JP3972638B2 - Coating material manufacturing method and manufacturing equipment - Google Patents

Coating material manufacturing method and manufacturing equipment Download PDF

Info

Publication number
JP3972638B2
JP3972638B2 JP2001348809A JP2001348809A JP3972638B2 JP 3972638 B2 JP3972638 B2 JP 3972638B2 JP 2001348809 A JP2001348809 A JP 2001348809A JP 2001348809 A JP2001348809 A JP 2001348809A JP 3972638 B2 JP3972638 B2 JP 3972638B2
Authority
JP
Japan
Prior art keywords
film thickness
film
thickness measurement
value
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001348809A
Other languages
Japanese (ja)
Other versions
JP2003147581A (en
Inventor
健一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001348809A priority Critical patent/JP3972638B2/en
Publication of JP2003147581A publication Critical patent/JP2003147581A/en
Application granted granted Critical
Publication of JP3972638B2 publication Critical patent/JP3972638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被覆材料の製造方法および製造設備に関する。さらに詳しくは、被覆材料の品質が安定し、生産性および歩留まりが向上する被覆材料の製造方法および製造設備に関する。
【0002】
【従来の技術】
従来より、様々な分野において、被覆材料を用いた製品が実用化され、あるいは被覆材料を用いた製品を実用化すべく研究開発が進められている。ここで、被覆材料とは、基材表面に、所望の特性を有する被膜を形成してなるものである。
【0003】
例えば、近年燃料電池用のセパレータ材として注目されている金属セパレータは、ステンレス、Ni、Tiなどの金属基板の表面に、自然電位が高く、接触抵抗が小さくかつ腐食性の低い貴金属からなる被膜を形成してなるものとされ、従来のカーボンセパレータに比して導電性および機械的強度に優れ、製造コストが低くかつ小型・軽量であるという利点を有する。金属セパレータの具体例としては、ステンレス鋼の表面に金メッキを施したものや、金メッキ後さらに圧延を施したものが提案されている(特開2001−68129号公報参照)。
【0004】
かかる被覆材料の製造では、被膜の膜厚管理が重要である。というのは、金属セパレータの場合もそうであるように、被膜には通常高価な材料が使用されるため、被膜の膜厚が厚すぎるとコスト上昇を招く一方、膜厚が薄すぎると所望の特性を発揮できないこととなるからである。そこで、被覆材料の製造では、被膜の膜厚管理のために膜厚測定がなされている。この膜厚測定は、一般的には、蛍光X線膜厚計や電磁式膜厚計を用いて行われている。
【0005】
蛍光X線膜厚計を用いた測定は、被膜表面に励起X線を照射して、基材および被膜の蛍光X線強度を比例計数管や半導体検出器により測定し、蛍光X線強度と被膜膜厚との関係(図4参照)に基づいて膜厚を算出するものであるが、以下のような問題を有する。
【0006】
(1)X線源の安定化や蛍光X線強度の測定に時間がかかるため、測定時間が十数秒から数百秒にもなる。
【0007】
(2)X線源を使用するため、装置を囲ったり、設置場所を申請したりする必要があるという煩雑さがある。
【0008】
(3)蛍光X線膜厚計は測定精度が数十nm程度であるので、それ以下の極薄膜厚を高精度に測定できない。そのため、極薄被膜の被覆材料については、膜厚管理が適切になし得ず品質が安定しない。
【0009】
(4)X線管は高価である上に寿命が短いため、ランニングコストが嵩む。
【0010】
(5)メッキや圧延などの処理を連続的に実施するために、基材は通常、帯(フープ)状のものが使用されるが、その場合、先端と後端における膜厚しか測定できない。そのため、膜厚値の推移が確認できず、先端と後端の膜厚値が大幅に異なっていた時の膜厚値保証が不可能であるなどの理由により、連続的なオンラインでの測定に不向きである。
【0011】
(6)測定がオフラインでなされる結果、生産性が低下する。また、測定結果を迅速に前工程へ反映させることもできない。例えば、前工程における装置不良などにより膜厚異常品が連続的に製造されている場合にも、製造ライン停止などの対策を迅速になし得ないため、歩留まりの低下を招く。
【0012】
電磁式膜厚計を用いた測定は、鉄心入りコイルを被膜表面に当接させ、その際のコイルのインダクタンス変化量に基づいて膜厚を測定するものであるが、基材が磁性材でかつ被膜が非磁性材でなければ測定がなし得ず、しかも接触式のため被膜表面を傷つけるおそれがある。また、測定精度が数μmであり、数nm〜数十nmという極薄膜厚を高精度に測定できないため、極薄被膜の被覆材料については、膜厚管理が適切になし得ず品質が安定しないという問題がある。
【0013】
さらに、β線膜厚計、オージェ電子分光分析装置や原子間力顕微鏡などを用いて測定が行われることもある。しかしながら、β線膜厚計を用いた測定においては、測定精度が悪いため、膜厚管理が適切になし得ず品質が安定しないという問題がある。また、オージェ電子分光分析装置および原子間力顕微鏡を用いた測定においては、装置が高価で測定に時間がかかり、しかも帯状物等のオンラインでの測定が不可能であるため、生産性および歩留まりの低下を招くという問題がある。
【0014】
さらにまた、特開平11−325838号公報には、色差計または分光光度計を用いて、金フラッシュメッキの有無を判別する金メッキの膜厚管理方法が提案されている。同方法によれば、0.01μm以下の極薄い金フラッシュメッキの場合であっても、金フラッシュメッキの有無により、色差計または分光光度計の測定値に明確な差が現れるため、短時間かつオンラインで金フラッシュメッキの有無を判別することができる。
【0015】
しかしながら、色差計の測定値または分光光度計の測定値と膜厚との間には、例えば比例関係のような単純な相関関係がないため、金フラッシュメッキの有無だけでなく膜厚をも測定するためには、膜厚の異なる非常に多くの測定サンプルについてあらかじめ測定を実施して、測定値と膜厚との相関関係を明らかにしておく必要がある。しかも、この作業は、基材材料と被膜材料の組合せごとに必要となるため、非常に手間がかかるという問題がある。
【0016】
【発明が解決しようとする課題】
本発明はかかる従来技術の課題に鑑みなされたものであって、品質の安定した被覆材料を製造でき、しかも生産性および歩留まりが向上する被覆材料の製造方法および製造設備を提供することを目的としている。
【0017】
【課題を解決するための手段】
本発明の被覆材料の製造方法は、膜厚測定を、基材表面への被膜形成工程と同一ライン上においてなす被覆材料の製造方法であって、
前記膜厚測定は、被膜表面を幅方向に等間隔で分割した領域を膜厚測定対象領域とし、
前記膜厚測定対象領域を均一に照射して同膜厚測定対象領域を撮像し、得られた撮像画像の前記各膜厚測定対象領域に対応する画素群の各画素から出力されるRGB値を、R値、G値およびB値のそれぞれについて平均し、得られた平均RGB値をXYZ表色系における色度座標値x、yまたはXYZ表色系における三刺激値のX、Yに変換し、その色度座標値x、yまたは三刺激値のX、Yに基づいて膜厚測定をなすことを特徴とする。
【0020】
一方、本発明の被覆材料の製造設備は、基材表面に被膜を形成する被膜形成装置と、被膜形成装置において形成された被膜の膜厚を、幅方向に等間隔で分割した領域を膜厚測定対象領域として測定する膜厚測定装置とを同一ライン上に備え、
前記膜厚測定装置が、被膜表面を照射する光源と、該光源により照射された被膜表面を撮像する撮像手段と、該撮像手段からの撮像信号に基づいて膜厚測定をなす膜厚測定部とを備え、
前記光源が、被膜表面を均一に面照射するよう構成され、
前記膜厚測定部が、前記膜厚測定対象領域を均一に照射して同膜厚測定対象領域を撮像し、得られた撮像画像の前記各膜厚測定対象領域に対応する画素群の各画素から出力されるRGB値を、R値、G値およびB値のそれぞれについて平均し、得られた平均RGB値をXYZ表色系における色度座標値x、yまたはXYZ表色系における三刺激値のX、Yに変換し、その色度座標値x、yまたは三刺激値のX、Yに基づいて膜厚測定をなすよう構成されてなることを特徴とする。
【0025】
【作用】
本発明は前記のごとく構成されているので、生産性および歩留まりが向上する。また、本発明の好ましい形態によれば、被覆材料の品質が安定する。
【0026】
【発明の実施の形態】
以下、添付図面を参照しながら本発明を実施形態に基づいて説明するが、本発明はかかる実施形態のみに限定されるものではない。
【0027】
本発明の被覆材料の製造方法が適用される被覆材料の製造設備は、基材表面に被膜を形成する被膜形成装置と、被膜形成装置において形成された被膜の膜厚を測定する膜厚測定装置とを備え、前記膜厚測定装置が、前記被膜形成装置と同一ライン上に配設されてなるものである。
【0028】
前記構成とされた本発明の被覆材料の製造設備(以下、単に製造設備という)の一実施形態を図1に示す。なお、本実施形態においては、被覆材料として圧縮加工鋼を例に採り説明する。
【0029】
この製造設備Sは、圧延装置(不図示である)から供給される、例えばステンレス鋼からなる帯状鋼の表面に、金や銀などの被膜を連続的に形成し、それを圧縮加工して圧縮加工鋼を製造するものとされ、被膜形成装置および膜厚測定装置を有する圧縮加工鋼製造ラインLと、圧縮加工鋼製造ラインLを制御する制御装置50と、出力手段60と、警告手段70とを主要構成要素としてなる。
【0030】
圧縮加工鋼製造ラインLは、具体的には、帯状鋼(基材)Vに熱処理を施す熱処理装置10と、熱処理後の帯状鋼V表面にメッキを施すメッキ装置(被膜形成装置)20と、メッキ装置20において得られたメッキ鋼WKを圧延ローラを用いて行うことのできる圧縮加工をする圧縮加工装置30と、圧縮加工後の圧縮加工鋼(圧縮加工鋼)WAの被膜膜厚を測定する膜厚測定装置40とからなる。
【0031】
熱処理装置10は、公知の連続焼鈍炉とされる。メッキ装置20は、電気メッキ装置や無電解メッキ装置などの各種メッキ装置のうち、被膜材料に適したものとされる。
【0032】
圧縮加工装置30は、公知の圧延ローラを用いて行うことのできる圧縮加工装置とされ、メッキ装置20で得られたメッキ鋼WKを圧延ローラを用いて行うことのできる圧縮加工することにより、メッキ層の膜厚を薄くするとともに、メッキ層に存在するピンホールを押し潰して封孔し圧縮加工鋼WAの耐食性および導電性を向上させるものである。
【0033】
膜厚測定装置40は、圧縮加工後の搬送ライン上において膜厚測定を行うものとされる。具体的には、図1および図2に示すように、圧縮加工鋼WAの被膜H表面を照射する光源41と、光源41による照射個所を撮像するカラーCCDカメラ(撮像手段)42と、完全拡散面を有するカサUと、CCDカメラ42からのRGB撮像信号に基づいて被膜Hの膜厚を測定する膜厚測定部43と、圧縮加工鋼WAの移動量(搬送量)を検出する移動量検出手段44とからなる。
【0034】
ここで、圧縮加工鋼WAを搬送するローラコンベアRの途中位置には暗室Bが設置されて、圧縮加工鋼WAが搬送中に暗室B内を通過するようにされている。そして、カサU、光源41およびCCDカメラ42は、この暗室B内に配設されて、外部からの光の影響を受けることなく被膜H表面を撮像できるようにされている。また、カサUの頂部は、図2に示すようにCCDカメラ42の上方に配置されて光源41およびCCDカメラ42を覆うようにされている。
【0035】
光源41は、後の処理においてXYZ表色系を用いることから、XYZ表色系で使用される380〜780nmの範囲内の波長の光を発するものとされる。さらに、光源41は、被膜Hの色と差を保てる系統色の光を発するものとされる。具体的には、被膜Hが白色以外の系統色のもの(例えば金)である場合には白色系の光を発するものとされ、被膜Hが白系色のもの(例えば銀)である場合には緑もしくは赤色系の光を発するものとされる。
【0036】
また、一般に色判定をなす場合の光源には太陽光に近いキセノンランプが使用されるが、本実施形態においては、ランニングコストがほとんど発生せず、波長および光量の安定した光を発することからLEDが使用される。したがって、白色系の光が必要な場合には、赤色、緑色および青色LEDを組合わせたもの(以下、組合せLEDという)が使用される。なお、白色光の場合には蛍光灯の使用も考えられるが、蛍光灯はフリッカが発生するため使用できない。
【0037】
光源41は、具体的には、前記組合せLEDまたは白色LEDを圧縮加工鋼WAの幅方向に等間隔でアレイ状に並べたものとされて、被膜H表面を均一に面照射できるようにされている。また、光源41は、安定化電源(不図示である)に接続されて、光量が一定となるようにされている。
【0038】
CCDカメラ42は、本実施形態においては、色再現性が良いことから3CCD式カラーカメラとされているが、これに限定されず例えば通常のカラーCCDカメラもしくはカラーラインセンサでもよい。また、CCDカメラ42は、圧縮加工鋼WAの幅方向ほぼ全長にわたる細長い撮像視野を持っており、この撮像視野を圧縮加工鋼WAの幅方向に等間隔で分割した、例えば20mm*20mmの領域A1、A2、…が膜厚測定領域とされる。さらに、CCDカメラ42には、各膜厚測定領域Aに対応する画素群ごとに白補正がなされている。具体的には、白色板を撮像し、その際の前記画素群からの出力RGB値がすべて等しくなり、かつ各画素の出力RGB値が均一(R=G=B)となるように白補正がなされている。
【0039】
膜厚算出・判定部43は、CCDカメラ42のRGB撮像信号に基づいて、各膜厚測定領域A1、A2、…の平均膜厚を算出する膜厚算出手段43aと、算出された膜厚値が許容範囲内か否か判定する判定手段43bとからなる。この膜厚算出・判定部43は、具体的には、制御装置50を構成するコンピュータにより実現される。
【0040】
膜厚算出手段43aは、膜厚測定領域Aに対応する画素群の各画素から出力されるRGB値をR値、G値、B値ごとに平均し、得られた平均RGB値を、XYZ表色系における色度座標値xおよびy(またはXYZ表色系における三刺激値のXおよびY)に変換した後、色度座標値x、yと膜厚との関係から膜厚を算出するものである。ここで、平均RGB値からXYZ表色系における色度座標値x、yへの変換は、CCDカメラ42の特性(白色点、原色の色度座標など)を示したパラメータ・ファイル(デバイス・プロファイル)を用いてなされる。
【0041】
膜厚算出手段43aは、具体的には、基材材料と被膜材料の組合せごとにあらかじめ求められている、被膜膜厚と色度座標値x、yとの関係をマップの形態で保持し、そのマップから測定対象に対応する関係を選択して膜厚を算出するように構成されている。
【0042】
この場合、図3に示すように、被膜膜厚と色度座標値x、yとの間にはほぼ直線的な相関関係が存在する。すなわち、被膜膜厚と色度座標値x、yとの関係は直線で近似できるため、膜厚の異なるごく少数(最低2つ)のサンプル材を膜厚測定装置40において撮像し色度座標値x、yを算出するだけで、被膜膜厚と色度座標値x、yとの関係を求めることができる。したがって、被膜膜厚と色度座標値x、yとの関係を求めるための作業が、従来の色差計や分光光度計による測定(特開平11−325838号公報参照)における同様の作業に比して、はるかに簡素化されることとなる。
【0043】
また、色度座標値x、yにより表されるxy色度は光の強度に影響されないため、光源の劣化の影響をほとんど受けることなく膜厚を算出できるという利点もある。なお、図3は、基材材料がステンレス鋼で被膜材料が金である場合の、金膜厚と色度座標値x、yとの関係を示すグラフ図である。
【0044】
判定手段43bは、算出された膜厚値が許容範囲内か否か判定し、膜厚値が許容範囲内に収まっていなければ、出力手段60に膜厚異常個所が存在する旨を出力させるとともに、警告手段70にオン信号を発するものとされる。ここで、前記許容範囲は、例えば設定膜厚値に±25%以内とされる。
【0045】
移動量検出手段44は、ローラコンベアRの回転ローラRaの回転数を検出するもの、例えばパルスジェネレータ(PG)とされる。
【0046】
制御装置50は、熱処理装置10、メッキ装置20、圧縮加工装置30および膜厚測定装置40を制御する制御部51を構成するとともに、膜厚算出・判定部43を構成するものとされる。
【0047】
ここで、制御部51によるメッキ装置20の制御は、膜厚算出手段43aで算出された膜厚値に基づいてなされ、また制御部51による膜厚測定装置40の制御は、移動量検出手段44の検出値に基づいてなされる。
【0048】
具体的には、制御部51は、膜厚算出手段43aで算出される膜厚値と設定膜厚値とのずれを解消するようにメッキ装置20を制御する。例えば、メッキ装置20が電気メッキ装置であれば、膜厚算出手段43aで算出される膜厚値と設定膜厚値とのずれを解消するように、電流密度やメッキ液の温度を調節する。
【0049】
また、制御部51は、移動量検出手段44により検出される回転ローラRaの回転数から圧縮加工鋼WAの移動量を算出し、圧縮加工鋼WAが所定量(例えば25mm)移動するごとにCCDカメラ42に撮像を行わせる。
【0050】
しかして、制御装置50は、例えば出力手段60を備えたコンピュータに、制御部51および膜厚算出・判定部43の前記各手段43a、43bの機能に対応したプログラム、すなわち制御プログラム、膜厚算出プログラムおよび判定プログラムを格納することにより実現される。
【0051】
出力手段60は、例えばプリンタやCRTディスプレイなどとされ、また警告手段70は、例えば回転灯や警報装置などとされる。
【0052】
このように、本実施形態によれば、熱処理から膜厚測定までの全工程が、一つの製造ライン上で連続的になされるので、生産性が大幅に向上し、しかも算出された膜厚値をただちにメッキ装置20の制御に反映させることができるため、歩留まりが向上する。また、本実施形態の膜厚測定装置40においては、数nm〜数十nmという極薄膜厚をも高精度に測定できるため、極薄被膜の圧縮加工鋼であっても、膜厚管理を適切になし品質を安定させることができる。さらに、圧縮加工鋼の幅方向ほぼ全長にわたる膜厚を測定対象としているため、さらなる品質の安定化が図られる。
【0053】
以上、本発明を実施形態に基づいて説明してきたが、本発明はかかる実施形態のみに限定されるものではなく種々改変が可能である。例えば、実施形態においては、被覆材料として圧縮加工鋼を例に採り説明しているが、これに限定されるものではなく種々の被覆材料、例えば金メッキ電極にも適用可能である。
【0054】
また、実施形態においては、圧縮加工後に膜厚測定を行っているが、これに加えてメッキ処理後にも膜厚測定を行うようにしてもよい。また、連続ラインではなく、それぞれの装置が独立に配置している場合でもよい。
【0055】
さらに、膜厚測定装置にマーキング装置を設置し、膜厚異常個所にマーキング処理を施すようにしてもよい。
【0056】
さらに、実施形態では、本発明を帯鋼(フープ)に適用した場合について説明しているが、単板についても適用できる。
【0057】
さらにまた、実施形態においては、被覆材料の搬送中に膜厚測定を行っているが、被覆材料が静止している工程において膜厚測定を行う場合は、光源およびCCDカメラを暗室と一体的に移動可能とし、暗室を被覆材料の長手方向に沿って移動させながら膜厚測定を行うようにすればよい。
【0058】
【発明の効果】
以上詳述したように、本発明によれば、膜厚測定が基材表面への被膜形成工程と同一ライン上においてなされるので、生産性が大幅に向上し、しかも測定結果をただちに被膜形成工程へ反映させることができるため、歩留まりが向上するという優れた効果が得られる。
【0059】
また、本発明の好ましい形態によれば、数nm〜数十nmという極薄被膜の被覆材料であっても、膜厚管理を適切になし品質を安定させることができるという優れた効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる被覆材料の製造方法が適用される被覆材料の製造設備のブロック図である。
【図2】同設備の膜厚測定装置の概略図である。
【図3】XYZ表色系における色度座標値x、yと被膜膜厚との関係を示すグラフ図であって、同(a)は三次元座標で表したものであり、同(b)は二次元座標で表したものである。
【図4】蛍光X線膜厚計を用いた測定における膜厚算出原理の説明図である。
【符号の説明】
10 熱処理装置
20 メッキ装置(被膜形成装置)
30 圧縮加工装置
40 膜厚測定装置
41 光源
42 CCDカメラ(撮像手段)
43 膜厚算出・判定部
43a 膜厚算出手段
43b 判定手段
50 制御装置
51 制御部
60 出力手段
70 警告手段
H 被膜
L 圧縮加工鋼製造ライン
S 被覆材料の製造設備
V 帯状鋼(基材)
A 圧縮加工鋼(被覆材料)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a coating material and a manufacturing facility. More specifically, the present invention relates to a coating material manufacturing method and manufacturing equipment in which the quality of the coating material is stable and productivity and yield are improved.
[0002]
[Prior art]
Conventionally, in various fields, products using a coating material have been put into practical use, or research and development have been promoted in order to put a product using a coating material into practical use. Here, the coating material is formed by forming a film having desired characteristics on the surface of the base material.
[0003]
For example, a metal separator that has been attracting attention as a separator material for fuel cells in recent years has a coating made of a noble metal with high natural potential, low contact resistance and low corrosivity on the surface of a metal substrate such as stainless steel, Ni, or Ti. It is formed, and has the advantages that it is excellent in conductivity and mechanical strength as compared with the conventional carbon separator, is low in manufacturing cost, and is small and light. As specific examples of the metal separator, there have been proposed one in which the surface of stainless steel is gold-plated, and one in which the surface is further rolled after gold plating (see JP-A-2001-68129).
[0004]
In manufacturing such a coating material, it is important to control the film thickness of the coating. This is because, as is the case with metal separators, an expensive material is usually used for the coating. Therefore, if the thickness of the coating is too thick, the cost is increased. This is because the characteristics cannot be exhibited. Therefore, in the production of the coating material, the film thickness is measured to control the film thickness of the coating. This film thickness measurement is generally performed using a fluorescent X-ray film thickness meter or an electromagnetic film thickness meter.
[0005]
Measurement using a fluorescent X-ray film thickness meter is performed by irradiating the surface of the coating with excitation X-rays and measuring the fluorescent X-ray intensity of the substrate and the coating with a proportional counter or a semiconductor detector. The film thickness is calculated based on the relationship with the film thickness (see FIG. 4), but has the following problems.
[0006]
(1) Since it takes time to stabilize the X-ray source and measure the fluorescent X-ray intensity, the measurement time is from several tens of seconds to several hundreds of seconds.
[0007]
(2) Since the X-ray source is used, it is necessary to enclose the apparatus or apply for an installation location.
[0008]
(3) Since the measurement accuracy of the fluorescent X-ray film thickness meter is about several tens of nanometers, an ultrathin film thickness below that cannot be measured with high accuracy. Therefore, the thickness of the coating material for the ultrathin film cannot be properly controlled, and the quality is not stable.
[0009]
(4) Since the X-ray tube is expensive and has a short life, the running cost increases.
[0010]
(5) In order to continuously carry out processes such as plating and rolling, a base material is usually used in the form of a band (hoop). In this case, only the film thicknesses at the front and rear ends can be measured. For this reason, it is not possible to confirm the transition of the film thickness value, and it is impossible to guarantee the film thickness value when the film thickness values at the front and rear ends are significantly different. It is unsuitable.
[0011]
(6) As a result of the measurement being made offline, productivity is lowered. In addition, the measurement result cannot be quickly reflected in the previous process. For example, even when an abnormal film thickness product is continuously manufactured due to a device failure or the like in the previous process, it is not possible to quickly take a measure such as a production line stop, resulting in a decrease in yield.
[0012]
The measurement using an electromagnetic film thickness meter is to measure the film thickness based on the amount of change in inductance of the coil at the time when the coil with iron core is brought into contact with the coating surface. If the coating is not a non-magnetic material, measurement cannot be performed and the coating surface may be damaged due to the contact type. In addition, since the measurement accuracy is several μm and the thickness of ultrathin film of several nm to several tens of nm cannot be measured with high accuracy, the coating thickness of the ultrathin coating cannot be properly controlled and the quality is not stable. There is a problem.
[0013]
Furthermore, the measurement may be performed using a β-ray film thickness meter, an Auger electron spectroscopy analyzer, an atomic force microscope, or the like. However, in the measurement using a β-ray film thickness meter, there is a problem that the film thickness cannot be properly controlled because the measurement accuracy is poor, and the quality is not stable. Moreover, in the measurement using an Auger electron spectroscopy analyzer and an atomic force microscope, the apparatus is expensive and takes a long time to measure, and the on-line measurement of a strip or the like is impossible. There is a problem of causing a decrease.
[0014]
Furthermore, Japanese Patent Laid-Open No. 11-325838 proposes a gold plating film thickness management method for determining the presence or absence of gold flash plating using a color difference meter or a spectrophotometer. According to this method, even in the case of ultra-thin gold flash plating of 0.01 μm or less, a clear difference appears in the measured value of the color difference meter or spectrophotometer depending on the presence or absence of gold flash plating. The presence or absence of gold flash plating can be determined online.
[0015]
However, there is no simple correlation, such as a proportional relationship, between the measured value of the color difference meter or the spectrophotometer and the film thickness, so it measures not only the presence of gold flash plating but also the film thickness. In order to do this, it is necessary to measure in advance a very large number of measurement samples having different film thicknesses and clarify the correlation between the measured values and the film thicknesses. Moreover, since this operation is required for each combination of the base material and the coating material, there is a problem that it takes much time.
[0016]
[Problems to be solved by the invention]
The present invention has been made in view of the problems of the prior art, and has an object to provide a coating material manufacturing method and manufacturing equipment capable of manufacturing a coating material with stable quality and improving productivity and yield. Yes.
[0017]
[Means for Solving the Problems]
The method for producing a coating material according to the present invention is a method for producing a coating material in which film thickness measurement is performed on the same line as the film formation step on the substrate surface ,
In the film thickness measurement, the area obtained by dividing the film surface at equal intervals in the width direction is a film thickness measurement target area,
The film thickness measurement target region is uniformly irradiated to image the same film thickness measurement target region, and RGB values output from each pixel of the pixel group corresponding to each film thickness measurement target region of the obtained captured image are , R value, G value, and B value are averaged, and the obtained average RGB values are converted into chromaticity coordinate values x, y in the XYZ color system or tristimulus values X, Y in the XYZ color system. The film thickness is measured based on the chromaticity coordinate values x and y or the tristimulus values X and Y.
[0020]
On the other hand, the equipment for producing a coating material of the present invention comprises a film forming apparatus for forming a film on the surface of a substrate and a film thickness formed by dividing the film thickness of the film formed in the film forming apparatus at equal intervals in the width direction. Equipped with a film thickness measuring device to measure as the measurement target area on the same line ,
The film thickness measuring device includes a light source that irradiates the surface of the film, an imaging unit that images the surface of the film irradiated by the light source, and a film thickness measuring unit that performs film thickness measurement based on an imaging signal from the imaging unit. With
The light source is configured to uniformly illuminate the surface of the coating;
The film thickness measurement unit uniformly irradiates the film thickness measurement target region to image the same film thickness measurement target region, and each pixel of the pixel group corresponding to each film thickness measurement target region of the obtained captured image RGB values output from the R value, G value, and B value are averaged, and the obtained average RGB values are chromaticity coordinate values x, y in the XYZ color system or tristimulus values in the XYZ color system The film thickness is measured based on the chromaticity coordinate values x and y or the tristimulus values X and Y.
[0025]
[Action]
Since the present invention is configured as described above, productivity and yield are improved. Moreover, according to the preferable form of this invention, the quality of coating material is stabilized.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although the present invention is explained based on an embodiment, referring to an accompanying drawing, the present invention is not limited only to this embodiment.
[0027]
The coating material manufacturing equipment to which the coating material manufacturing method of the present invention is applied includes a coating film forming apparatus that forms a film on the surface of a substrate, and a film thickness measuring apparatus that measures the film thickness of the coating film formed in the film forming apparatus. The film thickness measuring device is disposed on the same line as the film forming device.
[0028]
FIG. 1 shows one embodiment of the coating material manufacturing facility (hereinafter simply referred to as manufacturing facility) of the present invention configured as described above. In the present embodiment, description will be given by taking compression-processed steel as an example of the coating material.
[0029]
This manufacturing equipment S is formed by continuously forming a coating of gold, silver, or the like on the surface of a strip steel made of, for example, stainless steel supplied from a rolling device (not shown), and compressing it by compressing it. Compressed steel production line L having a coating film forming device and a film thickness measuring device, a control device 50 for controlling the compressed steel production line L, output means 60, and warning means 70. As the main component.
[0030]
Specifically, the compression-processed steel production line L includes a heat treatment apparatus 10 that performs heat treatment on the strip steel (base material) V, a plating apparatus (film forming apparatus) 20 that performs plating on the surface of the strip steel V after the heat treatment, and a compression processing unit 30 to the compression processing that can be performed using the rolling roller resulting plated steel W K in the plating apparatus 20, the compression processing after the compressing work steel a coating thickness of (compression work steels) W a It comprises a film thickness measuring device 40 to be measured.
[0031]
The heat treatment apparatus 10 is a known continuous annealing furnace. The plating apparatus 20 is suitable for a coating material among various plating apparatuses such as an electroplating apparatus and an electroless plating apparatus.
[0032]
The compression processing device 30 is a compression processing device that can be performed using a known rolling roller, and the plated steel W K obtained by the plating device 20 is subjected to compression processing that can be performed using a rolling roller. as well as reduce the thickness of the plating layer, in which crushed the pinholes present in the plating layer improves the corrosion resistance and electrical conductivity of the sealing and compression work steel W a.
[0033]
The film thickness measuring device 40 measures the film thickness on the conveyance line after the compression processing. Specifically, as shown in FIGS. 1 and 2, a light source 41 that irradiates the surface of the coating H of the compression-processed steel W A , a color CCD camera (imaging means) 42 that images the portion irradiated by the light source 41, and a complete movement detecting the umbrella U which has a diffusing surface, the film thickness measurement section 43 for measuring the film thickness of the film H based on the RGB image pickup signals from the CCD camera 42, the moving amount of the compression work steel W a (the conveyance amount) And a quantity detecting means 44.
[0034]
Here, in the middle position of the roller conveyor R for conveying the compressed working steel W A is being installed darkroom B, the compression work steels W A is to pass through a dark room B during transport. The umbrella U, the light source 41, and the CCD camera 42 are arranged in the dark room B so that the surface of the coating H can be imaged without being affected by light from the outside. Further, as shown in FIG. 2, the top of the umbrella U is arranged above the CCD camera 42 so as to cover the light source 41 and the CCD camera 42.
[0035]
Since the light source 41 uses the XYZ color system in the subsequent processing, the light source 41 emits light having a wavelength in the range of 380 to 780 nm used in the XYZ color system. Further, the light source 41 emits light of a system color that can maintain a difference from the color of the coating H. Specifically, when the coating H is of a system color other than white (for example, gold), white light is emitted. When the coating H is of a white color (for example, silver), It is supposed to emit green or red light.
[0036]
In general, a xenon lamp close to sunlight is used as a light source for color determination. However, in this embodiment, the running cost is hardly generated, and the LED emits light with a stable wavelength and light amount. Is used. Accordingly, when white light is required, a combination of red, green and blue LEDs (hereinafter referred to as a combination LED) is used. In the case of white light, a fluorescent lamp can be used, but the fluorescent lamp cannot be used because flickering occurs.
[0037]
Light source 41, specifically, the combination LED or are those obtained by arranging white LED in an array at equal intervals in the width direction of the compression work steels W A, is to a coating H surface can be uniformly surface irradiated ing. The light source 41 is connected to a stabilized power source (not shown) so that the amount of light is constant.
[0038]
In this embodiment, the CCD camera 42 is a 3CCD color camera because of its good color reproducibility. However, the CCD camera 42 is not limited to this and may be, for example, a normal color CCD camera or a color line sensor. Further, CCD camera 42, has a elongated imaging field across the width direction substantially the entire length of the compression work steels W A, and equally divides the imaging field in the width direction of the compression work steels W A, for example, 20 mm * 20 mm of The areas A 1 , A 2 ,... Are the film thickness measurement areas. Further, the CCD camera 42 is subjected to white correction for each pixel group corresponding to each film thickness measurement region A. Specifically, white correction is performed so that the white plate is imaged, and the output RGB values from the pixel group at that time are all equal, and the output RGB values of each pixel are uniform (R = G = B). Has been made.
[0039]
The film thickness calculation / determination unit 43, based on the RGB imaging signals of the CCD camera 42, calculates the average film thickness of each film thickness measurement region A 1 , A 2 ,..., And the calculated film And determining means 43b for determining whether or not the thickness value is within an allowable range. Specifically, the film thickness calculation / determination unit 43 is realized by a computer constituting the control device 50.
[0040]
The film thickness calculation means 43a averages the RGB values output from each pixel of the pixel group corresponding to the film thickness measurement region A for each of the R value, the G value, and the B value, and displays the obtained average RGB values in the XYZ table. The film thickness is calculated from the relationship between the chromaticity coordinate values x and y and the film thickness after being converted into chromaticity coordinate values x and y in the color system (or tristimulus values X and Y in the XYZ color system) It is. Here, the conversion from the average RGB value to the chromaticity coordinate values x and y in the XYZ color system is a parameter file (device profile) indicating the characteristics of the CCD camera 42 (white point, chromaticity coordinates of primary colors, etc.). ).
[0041]
Specifically, the film thickness calculation means 43a holds the relationship between the film thickness and the chromaticity coordinate values x and y, which are obtained in advance for each combination of the base material and the coating material, in the form of a map, The film thickness is calculated by selecting the relationship corresponding to the measurement object from the map.
[0042]
In this case, as shown in FIG. 3, there is a substantially linear correlation between the film thickness and the chromaticity coordinate values x and y. That is, since the relationship between the coating film thickness and the chromaticity coordinate values x and y can be approximated by a straight line, a very small number (at least two) of sample materials having different film thicknesses are imaged by the film thickness measuring device 40, and the chromaticity coordinate values. The relationship between the film thickness and the chromaticity coordinate values x and y can be obtained simply by calculating x and y. Therefore, the work for obtaining the relationship between the film thickness and the chromaticity coordinate values x and y is compared with the same work in the measurement using a conventional color difference meter or spectrophotometer (see Japanese Patent Laid-Open No. 11-325838). Much simpler.
[0043]
Further, since the xy chromaticity represented by the chromaticity coordinate values x and y is not influenced by the light intensity, there is an advantage that the film thickness can be calculated almost without being influenced by the deterioration of the light source. FIG. 3 is a graph showing the relationship between the gold film thickness and the chromaticity coordinate values x and y when the base material is stainless steel and the coating material is gold.
[0044]
The determination unit 43b determines whether or not the calculated film thickness value is within the allowable range. If the film thickness value does not fall within the allowable range, the output unit 60 outputs that the film thickness abnormality portion exists. , An on signal is issued to the warning means 70. Here, the allowable range is, for example, within ± 25% of the set film thickness value.
[0045]
The movement amount detection means 44 is a device that detects the number of rotations of the rotating roller Ra of the roller conveyor R, for example, a pulse generator (PG).
[0046]
The control device 50 constitutes a control unit 51 that controls the heat treatment device 10, the plating device 20, the compression processing device 30, and the film thickness measurement device 40, and constitutes a film thickness calculation / determination unit 43.
[0047]
Here, the control of the plating apparatus 20 by the control unit 51 is performed based on the film thickness value calculated by the film thickness calculation unit 43a, and the control of the film thickness measurement apparatus 40 by the control unit 51 is performed by the movement amount detection unit 44. Based on the detected value.
[0048]
Specifically, the control unit 51 controls the plating apparatus 20 so as to eliminate the difference between the film thickness value calculated by the film thickness calculation unit 43a and the set film thickness value. For example, if the plating apparatus 20 is an electroplating apparatus, the current density and the temperature of the plating solution are adjusted so as to eliminate the difference between the film thickness value calculated by the film thickness calculation means 43a and the set film thickness value.
[0049]
The control unit 51 each time calculates the moving amount of the compression work steel W A from the rotational speed of the rotating rollers Ra detected by the moving amount detecting means 44, the compression work steels W A is moved by a predetermined amount (e.g., 25 mm) Causes the CCD camera 42 to take an image.
[0050]
Therefore, the control device 50 is a program corresponding to the functions of the respective means 43a and 43b of the control unit 51 and the film thickness calculation / determination unit 43, that is, a control program, a film thickness calculation, for example. This is realized by storing a program and a judgment program.
[0051]
The output means 60 is, for example, a printer or a CRT display, and the warning means 70 is, for example, a rotating lamp or an alarm device.
[0052]
As described above, according to the present embodiment, since all processes from heat treatment to film thickness measurement are continuously performed on one production line, productivity is greatly improved, and the calculated film thickness value is also obtained. Can be immediately reflected in the control of the plating apparatus 20, so that the yield is improved. Moreover, in the film thickness measuring apparatus 40 of this embodiment, since an ultra-thin film thickness of several nanometers to several tens of nanometers can be measured with high accuracy, film thickness management is appropriate even for compression-processed steel with an ultra-thin film. The quality can be stabilized. Furthermore, since the film thickness over almost the entire length in the width direction of the compression-processed steel is a measurement object, further stabilization of quality can be achieved.
[0053]
As mentioned above, although this invention has been demonstrated based on embodiment, this invention is not limited only to this embodiment, A various change is possible. For example, in the embodiment, description has been made by taking compression processed steel as an example of the coating material. However, the present invention is not limited to this and can be applied to various coating materials, for example, gold-plated electrodes.
[0054]
In the embodiment, the film thickness is measured after the compression processing. In addition, the film thickness may be measured after the plating process. Further, instead of a continuous line, each device may be arranged independently.
[0055]
Furthermore, a marking device may be installed in the film thickness measuring device, and marking processing may be performed on the film thickness abnormality portion.
[0056]
Furthermore, although embodiment demonstrates the case where this invention is applied to a strip steel (hoop), it is applicable also to a single plate.
[0057]
Furthermore, in the embodiment, the film thickness is measured while the coating material is being transported. However, when the film thickness measurement is performed in a process where the coating material is stationary, the light source and the CCD camera are integrated with the dark room. The film thickness may be measured while moving the dark room along the longitudinal direction of the coating material.
[0058]
【The invention's effect】
As described above in detail, according to the present invention, since the film thickness measurement is performed on the same line as the film formation process on the substrate surface, the productivity is greatly improved, and the measurement result is immediately obtained. Therefore, an excellent effect of improving the yield can be obtained.
[0059]
Moreover, according to the preferable form of this invention, even if it is the coating material of the ultra-thin film of several nanometers-several tens of nanometers, the outstanding effect that film thickness management can be performed appropriately and quality can be stabilized is acquired. .
[Brief description of the drawings]
FIG. 1 is a block diagram of a coating material manufacturing facility to which a coating material manufacturing method according to an embodiment of the present invention is applied.
FIG. 2 is a schematic view of a film thickness measuring apparatus of the same equipment.
FIG. 3 is a graph showing the relationship between chromaticity coordinate values x, y and film thickness in an XYZ color system, wherein FIG. 3 (a) is expressed in three-dimensional coordinates; Is expressed in two-dimensional coordinates.
FIG. 4 is an explanatory diagram of a film thickness calculation principle in measurement using a fluorescent X-ray film thickness meter.
[Explanation of symbols]
10 Heat treatment apparatus 20 Plating apparatus (film forming apparatus)
30 Compression processing apparatus 40 Film thickness measurement apparatus 41 Light source 42 CCD camera (imaging means)
43 Film thickness calculation / determination unit 43a Film thickness calculation unit 43b Determination unit 50 Control unit 51 Control unit 60 Output unit 70 Warning unit H Coating L Compression processing steel production line S Coating material manufacturing equipment V Strip steel (base material)
W A compression work steel (coating material)

Claims (2)

膜厚測定を、基材表面への被膜形成工程と同一ライン上においてなす被覆材料の製造方法であって、
前記膜厚測定は、被膜表面を幅方向に等間隔で分割した領域を膜厚測定対象領域とし、
前記膜厚測定対象領域を均一に照射して同膜厚測定対象領域を撮像し、得られた撮像画像の前記各膜厚測定対象領域に対応する画素群の各画素から出力されるRGB値を、R値、G値およびB値のそれぞれについて平均し、得られた平均RGB値をXYZ表色系における色度座標値x、yまたはXYZ表色系における三刺激値のX、Yに変換し、その色度座標値x、yまたは三刺激値のX、Yに基づいて膜厚測定をなす
ことを特徴とする被覆材料の製造方法
A method for manufacturing a coating material in which film thickness measurement is performed on the same line as the film formation step on the substrate surface ,
In the film thickness measurement, the area obtained by dividing the film surface at equal intervals in the width direction is a film thickness measurement target area,
The film thickness measurement target region is uniformly irradiated to image the same film thickness measurement target region, and RGB values output from each pixel of the pixel group corresponding to each film thickness measurement target region of the obtained captured image are , R value, G value, and B value are averaged, and the obtained average RGB values are converted into chromaticity coordinate values x, y in the XYZ color system or tristimulus values X, Y in the XYZ color system. The film thickness is measured based on the chromaticity coordinate values x and y or the tristimulus values X and Y.
The manufacturing method of the coating material characterized by the above-mentioned .
基材表面に被膜を形成する被膜形成装置と、被膜形成装置において形成された被膜の膜厚を、幅方向に等間隔で分割した領域を膜厚測定対象領域として測定する膜厚測定装置とを同一ライン上に備え、
前記膜厚測定装置が、被膜表面を照射する光源と、該光源により照射された被膜表面を撮像する撮像手段と、該撮像手段からの撮像信号に基づいて膜厚測定をなす膜厚測定部とを備え、
前記光源が、被膜表面を均一に面照射するよう構成され、
前記膜厚測定部が、前記膜厚測定対象領域を均一に照射して同膜厚測定対象領域を撮像し、得られた撮像画像の前記各膜厚測定対象領域に対応する画素群の各画素から出力されるRGB値を、R値、G値およびB値のそれぞれについて平均し、得られた平均RGB値をXYZ表色系における色度座標値x、yまたはXYZ表色系における三刺激値のX、Yに変換し、その色度座標値x、yまたは三刺激値のX、Yに基づいて膜厚測定をなすよう構成されてなる
ことを特徴とする被覆材料の製造設備。
A film forming apparatus for forming a film on the surface of the substrate, and a film thickness measuring apparatus for measuring a film thickness of the film formed in the film forming apparatus as a film thickness measurement target area obtained by dividing the film thickness at equal intervals in the width direction. Prepare on the same line ,
The film thickness measuring device includes a light source that irradiates the surface of the film, an imaging unit that images the surface of the film irradiated by the light source, and a film thickness measuring unit that performs film thickness measurement based on an imaging signal from the imaging unit. With
The light source is configured to uniformly illuminate the surface of the coating;
The film thickness measurement unit uniformly irradiates the film thickness measurement target region to image the same film thickness measurement target region, and each pixel of the pixel group corresponding to each film thickness measurement target region of the obtained captured image RGB values output from the R value, G value, and B value are averaged, and the obtained average RGB values are chromaticity coordinate values x, y in the XYZ color system or tristimulus values in the XYZ color system The coating material is characterized in that the film thickness is measured based on the chromaticity coordinate values x and y or the tristimulus values X and Y. Facility.
JP2001348809A 2001-11-14 2001-11-14 Coating material manufacturing method and manufacturing equipment Expired - Fee Related JP3972638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001348809A JP3972638B2 (en) 2001-11-14 2001-11-14 Coating material manufacturing method and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001348809A JP3972638B2 (en) 2001-11-14 2001-11-14 Coating material manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2003147581A JP2003147581A (en) 2003-05-21
JP3972638B2 true JP3972638B2 (en) 2007-09-05

Family

ID=19161574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001348809A Expired - Fee Related JP3972638B2 (en) 2001-11-14 2001-11-14 Coating material manufacturing method and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3972638B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191252A (en) * 2010-03-16 2011-09-29 Nippon Steel Engineering Co Ltd Surface quality evaluation method of metal and surface quality evaluation apparatus of metal
JP7499227B2 (en) * 2019-03-05 2024-06-13 倉敷紡績株式会社 Coating material thickness measurement method, coating material thickness measurement system, and coating material application method
FR3124251B1 (en) * 2021-06-18 2023-11-03 Safran Aircraft Engines METHOD AND DEVICE FOR DETERMINING THE THICKNESS OF A COATING BY COLORIMETRY

Also Published As

Publication number Publication date
JP2003147581A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US6013915A (en) Process control by transient thermography
KR101894683B1 (en) Metal body shape inspection device and metal body shape inspection method
US8184303B2 (en) Film-thickness measurement method and apparatus therefor, and thin-film device fabrication system
WO2001035050A1 (en) Method for measuring quality of bandlike body, method for suppressing camber, instrument for measuring quality of bandlike body, rolling machine, and trimming device
JP2016180637A (en) Defect inspection device and method
JP5392119B2 (en) Method for evaluating oxide coating adhesion strength of grain-oriented electrical steel sheet and its evaluation apparatus
JP3972638B2 (en) Coating material manufacturing method and manufacturing equipment
JPH11153419A (en) Measuring method and device of crystal grain size
JP2011191252A (en) Surface quality evaluation method of metal and surface quality evaluation apparatus of metal
JP2005098923A (en) Method of evaluating thickness and thickness distribution of thin film
JP4705277B2 (en) Oil amount distribution measuring device and oil amount distribution measuring method
JP4108403B2 (en) Aluminum extruded section manufacturing apparatus and manufacturing method
JP2018146567A (en) Surface quality detection method
JPH06300739A (en) Fluorescent magnetic-particle flaw detection method
JP2003514121A (en) Electrode surface quality inspection method
JP5440414B2 (en) Plasma CVD deposition system
NL8601954A (en) APPARATUS AND METHOD FOR ASSESSING THE QUALITY OF AN ELECTRIC LAMP.
KR20070087828A (en) Method for measuring oil layer of strip
JP2005037221A (en) Inspection method of wire saw, inspection device of wire saw and cutting device
JP3580137B2 (en) Method and apparatus for measuring crystal grain size
JP7248281B2 (en) Optical transmission measuring device
KR20030053253A (en) Device and methods for detecting surface defect of billet
JP2021067588A (en) Surface inspection device for object to be inspected and surface inspection method for object to be inspected
JP2593016B2 (en) Method for measuring alloying degree of hot-dip galvanized steel strip
CN220062892U (en) Welding rod solder contour detector and welding rod eccentricity online continuous measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees