像
器の前記被測定面に対する光軸角度 を、撮像される前記
所定種類の結晶粒とその他の結晶粒との濃淡差を明確に
すべく前記撮像器の感度に応じて変更する角度変更手段
と、該角度変更手段が前記光照射手段の照射角度又は前記撮
像器の光軸角度を変更 する都度、前記粒径演算手段によ
り演算される前記粒径と所定値との偏差を演算する偏差
演算手段と、 該偏差演算手段の演算結果が最小となる前記光照射手段
の照射角度又は前記撮像器の光軸角度を選択する角度選
択手段とを備えることを特徴とする結晶粒径測定装置。2. The grain size of the crystal grain is measured by imaging the surface of the object to be measured using an imager and calculating the grain size of a predetermined type of crystal grain deposited on the surface to be measured from the imaged result. In a crystal grain size measuring device, a quantizing means for quantizing the imaging result, and a binarization of the quantizing result of the quantizing means on the basis of a predetermined luminance threshold to identify the predetermined type of crystal grain. Binarization / identification means, counting means for counting the pixels of the predetermined type of crystal grains identified by the binarization / identification means, and area calculation means for calculating an area according to the counting result of the counting means A diameter calculation means for calculating the diameter of a circle corresponding to the calculation result of the area calculation means, a particle size calculation means for calculating the particle size based on the calculation result of the diameter calculation means, and a light irradiating means for irradiating light, said light irradiating means Irradiation angle or the imaging of the measuring surface
An optical axis angle with respect to the surface to be measured of the device, an angle changing means for changing the optical axis angle according to the sensitivity of the image pickup device in order to clarify the difference in density between the crystal grains of the predetermined type to be imaged and other crystal grains, The angle changing means is the irradiation angle of the light irradiation means or the photographing
Each time the optical axis angle of the imager is changed , the particle size calculating means is used.
Deviation calculating a deviation between the particle diameter and the predetermined value calculated Ri
Arithmetic means, said light irradiating means the operation result of said deviation calculation means is minimum
Crystal grain size measuring apparatus, characterized in that it comprises a angle selection <br/>-option means for selecting the optical axis angle of the illumination angle or the imager.
し、撮像結果から被測定面に析出する所定種類の結晶粒
の粒径を算出することで前記結晶粒の粒径を測定する結
晶粒径測定装置において、 前記撮像結果を量子化する量子化手段と、 該量子化手段の量子化結果を所定の輝度閾値に基づいて
2値化することによって前記所定種類の結晶粒を識別す
る2値化/識別手段と、 該2値化/識別手段に識別された前記所定種類の結晶粒
の画素を計数する計数手段と、 該計数手段の計数結果に応じた面積を演算する面積演算
手段と、 該面積演算手段の演算結果に対応する円の直径を演算す
る直径演算手段と、 該直径演算手段の演算結果に基づいて前記粒径を演算す
る粒径演算手段と、 前記被測定面へ光を照射する光照射手段と、 該光照射手段の光量を、撮像される前記所定種類の結晶
粒とその他の結晶粒との濃淡差を明確にすべく前記撮像
器の感度に応じて増減する光量増減手段と、 前記光照射手段の前記被測定面への照射角度又は前記撮
像器の前記被測定面に対する光軸角度を、撮像される前
記所定種類の結晶粒とその他の結晶粒との濃淡差を明確
にすべく前記撮像器の感度に応じて変更する 角度変更手
段と、前記光量増減手段が前記光量を増減する都度、及び前記
角度変更手段が前記光照射手段の照射角度又は前記撮像
器の光軸角度を変更する都度、前記粒径演算手段により
演算される前記粒径と所定値との偏差を演算する偏差演
算手段と、該偏差演算手段の演算結果が最小となる前記光照射手段
の光量及び 前記光照射手段の照射角度又は前記撮像器の
光軸角度を選択する光量/角度選択手段とを備えること
を特徴とする結晶粒径測定装置。3. A surface of an object to be measured is imaged by using an imager.
Then, based on the imaging results, the specified types of crystal grains that precipitate on the surface to be measured
The grain size of the crystal grain is measured by calculating the grain size of
In the crystal grain size measuring device, a quantizing means for quantizing the imaging result, and a quantizing result of the quantizing means based on a predetermined brightness threshold value.
The predetermined type of crystal grains are identified by binarization.
Binarizing / identifying means, and the predetermined type of crystal grain identified by the binarizing / identifying means
Means for counting the number of pixels, and area calculation for calculating an area according to the counting result of the counting means
Means and a diameter of a circle corresponding to the calculation result of the area calculation means.
And a diameter calculation means for calculating the particle diameter based on the calculation result of the diameter calculation means.
Grain size calculating means, light irradiating means for irradiating the surface to be measured, and light amount of the light irradiating means, and the crystal of the predetermined type to be imaged
The image is taken to clarify the difference in density between the grain and other crystal grains.
Light amount increasing / decreasing means that increases / decreases in accordance with the sensitivity of the measuring device, and the irradiation angle of the light irradiation means to the measured surface or the imaging
Before imaging the optical axis angle of the imager with respect to the measured surface
Clarify the difference in shade between the specified type of crystal grain and other crystal grains
Therefore, the angle changing means for changing the light quantity according to the sensitivity of the image pickup device, each time the light quantity increasing / decreasing means increases / decreases the light quantity, and the angle changing means changes the irradiation angle of the light irradiation means or the imaging.
A deviation calculation for calculating the deviation between the particle size calculated by the particle size calculation means and a predetermined value each time the optical axis angle of the container is changed.
Calculation means and the light irradiation means for minimizing the calculation result of the deviation calculation means
Of light and the irradiation angle of the light irradiation means or the image pickup device
Further comprising a light intensity / angle selection means for selecting the optical axis angle
A crystal grain size measuring device characterized by:
と、前記輝度閾値を選択する閾値選択手段とを更に備
え、 前記閾値選択手段は、前記 閾値変更手段が前記輝度閾値
を変更する都度、前記偏差演算手段により演算される前
記粒径と所定値との偏差が最小となる輝度閾値を選択す
るようにしてあることを特徴とする請求項1乃至3のい
ずれかに記載の結晶粒径測定装置。4. Further comprising threshold changing means for changing the brightness threshold and threshold selecting means for selecting the brightness threshold.
For example, the threshold selecting means, every time the threshold value changing means changes the luminance threshold, as the deviation between the particle diameter and the predetermined value which is calculated by said deviation calculation means selects a brightness threshold becomes minimum claims 1 to 3 Neu, characterized in that
Crystal grain size measuring apparatus according to Zureka.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02491098A JP3511881B2 (en) | 1997-09-17 | 1998-02-05 | Crystal grain size measuring device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25251597 | 1997-09-17 | ||
JP9-252515 | 1997-09-17 | ||
JP02491098A JP3511881B2 (en) | 1997-09-17 | 1998-02-05 | Crystal grain size measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11153419A JPH11153419A (en) | 1999-06-08 |
JP3511881B2 true JP3511881B2 (en) | 2004-03-29 |
Family
ID=26362490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02491098A Expired - Fee Related JP3511881B2 (en) | 1997-09-17 | 1998-02-05 | Crystal grain size measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3511881B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103257098A (en) * | 2013-05-16 | 2013-08-21 | 江苏省沙钢钢铁研究院有限公司 | High-carbon steel wire rod austenite grain size measurement method |
KR101371663B1 (en) | 2012-09-03 | 2014-03-12 | 창원대학교 산학협력단 | Method and apparatus for quantitative measuring the particles |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4139743B2 (en) * | 2003-06-12 | 2008-08-27 | 日本軽金属株式会社 | Apparatus for measuring non-metallic inclusions in aluminum |
KR20060079710A (en) * | 2005-01-03 | 2006-07-06 | 삼성전자주식회사 | Method for measuring cell gap, method for manufacturing liquid crystal display including the method, device for measuring the cell gap, and in-line system including the device |
JP4621170B2 (en) * | 2006-06-05 | 2011-01-26 | 新日本製鐵株式会社 | Metallographic image observation device |
JP5233467B2 (en) * | 2008-07-22 | 2013-07-10 | 新日鐵住金株式会社 | Crystal grain analysis apparatus, crystal grain analysis method, and computer program |
CN103884645B (en) * | 2012-12-24 | 2016-06-01 | 中国制浆造纸研究院 | A kind of method for testing gas content in coating |
JP6728524B2 (en) * | 2016-03-28 | 2020-07-22 | 株式会社神戸製鋼所 | Center segregation evaluation method for steel |
JP6637169B2 (en) * | 2016-06-03 | 2020-01-29 | 株式会社オプティム | Animal weight estimation system, animal weight estimation method and program |
CN108469231B (en) * | 2017-02-23 | 2020-05-08 | 香港商台本机械有限公司 | Detection system |
JP7062557B2 (en) * | 2018-08-30 | 2022-05-06 | 株式会社神戸製鋼所 | Evaluation method for granulated products for ironmaking |
JP7062556B2 (en) * | 2018-08-30 | 2022-05-06 | 株式会社神戸製鋼所 | Evaluation method for granulated products for ironmaking |
KR20200034140A (en) * | 2018-09-21 | 2020-03-31 | 고려대학교 세종산학협력단 | Method and Apparatus for Process Quality Verification using Quantitative Statistical Numerical Analysis by Scanning Electron Microscope Image Processing of Low Temperature Polysilicon Thin Film Transistor |
JP7251157B2 (en) * | 2019-01-16 | 2023-04-04 | Tdk株式会社 | Evaluation method of raw material alloy for rare earth magnet, apparatus for evaluating raw material alloy for rare earth magnet, and manufacturing method of rare earth magnet |
JP7251158B2 (en) * | 2019-01-16 | 2023-04-04 | Tdk株式会社 | Evaluation method of raw material alloy for rare earth magnet, apparatus for evaluating raw material alloy for rare earth magnet, and manufacturing method of rare earth magnet |
CN114459362B (en) * | 2021-12-31 | 2024-03-26 | 深圳市瑞图生物技术有限公司 | Measuring device and measuring method thereof |
CN114990688B (en) * | 2022-06-28 | 2024-01-26 | 西安奕斯伟材料科技股份有限公司 | Single crystal diameter control method and device and single crystal silicon crystal pulling furnace |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54128756A (en) * | 1978-03-29 | 1979-10-05 | Sumitomo Metal Ind | Optical measuring device |
JPS5999304A (en) * | 1982-11-30 | 1984-06-08 | Asahi Optical Co Ltd | Method and apparatus for comparing and measuring length by using laser light of microscope system |
JPH07139930A (en) * | 1993-11-18 | 1995-06-02 | Tokai Rika Co Ltd | Automatic light-adjusting type apparatus for measuring surface state |
JPH07294452A (en) * | 1994-04-26 | 1995-11-10 | Matsushita Electric Works Ltd | Sensitivity correcting method for external appearance inspection device |
JPH1172317A (en) * | 1997-08-28 | 1999-03-16 | Nkk Corp | Spangle size-measuring device |
-
1998
- 1998-02-05 JP JP02491098A patent/JP3511881B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101371663B1 (en) | 2012-09-03 | 2014-03-12 | 창원대학교 산학협력단 | Method and apparatus for quantitative measuring the particles |
CN103257098A (en) * | 2013-05-16 | 2013-08-21 | 江苏省沙钢钢铁研究院有限公司 | High-carbon steel wire rod austenite grain size measurement method |
CN103257098B (en) * | 2013-05-16 | 2016-04-27 | 江苏省沙钢钢铁研究院有限公司 | High-carbon steel wire rod austenite grain size measurement method |
Also Published As
Publication number | Publication date |
---|---|
JPH11153419A (en) | 1999-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3511881B2 (en) | Crystal grain size measuring device | |
JP3764890B2 (en) | Method for on-line characterization of a moving surface and apparatus for implementing it | |
WO2003093761A1 (en) | Method and instrument for measuring bead cutting shape of electric welded tube | |
JP2005121486A (en) | Three-dimensional measuring device | |
JP4444838B2 (en) | Light intensity adjustment system | |
WO2023151249A1 (en) | Online measurement system for surface cleanliness of cold-rolled strip steel | |
JPH0225121B2 (en) | ||
US20020080264A1 (en) | Method and apparatus for direct image pick-up of granular speck pattern generated by reflecting light of laser beam | |
CN114858817A (en) | Detection device and method for protective lens of galvanometer | |
CN113610054B (en) | Underwater structure disease depth detection method, system, device and storage medium | |
CN117381105B (en) | Robot welding current control method and device, electronic equipment and storage medium | |
JP4705277B2 (en) | Oil amount distribution measuring device and oil amount distribution measuring method | |
JP3580137B2 (en) | Method and apparatus for measuring crystal grain size | |
BG64999B1 (en) | Method for inspecting electrode surface quality | |
JP2023058641A (en) | Light transmission measurement device | |
JP5949690B2 (en) | Evaluation method and evaluation apparatus | |
WO2020183958A1 (en) | Chemically converted film inspection method, chemically converted film inspection device, surface-treated steel sheet manufacturing method, surface-treated steel sheet quality management method, and surface-treated steel sheet manufacturing equipment | |
JPH1172317A (en) | Spangle size-measuring device | |
CN112139997B (en) | Method for inhibiting ambient light in round steel grinding quality detection system | |
KR920700579A (en) | Bone Morphometric Methods and Apparatus and Bone Evaluation System | |
JP2007003332A (en) | Method and detector for detecting defect on planar body side face | |
JP3972638B2 (en) | Coating material manufacturing method and manufacturing equipment | |
JP2023123908A (en) | Defect measuring device, defect measuring method, manufacturing facility for galvanized steel plate, manufacturing method for galvanized steel plate, and quality control method for galvanized steel plate | |
JPS61140384A (en) | Welding state measuring method in electric seam welding | |
CN220062892U (en) | Welding rod solder contour detector and welding rod eccentricity online continuous measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031229 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |