JP3511632B2 - Mounting process failure factor analysis method - Google Patents

Mounting process failure factor analysis method

Info

Publication number
JP3511632B2
JP3511632B2 JP34392592A JP34392592A JP3511632B2 JP 3511632 B2 JP3511632 B2 JP 3511632B2 JP 34392592 A JP34392592 A JP 34392592A JP 34392592 A JP34392592 A JP 34392592A JP 3511632 B2 JP3511632 B2 JP 3511632B2
Authority
JP
Japan
Prior art keywords
cause
result
defect
inspection
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34392592A
Other languages
Japanese (ja)
Other versions
JPH06196900A (en
Inventor
宏章 藤原
健一 佐藤
宏一 兼松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP34392592A priority Critical patent/JP3511632B2/en
Publication of JPH06196900A publication Critical patent/JPH06196900A/en
Application granted granted Critical
Publication of JP3511632B2 publication Critical patent/JP3511632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品をプリント基
板に実装する電子部品実装工程における、品質不良要因
追求等の実装工程不良要因分析方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting process defect factor analysis method for pursuing quality defect factors in an electronic component mounting process for mounting electronic components on a printed circuit board.

【0002】[0002]

【従来の技術】これまで、電子部品実装工程での品質検
査や管理は、手作業主体で行ったり、高密度・高生産量
による手作業の限界などから、主に最終工程を中心に自
動検査装置の導入をして、検査・集計を代用させたりし
ていた。
2. Description of the Related Art Up to now, quality inspection and control in the electronic component mounting process have been performed mainly by manual work, or due to the limit of manual work due to high density and high production volume, mainly automatic inspection mainly in the final process. I installed the device and used it for inspection and tabulation.

【0003】しかし、最終工程である半田付け後の検査
のみ自動検査装置をいれて検査を行っても、その発生原
因が、実際は印刷・装着・半田付けのどの工程で発生し
ているのかを突き止めることは難しく、結果として、最
終製品の良・不良を判定するのみにとどまっていた。
However, even if only the inspection after the soldering, which is the final step, is carried out by inserting an automatic inspection device, it is possible to find out in which step of printing, mounting and soldering the cause of the occurrence actually occurs. It was difficult to do so, and as a result, it was only possible to judge the quality of the final product.

【0004】本来、印刷・装着・半田付けの三工程に大
別される電子部品実装工程では、各工程毎に品質検査や
管理を行うことが望ましい。そこで近年、半田付け工程
だけでなく、印刷・装着工程用の自動検査装置が開発さ
れてきている。従って、各工程別の品質検査結果を得る
ことは比較的容易になってきた。しかし、図6に示すよ
うに従来の実装工程不良要因分析方法は各工程別に独立
して、検査結果を集計分析している。
Originally, in the electronic component mounting process, which is roughly divided into three processes of printing, mounting, and soldering, it is desirable to perform quality inspection and control for each process. Therefore, in recent years, automatic inspection devices have been developed not only for the soldering process but also for the printing / mounting process. Therefore, it has become relatively easy to obtain quality inspection results for each process. However, as shown in FIG. 6 , the conventional mounting process defect factor analysis method aggregates and analyzes the inspection results independently for each process.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、各工程
で発見される品質不良は、必ずしもその工程が原因で発
生したとは限らない。前工程での不良発生のため、次工
程の生産作業自体は正しくても、結果としてやはり不良
となることがある。
However, the quality defect found in each process is not always caused by the process. Due to the occurrence of defects in the previous process, even if the production work of the next process is correct, it may also result in defects.

【0006】例えば、装着工程が原因で部品ずれという
不良が発生した場合、半田付け工程自体は正しく動作し
ても、半田付け検査時に、やはり部品ずれという検査結
果が出てくることがある。そのため、工程別のみで検査
結果をもとに品質管理を行っても、不良に対する真の原
因追求ができないことになる。
For example, if a defect such as component displacement occurs due to the mounting process, even if the soldering process itself operates properly, an inspection result of component displacement may still appear during soldering inspection. Therefore, even if quality control is performed based on the inspection result only for each process, it is impossible to pursue the true cause of the defect.

【0007】一方、このため手作業で工程間の検査不良
結果を比較し、原因追求することは、1日1000枚以
上のプリント基板を生産する実装工程の現状を考える
と、膨大な作業量が要求され事実上不可能に近い。
On the other hand, for this reason, manually comparing inspection failure results between processes and pursuing the cause is a huge amount of work in view of the current state of the mounting process that produces more than 1000 printed circuit boards per day. Requested and virtually impossible.

【0008】本発明は、上記の問題点に鑑み、印刷・装
着・半田付け各工程の検査結果を実装対象であるプリン
ト基板毎に、相互の比較を行い、最終不良に対する各工
程の影響度を算出し、不良となる原因を自動的に予想す
ることが可能な、実装工程不良要因分析方法を提供する
ことを目的とする。
In view of the above problems, the present invention compares the inspection results of the printing, mounting, and soldering processes for each printed circuit board to be mounted, and determines the influence of each process on the final defect. It is an object of the present invention to provide a mounting process defect factor analysis method that can be calculated and automatically predict the cause of a defect.

【0009】[0009]

【課題を解決するための手段】本発明の実装工程不良要
因分析方法は、電子部品の実装における、印刷・装着・
半田付け各工程において、印刷工程の印刷品質結果を各
プリント基板別に入力する印刷結果入力工程と、装着工
程の装着品質結果を、各プリント基板別に入力する装着
結果入力工程と、半田付け工程の半田付け品質結果を、
各プリント基板別に入力する半田付け結果入力工程と、
これら各工程間の品質結果のうち関連して起こる可能性
を示す品質不良関連規則をあらかじめ、品質不良関連規
則記録部に登録する工程と、印刷結果入力工程・装着結
果入力工程・半田付け結果入力工程を通じて入力された
各工程の品質結果を、各プリント基板毎に比較し、品質
不良関連規則を参照して、最終不良に対する各工程の影
響度を算出する工程からなる実装工程不良要因分析方法
である。
The mounting process failure factor analysis method of the present invention is applied to printing, mounting, and mounting in mounting electronic components.
In each soldering process, a print result input process that inputs the print quality result of the printing process for each printed circuit board, a mounting result input process that inputs the mounting quality result of the mounting process for each printed circuit board, and a soldering process of the soldering process Attach quality results,
The soldering result input process to input for each printed circuit board,
Among the quality results between these processes, the process of registering the quality defect related rule indicating the possibility of occurring in relation to each other in advance in the quality defect related rule recording part, the print result input process, the mounting result input process, and the soldering result input A mounting process defect factor analysis method that consists of a process that compares the quality results of each process input through each process for each printed circuit board and refers to the quality defect related rules to calculate the degree of influence of each process on the final defect. is there.

【0010】更に本発明の実装工程不良要因分析方法
は、電子部品の実装における、印刷・装着・半田付けの
各工程の品質結果と突き止められた不良要因の実際の発
生頻度をもとに、各工程間の品質結果のうち関連して起
こる可能性を示す品質不良関連規則を登録修正する工程
からなる。
Further, the mounting process defect factor analysis method of the present invention is based on the quality result of each process of printing, mounting, and soldering in the mounting of electronic parts and the actual occurrence frequency of the defective factor identified. The process includes the step of registering and correcting a quality defect related rule that indicates a possibility of occurrence related to the quality result between processes.

【0011】[0011]

【作用】本発明によれば、電子部品の実装において、印
刷・装着・半田付け各工程のいずれかが、どれほど不良
に対する影響を与えていたかを自動で予測することがで
きる。
According to the present invention, it is possible to automatically predict how much one of printing, mounting, and soldering processes has affected a defect in mounting an electronic component.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1から図5を参
照しながら説明する。
EXAMPLES Hereinafter, with reference to FIG. 5 an embodiment of the present invention from FIG.

【0013】本実施例の実装工程不良要因分析方法は、
図1に示すような構成になっている。プリント基板は印
刷工程1、装着工程2、半田付け工程3の順番に通過し
て生産される。印刷工程後の印刷検査手段4により印刷
工程1の品質検査結果が求められ、印刷結果入力手段5
を通じてプリント基板毎に集計される。同様に、装着工
程後の装着検査手段6により装着工程2の品質検査結果
が求められ、装着結果入力手段7を通じてプリント基板
毎に集計される。さらに、半田付け検査手段8により半
田付け工程3の品質検査結果が求められ、半田付け結果
入力手段9を通じてプリント基板毎に集計される。
The mounting process defect factor analysis method of this embodiment is as follows:
The structure is as shown in FIG. The printed circuit board is manufactured by passing through a printing process 1, a mounting process 2, and a soldering process 3 in this order. The print inspection means 4 after the printing step obtains the quality inspection result of the printing step 1, and the print result input means 5
Through the printed circuit board. Similarly, the quality inspection result of the mounting step 2 is obtained by the mounting inspection means 6 after the mounting step, and is summed up for each printed circuit board through the mounting result input means 7. Further, the quality inspection result of the soldering step 3 is obtained by the soldering inspection means 8 and is summed up for each printed circuit board through the soldering result input means 9.

【0014】一方、これら各工程間の品質結果のうち関
連して起こる可能性を示す品質不良関連規則は、あらか
じめ品質不良関連規則記録部10に記録されている。そ
して、結果比較分析手段11にて、各工程の品質結果を
各プリント基板別に取りだし、各工程の結果に対して、
品質不良関連規則を参照して、最終不良に対する各工程
の影響度を算出する。
On the other hand, among the quality results between the respective processes, the quality defect related rules indicating the possibility of occurrence in relation to each other are recorded in the quality defect related rule recording unit 10 in advance. Then, the result comparison / analysis means 11 extracts the quality result of each process for each printed circuit board, and with respect to the result of each process,
The degree of influence of each process on the final defect is calculated with reference to the quality defect related rule.

【0015】以上の構成における実装工程不良要因分析
方法の具体的手順を以下に示す。図2に示すような、複
数のプリント基板12が実装工程を流れたとする。説明
のために各プリント基板には1001,1002,……
などの番号14をつけておく。各基板上の一つ一つの部
品は回路番号13にて特定できる。次に各工程での検査
結果を(表1)〜(表3)に示す。
The specific procedure of the mounting process failure factor analysis method in the above configuration will be described below. It is assumed that a plurality of printed circuit boards 12 as shown in FIG. 2 have gone through the mounting process. For the sake of explanation, each printed circuit board has 1001, 1002, ...
Number 14 such as. Each component on each board can be identified by the circuit number 13. Next, the inspection results in each step are shown in (Table 1) to (Table 3).

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】図3は品質不良関連規則記録部10におけ
る、品質不良関連規則の登録内容を示している。12
((a)(b)(c)),13((a)(b)
(c)),14((a)(b)(c))は各検査結果で
あり、15((a)(b)),16((a)(b)),
17((a)(b))は発生し得る不良原因事象であ
り、各不良要因の発生確率やそれぞれの要因が検査結果
に及ぼす度合を持っている。図3における直線は全て左
から右への状態の流れであり、それぞれの直線毎に推移
確率を持っている。例えば、装着不良項目1は、前工程
の印刷不良項目1,2……及び、装着工程が原因で起こ
る装着不良原因1,2……から、それぞれある推移確率
で発生し得る。一方この状態は、半田付け検査結果を、
半田付け不良1,2……から半田付け不良なしまで、あ
るそれぞれある確率で発生させる。ここでは、不良結果
は最も顕著なもののみを示すものとする。従って各検査
結果項目は互いに独立であり、任意の装着検査結果項目
における半田付け不良1,2……から半田付け不良なし
までの推移確率の和は1となる。
FIG. 3 shows the registered contents of the quality defect related rule in the quality defect related rule recording unit 10. 12
((A) (b) (c)), 13 ((a) (b)
(C)), 14 ((a) (b) (c)) are the inspection results, and 15 ((a) (b)), 16 ((a) (b)),
17 ((a) and (b)) are possible defect-causing events, which have the occurrence probability of each defect factor and the degree to which each factor affects the inspection result. All the straight lines in FIG. 3 are flows from the left to the right, and each straight line has a transition probability. For example, the mounting failure item 1 can occur at a certain transition probability from the printing failure items 1, 2 ... In the previous process and the mounting failure causes 1, 2 ... caused by the mounting process. On the other hand, in this state, the soldering inspection result is
From bad soldering 1, 2 ... to no bad soldering, each has a certain probability. Here, only the most prominent defect results are shown. Therefore, each inspection result item is independent of each other, and the sum of transition probabilities from defective soldering 1, 2, ...

【0020】さて、番号1001のプリント基板の回路
番号R101について品質結果を比較すると、印刷工程
では不良発生は認められないが、装着工程と半田付け工
程にて部品ずれの不良が発生している。ここで、品質不
良関連規則を参照する。
Now, comparing the quality results for the circuit number R101 of the printed circuit board number 1001, no defect is found in the printing process, but there is a component misalignment defect in the mounting process and the soldering process. Here, the quality defect related rule is referred to.

【0021】この結果に対する登録例を、図3に倣って
図4に示してみる。図4では、各直線上の数値はそれぞ
れ推移確率を示している。但し、図4の例はあくまで説
明上のものであり、実際の数値とは異なるが、本議論を
否定するものではない。説明を簡単にするために、図4
では推移確率0のものや、一部不要な部分は省略してあ
る。さらにまず、各不良要因の発生確率やそれぞれの要
因が、検査結果に及ぼす度合は等しいと仮定して説明を
すすめる。
An example of registration for this result will be shown in FIG. 4 following FIG. In FIG. 4, the numerical values on each straight line indicate the transition probabilities. However, the example of FIG. 4 is merely for the purpose of explanation, and although it differs from the actual numerical value, it does not deny this discussion. To simplify the explanation, FIG.
In, the transition probability 0 and some unnecessary parts are omitted. Furthermore, first, it is assumed that the probability of occurrence of each defect factor and each factor have the same effect on the inspection result.

【0022】まず、半田付け工程結果の「部品ずれ」
は、70%の確率で「半田付け温度条件の設定ミス」で
ある可能性があるといえる。この図では他に「部品ず
れ」となる半田付け工程不良原因がないから、残りの3
0%の確率で、半田付け工程動作は正しかったといえ
る。一方、前工程の装着工程にて「部品ずれ」が発生し
ている。従ってこの不良が原因である確率も80%であ
る。
First, "part shift" as a result of the soldering process
It can be said that there is a probability of 70% that "the soldering temperature condition is set incorrectly". In this figure, there are no other causes of soldering process defects that cause "component misalignment," so the remaining 3
With a probability of 0%, it can be said that the soldering process operation was correct. On the other hand, "component misalignment" has occurred in the mounting process of the previous process. Therefore, the probability that this defect is the cause is 80%.

【0023】次に装着工程結果の「部品ずれ」について
考えてみる。装着工程のうち、「吸着ずれ」が原因であ
る確率は50%、「部品寸法の間違い」である確率は3
0%である。一方、前工程の印刷工程では印刷不良は発
生していないから、印刷不良が原因である確率は0%で
ある。
Next, let us consider the "part shift" as a result of the mounting process. In the mounting process, there is a 50% chance of being caused by "suction displacement" and a 3 chance of being "wrong component dimensions".
It is 0%. On the other hand, in the printing process of the previous process, no printing defect has occurred, so the probability that the printing defect is the cause is 0%.

【0024】これより、装着工程の不良原因が最終工程
である半田付け工程での不良結果「部品ずれ」に及ぼす
確率は、それぞれの不良原因が装着工程の「部品ずれ」
を発生させる確率に、装着工程の「部品ずれ」が半田付
け工程の「部品ずれ」を派生させる確率をかけあわせれ
ばよい。(表4)に半田付け工程での「部品ずれ」の不
良原因確率を示す。
From the above, the probability that the cause of the defect in the mounting process affects the defect result "component deviation" in the soldering process which is the final process is that each defect cause is the "component deviation" in the mounting process.
It is sufficient to multiply the probability of causing the “component deviation” in the mounting process by the probability of causing the “component deviation” in the soldering process. (Table 4) shows the probability of failure cause of "component misalignment" in the soldering process.

【0025】[0025]

【表4】 [Table 4]

【0026】ここまでは、各不良要因の発生確率やそれ
ぞれの要因が検査結果に及ぼす度合は等しいと仮定して
いるが、実際にはそれらの値は異なる。最終不良結果に
対し、どの不良要因が最も影響を与えているかを知るた
めには、各不良要因に対し適当な重み付けが必要であ
る。これを考慮するためには、それらのパラメータをさ
らにかけあわせればよい。(表5)に(表4)の結果に
対する各要因の重み付けの例を示す。
Up to this point, it has been assumed that the probability of occurrence of each defect factor and the degree to which each factor affects the inspection result are equal, but in reality their values are different. Appropriate weighting is necessary for each failure factor in order to know which failure factor has the greatest effect on the final failure result. To take this into account, these parameters may be further multiplied. Table 5 shows an example of weighting of each factor with respect to the result of Table 4.

【0027】[0027]

【表5】 [Table 5]

【0028】ここでは、(表4)の結果に、各不良要因
の発生頻度とその不良要因がそれぞれの検査結果に及ぼ
す影響度を掛け合わせている。この値が想定し得る各不
良原因の重み付けになるから、その値の割合を算出すれ
ば予想される不良原因が重要度を付けて求められる。こ
の例では、装着工程での「部品ずれ」である可能性が約
3/4の割合を占めていて考えられる有力な原因と予想
される。一方、装着工程の「部品寸法間違い」はその可
能性がかなり低いことがわかる。実際には、不良要因が
それぞれの検査結果に及ぼす影響度は、検査時のずれ量
などの測定値によって動的に決定することも可能であ
る。
Here, the result of (Table 4) is multiplied by the occurrence frequency of each defect factor and the degree of influence of the defect factor on each inspection result. Since this value serves as a weight for each possible cause of failure, the expected cause of failure can be obtained with importance by calculating the ratio of the values. In this example, the possibility of “component misalignment” in the mounting process occupies a ratio of about 3/4, and is considered to be a probable cause. On the other hand, it can be seen that the possibility of "component size error" in the mounting process is considerably low. Actually, the degree of influence of the defect factor on each inspection result can be dynamically determined by a measurement value such as a deviation amount at the time of inspection.

【0029】なお本例では、前述したように各検査結果
項目が複数個同時発生しないことや、各不良原因が互い
に独立であることを仮定している。実際の実装工程で
は、必ずこの仮定が成立するとは限らない。しかし、相
互依存性の高い項目は一つにまとめるなどして、各検査
結果や不良原因の項目分けを考慮すれば相互に依存する
可能性を十分に減らせる。そのような条件下では、もは
や各検査結果項目が複数個同時発生したり、各不良原因
が相互に関係しあう可能性は、予測計算上十分無視し得
る。一方で、上記条件を考慮して最終結果を算出するこ
とは計算上複雑性が増大し、多大な負荷が予想され得る
ため、実用上有用ではないと考えられる。
In this example, as described above, it is assumed that a plurality of inspection result items do not occur at the same time and that the causes of each defect are independent of each other. In the actual mounting process, this assumption does not always hold. However, the possibility of interdependence can be reduced sufficiently if the items with high interdependence are combined into one, and each inspection result and itemization of the cause of failure are taken into consideration. Under such conditions, the possibility that a plurality of inspection result items will occur at the same time and the causes of each defect will be mutually related can be sufficiently ignored in the prediction calculation. On the other hand, it is considered that it is not practically useful to calculate the final result in consideration of the above conditions because the calculation complexity increases and a large load can be expected.

【0030】次に第2の実施例について図5で説明す
る。図1と異なるのは、図5では品質不良関連規則入力
手段15を設けた点である。各検査結果に対して本装置
を実際に動作させると、図1と同様にいくつかの予想不
良原因が求められる。これに対し作業者が実際の不良原
因を、この予想をもとに確認を行い、真の不良原因を明
らかにする。
Next, a second embodiment will be described with reference to FIG. The difference from FIG. 1 is that the quality defect related rule input means 15 is provided in FIG. When the apparatus is actually operated for each inspection result, some expected causes of failure are obtained as in FIG. On the other hand, the operator confirms the actual cause of the failure based on this prediction and clarifies the true cause of the failure.

【0031】ここまでの動作を統計上十分な回数繰り返
すと、実際の不良原因や検査結果の発生履歴から、実際
の結果に基づく不良原因の発生頻度や各不良原因から検
査結果の発生確率が求められる。この実際の発生頻度や
発生確率を随時、品質不良関連規則入力手段15により
品質不良関連規則記録部10に登録する。これにより、
実装工程の保守状態により不良発生条件が長期的に変動
しても、品質不良関連規則記録部10の値を手作業で修
正せずに、いつでもより精度の高い値として自動で保持
することが可能となる。
When the operation up to this point is repeated statistically a sufficient number of times, the occurrence frequency of the failure cause based on the actual result and the probability of occurrence of the inspection result from each failure cause are obtained from the history of occurrence of the actual failure cause and the inspection result. To be The actual occurrence frequency and the occurrence probability are registered in the quality defect related rule recording section 10 by the quality defect related rule input means 15 at any time. This allows
Even if the defect occurrence condition fluctuates over a long period due to the maintenance status of the mounting process, the value of the quality defect related rule recording unit 10 can be automatically maintained as a highly accurate value at any time without manually correcting it. Becomes

【0032】[0032]

【発明の効果】本発明の実装工程不良要因分析方法によ
れば、電子部品の実装における、印刷・装着・半田付け
各工程の検査結果を実装対象であるプリント基板毎に、
相互の比較を行い、最終不良に対する各工程の影響度を
算出し、不良となる原因を自動で予想することが可能な
ので、手作業にたよることなく、不良となる真の原因を
従来に比べて、より早くより正確にもとめることができ
る。
According to the mounting process defect factor analysis method of the present invention, the inspection result of each step of printing, mounting and soldering in mounting of electronic parts is performed for each printed board to be mounted.
By comparing each other and calculating the degree of influence of each process on the final failure, and automatically predicting the cause of the failure, you can compare the true cause of failure to the conventional method without resorting to manual work. You can stop it faster and more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】実装工程不良要因分析方法におけるフローチャ
ート図
FIG. 1 is a flowchart of a mounting process defect factor analysis method.

【図2】番号を付与したプリント基板の正面図FIG. 2 is a front view of a numbered printed circuit board.

【図3】品質不良関連規則の登録内容を示した関連説明
FIG. 3 is a related explanatory diagram showing registered contents of a quality defect related rule.

【図4】品質不良関連規則の登録例を示した関連説明図FIG. 4 is a related explanatory diagram showing an example of registration of quality defect related rules.

【図5】第2の実施例の実装工程不良要因分析方法にお
けるフローチャート図
FIG. 5 is a flowchart of a mounting process defect factor analysis method according to the second embodiment.

【図6】従来の実装工程不良要因分析方法を示したフロ
ーチャート図
FIG. 6 is a flow chart showing a conventional mounting process failure factor analysis method.

【符号の説明】[Explanation of symbols]

4 印刷結果入力手段 5 装着結果入力手段 6 半田付け結果入力手段 7 品質不良関連規則記録部 8 結果比較分析手段 15 品質不良関連規則入力手段 4 Print result input means 5 Mounting result input means 6 Soldering result input means 7 Quality defect related rule recording section 8 Result comparison analysis means 15 Quality defect related rule input means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−36800(JP,A) 特開 昭59−201500(JP,A) 特開 平4−64286(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05K 13/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-36800 (JP, A) JP-A-59-201500 (JP, A) JP-A-4-64286 (JP, A) (58) Field (Int.Cl. 7 , DB name) H05K 13/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の作業工程と複数の検査工程を行っ
たのち、前記複数の検査工程の結果を集計したデータ
と、前記複数の作業工程での複数の不良原因と前記複数
の検査工程での不良結果との関係、および前記複数の不
良原因から前記不良結果が発生する確率とを有するテー
ブルとを用いて、最終の検査工程での不良結果から不良
原因を特定する工程不良原因分析方法であって、 前記複数の検査工程の結果を集計する集計工程と、 前記最終の検査工程での前記不良結果を発生させている
可能性のある少なくとも1つの不良原因の候補を、前記
集計工程の結果と前記テーブルとを用いて抽出する抽出
工程と、 前記抽出された不良原因から前記不良結果を発生させる
前記確率と前記抽出された不良原因が起こった回数であ
る発生頻度と抽出された前記不良原因が前記不良結果に
及ぼす影響度との積を各抽出された不良原因ごとに算出
する算出工程と、前記算出工程での積の値が、最大値を
含む少なくとも1つの不良原因候補を不良原因として特
定する特定工程とからなる工程不良原因分析方法。
1. Performing a plurality of work steps and a plurality of inspection steps
After that, data that aggregates the results of the multiple inspection processes
And a plurality of causes of defects in the plurality of work processes
Relationship with the defective result in the inspection process of
The probability that the bad result will occur from a good cause.
And the defective result from the final inspection process.
A method of analyzing a cause of a process failure for identifying a cause, wherein a totaling process of collecting results of the plurality of inspection processes and the defective result in the final inspection process are generated.
At least one possible defect cause is
Extraction using the result of the aggregation process and the table
The process and the defective result are generated from the extracted defective cause.
The probability and the number of times the extracted cause of failure has occurred.
The occurrence frequency and the extracted failure cause are
Calculate the product with the influence degree for each extracted defect cause
And the product of the calculation step and the maximum value
At least one defect cause candidate including
A process failure cause analysis method comprising a specified process to be determined.
【請求項2】 複数の検査工程の結果を集計したデータ2. Data obtained by aggregating the results of a plurality of inspection processes
をもとに、工程での不良原因が不良結果を発生させる確Based on the
率または発生頻度を変更するデータ変更工程を含む請求Billing that includes a data change process that changes the rate or frequency of occurrence
項1記載の工程不良原因分析方法。Item 1. The method for analyzing the cause of a process defect according to Item 1.
JP34392592A 1992-12-24 1992-12-24 Mounting process failure factor analysis method Expired - Fee Related JP3511632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34392592A JP3511632B2 (en) 1992-12-24 1992-12-24 Mounting process failure factor analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34392592A JP3511632B2 (en) 1992-12-24 1992-12-24 Mounting process failure factor analysis method

Publications (2)

Publication Number Publication Date
JPH06196900A JPH06196900A (en) 1994-07-15
JP3511632B2 true JP3511632B2 (en) 2004-03-29

Family

ID=18365306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34392592A Expired - Fee Related JP3511632B2 (en) 1992-12-24 1992-12-24 Mounting process failure factor analysis method

Country Status (1)

Country Link
JP (1) JP3511632B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729251A1 (en) 2005-05-30 2006-12-06 Omron Corporation Process management apparatus and process management method
CN100551223C (en) * 2006-04-03 2009-10-14 欧姆龙株式会社 Main cause apparatus for predicting, main cause deduction method and recording medium
US7724941B2 (en) 2005-11-15 2010-05-25 Omron Corporation Defect analysis place specifying device and defect analysis place specifying method
WO2014049872A1 (en) 2012-09-28 2014-04-03 富士機械製造株式会社 Production line monitoring device
US11395450B2 (en) 2018-06-28 2022-07-19 Koh Young Technology Inc. Electronic apparatus and method for determining cause of mounting failure for component mounted on substrate
US11428644B2 (en) 2018-11-27 2022-08-30 Koh Young Technology Inc. Method and electronic apparatus for displaying inspection result of board

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526326B2 (en) 1997-03-31 2003-02-25 Hitachi, Ltd. Fraction defective estimating method and system for estimating an assembly fraction defective of an article
US6108586A (en) 1997-03-31 2000-08-22 Hitachi, Ltd. Fraction defective estimating method, system for carrying out the same and recording medium
JP3732053B2 (en) 1999-09-27 2006-01-05 株式会社日立製作所 Method and apparatus for evaluating the likelihood of occurrence of defects in a manufacturing workplace, method and apparatus for evaluating defective product assembly work rate, and recording medium
JP3800237B1 (en) * 2005-01-21 2006-07-26 オムロン株式会社 PROCESS MANAGEMENT DEVICE, PROCESS MANAGEMENT DEVICE CONTROL METHOD, PROCESS MANAGEMENT PROGRAM, AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP5002963B2 (en) 2006-01-17 2012-08-15 オムロン株式会社 Factor estimation device, factor estimation program, recording medium storing factor estimation program, and factor estimation method
KR101640936B1 (en) * 2009-12-01 2016-07-20 주식회사 고영테크놀러지 Method of Analyzing Defect in Printing Process and Computer Readable Media Storing The Same
JP5528193B2 (en) * 2010-04-30 2014-06-25 株式会社日立ハイテクインスツルメンツ Component mounting apparatus and method for identifying cause of reduction in production throughput

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729251A1 (en) 2005-05-30 2006-12-06 Omron Corporation Process management apparatus and process management method
US7724941B2 (en) 2005-11-15 2010-05-25 Omron Corporation Defect analysis place specifying device and defect analysis place specifying method
CN100551223C (en) * 2006-04-03 2009-10-14 欧姆龙株式会社 Main cause apparatus for predicting, main cause deduction method and recording medium
WO2014049872A1 (en) 2012-09-28 2014-04-03 富士機械製造株式会社 Production line monitoring device
CN104685429A (en) * 2012-09-28 2015-06-03 富士机械制造株式会社 Production line monitoring device
US9818236B2 (en) 2012-09-28 2017-11-14 Fuji Machine Mfg. Co., Ltd. Production line monitoring device
US11395450B2 (en) 2018-06-28 2022-07-19 Koh Young Technology Inc. Electronic apparatus and method for determining cause of mounting failure for component mounted on substrate
US11428644B2 (en) 2018-11-27 2022-08-30 Koh Young Technology Inc. Method and electronic apparatus for displaying inspection result of board

Also Published As

Publication number Publication date
JPH06196900A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP3511632B2 (en) Mounting process failure factor analysis method
US20080228307A1 (en) Quality improvement system
EP3102018B1 (en) Quality management device and method for controlling quality management device
US5564183A (en) Producing system of printed circuit board and method therefor
EP3104674B1 (en) Substrate production monitoring device and substrate production monitoring method
JP4617998B2 (en) Failure factor analysis system
JP2006216589A (en) Quality control system of printed board
JPH08297699A (en) System and method for supporting production failure analysis and production system
JP3441111B2 (en) Mounting board production system and maintenance instruction system
US7724941B2 (en) Defect analysis place specifying device and defect analysis place specifying method
US8260727B2 (en) Method and apparatus for estimating a factor/defect affecting quality/reliability wherein the priority of user input data is determined
JP4805475B2 (en) Quality evaluation device, quality evaluation method, quality display device, quality display method, and quality evaluation system
JP2007053264A (en) Failure detecting device for packaging quality and failure detecting method of packaging quality
JP2002251212A (en) Method for quality control and system for the same and recording medium with its program recorded
JP5017943B2 (en) FAILURE ANALYSIS SUPPORT DEVICE, FAILURE ANALYSIS SUPPORT PROGRAM, AND RECORDING MEDIUM CONTAINING FAILURE ANALYSIS SUPPORT PROGRAM
CN111143325B (en) Data acquisition monitoring method, monitoring device and readable storage medium
JPH10275168A (en) Design support method and system therefor
JP2004226175A (en) Operation supporting device for substrate packaging line
WO2023157697A1 (en) Production management system, production management method, and program
JP3205392B2 (en) Cream solder printing inspection device and inspection method
JP3707501B2 (en) Printed circuit board production management device
JPH1040289A (en) Product quality improvement support system
JP3578523B2 (en) Quality control method
US7343352B2 (en) Method and system for assessing the quality and cost of inspection
US20230297098A1 (en) Analytical system for surface mount technology (smt) and method thereof

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees