JP3510929B2 - 微細藻類の大量培養システム - Google Patents

微細藻類の大量培養システム

Info

Publication number
JP3510929B2
JP3510929B2 JP32856194A JP32856194A JP3510929B2 JP 3510929 B2 JP3510929 B2 JP 3510929B2 JP 32856194 A JP32856194 A JP 32856194A JP 32856194 A JP32856194 A JP 32856194A JP 3510929 B2 JP3510929 B2 JP 3510929B2
Authority
JP
Japan
Prior art keywords
culture
microalgae
opening
pond
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32856194A
Other languages
English (en)
Other versions
JPH08173139A (ja
Inventor
隆志 折谷
繁 半田
孝志 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Industries Ltd
Original Assignee
Koito Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Industries Ltd filed Critical Koito Industries Ltd
Priority to JP32856194A priority Critical patent/JP3510929B2/ja
Publication of JPH08173139A publication Critical patent/JPH08173139A/ja
Application granted granted Critical
Publication of JP3510929B2 publication Critical patent/JP3510929B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Clinical Laboratory Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、クロレラ等の微細藻類
を培養液中にて、二酸化炭素(以下、CO2とする)を
供給しつつ大量に培養するための大量培養システムに関
し、延ては、CO2 排出抑制と食料増産を同時に行なう
ことにより、人類の生活環境を改善するために使用され
るものである。
【0002】クロレラ等の微細藻類は、光照射条件下で
大気中のCO2 を炭素源として光合成を行い、培養液中
の養分を吸収して増殖する。また、微細藻類は一般の緑
色植物に比べ、単位面積当りのCO2 吸収速度が大きく
て増殖速度が速く、培養液中に浮遊するため増殖の管理
がやりやすく、生成物の取扱も容易である。更に、クロ
レラ等の微細藻類はタンパク質、ビタミン類等に富んで
おり、有望な食糧源としても注目されている。
【0003】また、人類が石油や石炭等の化石燃料をエ
ネルギーとして利用しているため、年々、大気中のCO
2 濃度が上昇し、地球の温暖化が進み、大きな社会的問
題(地球環境問題)となっている。そのため、火力発電
所や製鉄所等から排出される高濃度CO2 が含まれてい
る排気ガスを利用し、クロレラ等の微細藻類の培養を行
えば、CO2 排出抑制と食料増産を同時に行なうことが
でき、人類の生活環境が改善できる。
【0004】
【従来の技術】従来のクロレラ等の微細藻類を大量培養
する技術は、例えば、図6に示すように、培養池1にク
ロレラ等の種株と品種に応じた養分を投入し、攪拌装置
2で底面に沈殿するクロレラ等の微細藻類を水面近くに
浮遊させると共に、気泡を培養液中に混入することによ
り、空気中のCO2 を溶け込ませるものが一般的であっ
た。
【0005】ところが、クロレラ等の微細藻類の培養に
好適なCO2 濃度は、大気中における約0.035%に
比べて5〜6%と高濃度であり、このような高濃度のC
2に適応した品種がほとんどである。この点に鑑み本
出願人らにより、特願平5−254959号のように、
閉鎖式にして、高効率のCO2 混入、培養液の加温(冷
却)、pH制御による養分濃度管理、自然光又は人工光
による光照射等を行い、良好な培養環境でクロレラ等の
微細藻類を無菌に近い状態で高効率に増殖する微細藻類
培養装置が提案されている。
【0006】
【発明が解決しようとする課題】しかしながら、特願平
5−254959号の微細藻類培養装置は、前述した優
れた効果を奏するものではあるが、あくまで小規模向き
の培養装置であるため、かかる装置では、種株程度の微
細藻類を効率よく培養することはできるが、良質の微細
藻類を大量に効率よく培養することは困難であった。ま
た、前記小規模の培養装置を多数用いて大量培養を行な
うことも考えられるが、しかしそれでは、設備費が嵩む
と共に維持管理が面倒であり、著しいコストアップを招
き、クロレラ等の微細藻類の生産コストが商業ベースに
合わなくなり、実際上の実現は難しいという問題点があ
った。
【0007】また、クロレラ等の微細藻類は一定の環境
条件が整わないと増殖が開始しない性質があるため、図
6に示す従来の大量培養技術では、培養を始める前に気
候が温暖なところ(例えば、台湾等)から種株を購入す
る必要があった。このため、種株の入手、保存、一次増
殖が非常に煩わしいものであった。また、培養池1の水
深が一般的には浅いため、CO2 の一部しか培養液中に
混入されず、CO2 の大部分が大気中に放出されてしま
うという問題点があった。
【0008】また、培養池1においては、その底面に沈
殿した微細藻類の環境が悪化するため、増殖機能が低下
又は停止することがあり、培養池1での面積当りの増殖
効率は良くなかった。また、培養池1の上面全部を覆う
透明カバーは付けてないことが多く、CO2 の放出、雑
菌の混入が多いという問題点があった。
【0009】更に、培養池1は屋外に設置されるため、
我国の気候では冬期に太陽光の照射量が不足し、かつ気
温も低下するため、クロレラ等の微細藻類の増殖環境が
悪化し、クロレラ等の微細藻類の増殖ができなくなって
いた。仮に、培養池に人工光を照射したり、加温したり
すると増殖環境を改善することは可能であるが、著しい
コストアップとなり、クロレラ等の微細藻類の生産コス
トが商業ベースに合わなくなるばかりでなく、エネルギ
ー消費に伴うCO2 の放出があり、本来の目的に相反す
ることになる。
【0010】本発明は、以上のような従来技術の有する
問題点に着目してなされたものであり、その目的とする
ところは、高効率なCO2 の混入並びに微細藻類の増殖
機能の活性化に寄与する培養装置と、大量培養に寄与す
る培養池とを組合わせて適宜利用することで、良質の微
細藻類を大量に効率よく培養する微細藻類の大量培養シ
ステムを提供することである。また他の目的は、微細藻
類が前記培養装置に滞留する時間を任意に制御すること
で、微細藻類の増殖機能の活性化状態を調節することが
できる微細藻類の大量培養システムを提供することであ
る。
【0011】
【課題を解決するための手段】前述した目的を達成する
ための本発明の要旨とするところは、以下の各項に存す
る。
【0012】1 微細藻類を、培養液中にて二酸化炭素
を供給しつつ大量に培養するための大量培養システムで
あって、光透過材質からなる閉鎖状の水槽(11)内に
攪拌装置(25)を配設し、該攪拌装置(25)を構成
する散気管(13)の空気入口部(13a)と前記水槽
(11)の空気排出口(17)とをポンプ(14)を介
在させた循環路管(19)により連通し、該循環路管
(19)の途中に、二酸化炭素供給源(22)から調整
弁(21)を介して二酸化炭素を補給する補給管(2
0)を連結してなる培養装置(10)を有し、前記培養
装置(10)と、該培養装置(10)とは別に設けられ
た大量培養用の培養池(30)とを、培養液及び微細藻
類の混合液を循環させる配管(31)により環状に連通
し、該配管(31)の途中に、前記培養池(30)内の
混合液を培養装置(10)に供給しない非接続状態と、
前記培養池(30)内の混合液を培養装置(10)に供
給し循環させる接続状態とに切換操作が可能な開閉手段
(35)を設け、前記配管(31)の途中と前記開閉
手段(35a)とを、前記培養装置(10)を迂回する
バイパス路(31c)により接続して、前記開閉手段
(35a)が非接続状態の際、前記培養池(30)内の
混合液が前記バイパス路(31c)を通ってそのまま培
養地(30)に戻るよう設定し、前記開閉手段(35
)が非接続状態の際、前記培養装置(10)を種株培
養に利用する一方、前記開閉手段(35)が接続状態
の際、前記培養装置(10)を前記培養池(30)に対
し、二酸化炭素の混入並びに微細藻類の増殖機能の活性
化に利用すべく構成し、前記開閉手段(35a)の接続
状態と非接続状態との切換操作を所定間隔毎に間欠的に
行ない、前記培養装置(10)内に微細藻類が滞留する
時間を制御することにより、微細藻類の活性化状態を調
節する制御手段(40)を有することを特徴とする微細
藻類の大量培養システム。
【0013】2 前記培養池(30)の開口部(30
a)に、該開口部(30a)を覆う光透過材質からなる
カバー部材(33)を設けたことを特徴とする前記1項
記載の微細藻類の大量培養システム。
【0014】
【0015】
【作用】本発明に係る微細藻類の大量培養システムで
は、培養装置(10)と、該培養装置(10)とは別に
設けられた大量培養用の培養池(30)とを、培養液及
び微細藻類の混合液を循環させる配管(31)により環
状に連通する。配管(31)の途中には、前記培養池
(30)内の混合液を培養装置(10)に供給しない非
接続状態と、前記培養池(30)内の混合液を培養装置
(10)に供給し循環させる接続状態と、に切換操作が
可能な開閉手段(35)を設ける。また、前記配管
(31)の途中と前記開閉手段(35a)とを、前記培
養装置(10)を迂回するバイパス路(31c)により
接続したことにより、前記開閉手段(35a)を、培養
池(30)内の混合液を培養装置(10)に供給しない
非接続状態にすると、培養池(30)内の混合液はバイ
パス路(31c)を通ってそのまま培養池(30)内に
戻るようになっている。
【0016】例えば我国における冬期等、大量培養に適
しない時期には、前記開閉手段(35)を非接続状態
にし、前記培養装置(10)内の混合液を培養池(3
0)に供給しないようにする。すなわち、培養装置(1
0)のみを運転して、培養装置(10)を種株培養に利
用する。前記培養装置(10)では、COを含む空気
がポンプ(14)によって、循環路管(19)を通り水
槽(11)内の攪拌装置(25)から培養液中に噴出す
る。かかる空気は、培養液を効果的にかき回すと同時に
空気中のCOを培養液に溶解させる。溶解したCO
は、光透過材質を通して照射される光を受けた微細藻類
による光合成作用によって固定される。
【0017】前記培養装置(10)で培養液中に溶解し
なかったCO2 は、水槽(11)の空気排出口(17)
から循環路管(19)を経てポンプ(14)に戻され、
このポンプ(14)によって再び攪拌装置(25)から
水槽(11)内の培養液中に噴出されて光合成のために
再利用に供せられる。この際、培養液中の溶存CO2
度を一定水準に保つために、不足するCO2 を調整弁
(21)により調整しつつ二酸化炭素供給源(22)か
ら循環路管(19)に送気し、CO2 を補給した状態で
ポンプ(14)によって培養液中に噴出させればよい。
【0018】一方、冬期以外の大量培養に適する時期
(春、夏、秋)には、前記開閉手段(35)を切換操
作により接続状態にし、ポンプ(36)等を作動させて
前記培養装置(10)内の混合液を大量培養用の培養池
(30)に供給して循環させる。すなわち、培養装置
(10)を培養池(30)に対し、高効率なCOの混
入並びに微細藻類の増殖機能の活性化に利用しつつ、培
養池(30)では良質な微細藻類の大量培養を行なう。
【0019】このように、前記培養装置(10)を高効
率のCO2 混入装置として使用するようにしたため、培
養液に対するCO2 の混入効率が良く、ロスが少なくな
った。更に、従来の培養池(1)ではその底面部の培養
環境の悪化により微細藻類の増殖機能が低下又は停止
し、培養池(1)での増殖効率が良くなかったが、前記
培養装置(10)により良好な培養環境を作ることによ
り、微細藻類の増殖機能を活性化する機能を付加した。
それにより、培養池(30)での受光面積当りの増殖効
率を大幅に向上させることができる。
【0020】また、従来は大量培養を始める前に、気候
が温暖なところから種株を購入する必要があったが、以
上のような微細藻類の大量培養システムによって、冬期
等には培養装置(10)を種株培養に利用できるため、
煩わしかった種株の入手、保存、一次増殖の手間が省
け、良好な種株の保存、増殖が容易にできる。
【0021】それにより、希望する品種を選ぶことがで
き、環境悪化による雑菌の繁殖を極力抑えることがで
き、また、種株にかかるコストを低減でき、更に、輸送
中に死滅するということもない。なお、前記培養装置
(10)に人工光照射装置や加温装置を設けたとして
も、その規模は培養池(30)に比べて小形のため、極
力設備コストを抑えることができ、かつエネルギー消費
も少ない。
【0022】前記微細藻類の大量培養システムにおい
て、培養池(30)の開口部(30a)に、該開口部
(30a)を覆う光透過材質からなるカバー部材(3
3)を設ければ、培養池(30)中の培養液を外気と遮
断して閉鎖状態にすることができる。それにより、CO
2 の放出、雑菌の混入が防げるようになった。また、前
記カバー部材(33)は太陽光を透過させるので、光合
成作用を行わせることができ、光透過材質にビニール樹
脂やアクリル樹脂を用いれば、紫外線をカットするため
光合成速度を促進できる。更に、カバー部材(33)の
温室効果により培養液の加温ができる等の効果も生じ
た。
【0023】また、前記開閉手段(35a)の接続状態
と非接続状態との切換操作を所定間隔毎に間欠的に行な
う制御手段(40)を有するので、培養装置(10)と
培養池(30)の接続、非接続を間欠的に行ない、クロ
レラ等の微細藻類が該培養装置(10)内に滞留する時
間を制御することができるため、クロレラ等の活性化状
態の調節が自動的に行えるようになった。それにより、
微細藻類の増殖効率を更に向上させることができる。
【0024】
【実施例】以下、図面に基づき本発明の各種実施例を説
明する。図1及び図2は本発明の第1実施例を示してい
る。本発明に係る微細藻類の大量培養システムは、クロ
レラ等に代表される微細藻類を培養液中にて、CO2
供給しつつ大量に培養するための装置である。
【0025】かかる大量培養システムは、図1に示すよ
うに、比較的小規模な培養装置10と、該培養装置10
とは別に設けられた大量培養用の培養池30とを、配管
31により環状に連通して成る。配管31の途中には、
培養池30内の混合液を培養装置10に供給しない非接
続状態と、培養池30内の混合液を培養装置10に供給
する接続状態とに切換操作可能な開閉手段35が設けら
れている。以下、順に説明する。
【0026】培養池30は、コンクリート製又は樹脂製
のプール状のものであり、その開口部30aの面積は、
処理する排気ガスの量と受光効率で決定される。培養池
30の深さは20〜30cm程度であり、また、攪拌装
置32が装備されている。攪拌装置32は、培養池30
の底面に微細藻類が滞留しないように培養液を攪拌する
と共に、水面上部の空気中のCO2 を培養液中に混入さ
せるものである。具体的に言えば攪拌装置32は、本実
施例では図示した如く水車であるが、その他に、例えば
エジェクターや、バブリング装置等としてもよい。
【0027】培養池30の開口部30aには、該開口部
30aを覆う光透過材質からなるカバー部材33が設け
られている。カバー部材33は、培養池30中の培養液
を外気から遮断して閉鎖状態を保ち、外部へのCO2
放出を防ぎ、かつ外部からの雑菌の混入を防ぐためもの
である。更に詳しく言えば、カバー部材33は、培養池
30の開口部30aに合致する形状・大きさに、例えば
透明なビニール樹脂又はアクリル樹脂等を成形したもの
である。
【0028】カバー部材33は、太陽光を透過させるの
で微細藻類の光合成作用を阻害することがなく、ビニー
ル樹脂やアクリル樹脂性の場合は紫外線をカットするた
め光合成速度を促進できるものである。更に、カバー部
材33は、温室効果により培養液の加温ができる等の効
果も生じさせ得るものでもある。
【0029】培養池30中の培養液は、クロレラ等の品
種の培養に最も適したものを適宜選び、光照射条件下で
あることと、CO2 ガスの吸収を目的としたものである
から独立栄養を前提としたものを用いればよい。ここで
クロレラとは、クロレラ目(Chlorococcal
es)に属する単細胞緑藻の属名であり、一般的に細胞
は球形、或は楕円型で直径3〜10μmの大きさを有す
る。なお、培養対象である微細藻類はクロレラに限定さ
れるものではない。
【0030】図2に示すように、培養装置10は、閉鎖
式に構成されており、高効率のCO2 混入、培養液の加
温、pH制御による養分濃度管理、及び自然光又は人工
光による光照射等を行うもので、良好な培養環境でクロ
レラ等の微細藻類を無菌に近い状態で高濃度に増殖する
ための装置である。この培養装置10は、光透過材質か
らなる閉鎖状の水槽11内に攪拌装置25を配設し、該
攪拌装置25を構成する散気管13の空気入口部19と
水槽11の空気排出口17とをポンプ14を介在させた
循環路管19で連通し、該循環路管19の途中に、二酸
化炭素供給源22から調整弁21を介してCO2 を補給
する補給管20を連結して成る。
【0031】更に詳しく言えば、水槽11は、クロレラ
等を培養するための培養液を収容するものであり、クロ
レラ等による光合成が可能なように、例えば透明なアク
リル樹脂などの光透過材質からなり、大気から遮断され
た閉鎖状態に構成されている。この水槽11内には、ド
ラフトチューブ12と該ドラフトチューブ12の真下位
置に配した散気管13とから成る攪拌装置25が配設さ
れており、水槽11内の培養液に対流現象を起こさせる
と同時に、かき回し効果を高める構造となっている。こ
れにより、水槽11内で培養されるクロレラ等が、培養
液中に平均的に分散され培養環境が良好になると共に、
CO2 の溶解も促進される。
【0032】前記散気管13の空気入口部13aは、水
槽11外に設置してあるポンプ14の吐出口に連続する
供給管15に連結しており、また水槽11の気相部16
にある空気排出口17は、前記ポンプ14の吸引口に連
続する排出管18に連結している。このように供給管1
5と排出管18とは、水槽11内に送気する空気をポン
プ14を介在して循環させる循環路管19を構成してい
る。ここでポンプ14とは、例えば一般のエアーポンプ
である。
【0033】また、前記排出管18の途中には、培養液
中で光合成により固定されるCO2を補給するための補
給管20が連結してあり、この補給管20は、CO2
補給する流量を調節するための調整弁21を介在して二
酸化炭素供給源22に連通している。ここで二酸化炭素
供給源22とは、例えばクロレラ等の培養に好適な5%
〜6%のCO2 濃度を有するCO2 強化空気を充填した
タンク等である。なお、前記補給管20の連結箇所より
上流側に位置する排出管18途中には、排気管23が連
結している。かかる排気管23は、内部圧力が高くなら
ないように排気するものである。
【0034】図1に示すように、前記培養装置10と培
養池30とは、配管31によって環状に連結されてお
り、互いの混合液(培養液及び藻体)が連通可能な状態
に構成されている。更に詳しく言えば、培養池30の一
側壁に開設された流出口30cは、前記配管31の一部
をなす混合液送出管31aを介して、培養装置10の水
槽11にある導入口11a(図2参照)に接続されてい
る。一方、培養池30の他側壁に開設された流入口30
bは、前記配管31の一部をなす混合液送入管31bを
介して、培養装置10の水槽11にある排出口11b
(図2参照)に接続されている。
【0035】混合液送出管31aの途中には、切換操作
により流路を開閉可能な開閉手段35が設けられてい
る。かかる開閉手段35は、通常のバルブ等からなり、
閉じたとき培養池30内の混合液を培養装置10に供給
しない非接続状態と、開いたとき培養池30内の混合液
を培養装置10に供給する接続状態とに切換操作が可能
なものである。
【0036】そして前記開閉手段35が非接続状態の
際、培養装置10を種株培養に利用する一方、前記開閉
手段35が接続状態の際、培養装置10を培養池30に
対し、CO2 の混入並びに微細藻類の増殖機能の活性化
に利用すべく、大量培養システムは構成されている。な
お、混合液送出管31aの途中には、培養装置10と培
養池30との互いの混合液を循環させるための循環ポン
プ36が設けられている。この循環ポンプ36の作動
は、培養池30から送られてきた混合液の培養装置10
内における滞留時間を考慮して、適宜制御されるように
構成されている。
【0037】次に作用を説明する。図1に示すように培
養池30を、開閉手段35の操作により培養装置10に
対し接続、又は非接続状態に切換可能に構成したことに
より、以下の如く微細藻類の大量培養システムを運用す
ることができる。
【0038】冬期は前記開閉手段35を非接続状態に
し、前記培養装置10内の混合液を培養池30に供給し
ないようにする。すなわち、培養装置10のみを運転し
て、主として培養装置10を種株培養に利用する。図2
に示すように培養装置10では、CO2 を含む空気がエ
アーポンプ14によって、循環路管19を通り水槽11
内の攪拌装置25から培養液中に噴出する。かかる空気
は、培養液を効果的にかき回すと同時に空気中のCO2
を培養液に溶解させる。溶解したCO2 は、光透過材質
を通して照射される光を受けた微細藻類による光合成作
用によって固定される。
【0039】前記培養装置10で培養液中に溶解しなか
ったCO2 は、水槽11の空気排出口17から循環路管
19を経てエアーポンプ14に戻され、このエアーポン
プ14によって再び攪拌装置25から水槽11内の培養
液中に噴出されて光合成のために再利用に供せられる。
この際、培養液中の溶存CO2 濃度を一定水準に保つた
めに、不足するCO2 を調整弁21により調整しつつ二
酸化炭素供給源22から循環路管19に送気しCO2
補給した状態でエアーポンプ14によって培養液中に噴
出する。
【0040】一方、冬期以外の時期(春、夏、秋)に
は、前記開閉手段35を切換操作により接続状態にし、
循環ポンプ36を作動させて前記培養装置10内の混合
液を大量培養用の培養池30に供給して循環させる。す
なわち、培養装置10を培養池30に対し、高効率なC
2 の混入並びに微細藻類の増殖機能の活性化に利用し
つつ、培養池30では良質な微細藻類の大量培養を行な
う。この場合、培養池30内の混合液は、混合液送出管
31aを通って連続的に培養装置10内に送られ、最適
環境が高度に実現される培養装置10内にて微細藻類
は、増殖機能等、諸々の生理機能が活性化された後、高
濃度のCO2 を含む培地と共に混合液送入管31bを通
って、再び培養池10に戻されて大量培養に供される。
【0041】このように、培養装置10を高効率のCO
2 混入装置として使用するようにしたため、培養液に対
するCO2 の混入効率が良く、ロスが少なくなった。更
に、図6に示した従来の培養池1ではその底面部の培養
環境の悪化により微細藻類の増殖機能が低下又は停止
し、培養池1での増殖効率が良くなかったが、前記培養
装置10によって良好な培養環境を作ることにより、微
細藻類の増殖機能を活性化する機能を付加した。それに
より、培養池30での受光面積当りの増殖効率を大幅に
向上させ、良質のクロレラ等の微細藻類を大量培養する
ことができる。
【0042】また、培養池30の開口部30aには、光
透過材質からなるカバー部材33を設けたから、培養池
30中の培養液を外気と遮断して閉鎖状態にすることが
できる。それにより、CO2 の放出、雑菌の混入が防ぐ
ことができ、微細藻類を無菌に近い状態で大量培養する
ことができる。また、カバー部材33は太陽光を透過さ
せるので、光合成作用を行わせることができ、光透過材
質にビニール樹脂やアクリル樹脂を用いれば、紫外線を
カットするため光合成速度を促進できる。更に、カバー
部材33の温室効果により培養液の加温ができる等の効
果も生じた。
【0043】以上のような微細藻類の大量培養システム
によって、特に冬期は培養装置10を種株培養に利用で
きるため、従来、大量培養を始める前において煩わしか
った種株の入手や、保存、それに一次増殖等の手間が省
け、良好な種株の保存、増殖を容易に行なうことができ
る。それにより、希望する品種を選ぶことができ、環境
悪化による雑菌の繁殖を極力抑えることもできる。ま
た、種株にかかるコストを低減でき、更に、輸送中に死
滅するということもない。なお、前記培養装置10に人
工光照射装置や加温装置を設けたとしても、その規模は
小さいため極力設備コストを抑えることができ、かつエ
ネルギー消費も少ない。
【0044】図3は本発明の第2実施例を示している。
本実施例では、前記開閉手段35aの接続状態と非接続
状態との切換操作を所定間隔毎に間欠的に行ない、前記
培養装置10内に微細藻類が滞留する時間を制御するこ
とにより、微細藻類の活性化状態を調節する制御手段4
0を有している。なお、前記第1実施例と同種の部位に
は、同一符号を付して重複した説明を省略する。
【0045】混合液送出管31aの途中にある開閉手段
35aは、電気的に切換操作が可能な三方電磁弁、或は
三方電動弁で構成されており、かかる開閉手段35aの
一方流通口と、混合液送入管31bの途中とは、前記培
養装置10を迂回するバイパス路31cにより接続され
ている。すなわち本実施例では、開閉手段35aを、、
培養池30内の混合液を培養装置10に供給しない非接
続状態にすると、培養池30内の混合液はバイパス路3
1c等を通ってそのまま培養池30内に戻るように設定
されている。
【0046】制御手段40は、電磁弁等の切り換え時刻
を制御するためのものであり、例えばタイムスイッチに
より構成されている。かかるタイムスイッチを前記開閉
手段35aに信号線を介して接続することにより、前記
開閉手段35aを自動的に、接続状態と、非接続状態と
に間欠的に繰り返すことができる。接続状態と非接続状
態との各時間は任意に設定できる。なお、タイムスイッ
チの構成は一般的であるので説明は省略する。
【0047】このような第2実施例によれば、培養装置
10と培養池30の接続、非接続を間欠的に行ない、ク
ロレラ等の微細藻類が該微細藻類培養装置10内に滞留
する時間を制御することができるため、クロレラ等の活
性化状態の調節が自動的に行えるようになった。それに
より、微細藻類り増殖効率を更に向上させることができ
る。
【0048】ここで、クロレラの増殖機能の活性化につ
いて説明すると、種の違いで大きく異なるが、例えば中
温種と呼ばれるものは至適温度が25℃前後であり、光
は5000〜10、000lx程度、CO2 濃度は1〜
2%程度が適していることがわかっている。このクロレ
ラに低い藻濃度で連続光を照射したとき、10〜20時
間の間隔で、初期の藻濃度N0と、時間t経過後の藻濃
度N1を調べ、生育速度定数kを式[k=1/t・ln
N1/N0]で計算すると、kの値は2.3〜2.5d
ay-1(1日の増加倍数で10〜12倍)を示すものが
多い。
【0049】ここで、クロレラに明暗周期を与えると、
明期には生長して細胞容積が増加し、暗期には分裂して
細胞数が増加するようになり、たとえば16時間明期、
8時間暗期の周期が最大の増殖速度を示すようになる。
【0050】このように、増殖環境が最適条件に近い場
合は、ある周期でクロレラは盛んに生長し、分裂を繰り
返すが、温度が至適温度から離れていたり、光の照射量
が少なかったり、藻密度が高いため光が遮蔽されたり、
CO2 が十分供給されなかったり、無機質養分が不足し
たりすると、クロレラは光合成を行わず、エネルギー源
を他にもとめる従属栄養で生活するようになり、さらに
条件が悪化すると、休眠あるいは枯死状態に至る。当然
のことながら、独立栄養で生活しているとき、すなわち
光を受けて盛んに光合成を行っているときが、栄養価が
最も高く、CO2 の吸収速度も大きいことになる。独立
栄養と従属栄養の切り替わりは瞬時に起こるものではな
く、ある時間の経過後に起こるものである。従って、本
発明に係る大量培養システムはこの性質を巧みに利用し
て、増殖効率の増加を図ろうとするものでもある。
【0051】図4は本発明の第3実施例を示している。
本実施例は、前記第1実施例及び第2実施例に係る大量
培養システムを構成する培養装置10の他の構成を示す
ものである。なお、前記各種実施例と同種の部位には、
同一符号を付して重複した説明を省略する。
【0052】本実施例では、調整弁21の途中に二酸化
炭素濃度制御器24が接続されている点が特徴となって
いる。二酸化炭素濃度制御器24は、排気管13から排
気されるCO2 の濃度を検出し、検出濃度と予め設定さ
れた目標値とを比較して調整弁21の開閉量を調節する
ものである。
【0053】すなわち、CO2 の検出濃度が目標値より
も低いならば調整弁21を更に開き、一方、検出濃度が
目標値よりも高いならば調整弁21を更に閉じ、二酸化
炭素供給源22から補給管20を通して循環路管19に
補給するCO2 の流量を自動的に調節する。ここで、目
標値は必要に応じて任意に設定できるが、クロレラ等の
培養に好適なCO2 濃度、例えば5%〜6%のCO2
度に設定しておくことが望ましい。
【0054】図5は本発明の第4実施例を示している。
本実施例も前記第3実施例と同様に、前記第1実施例及
び第2実施例に係る大量培養システムを構成する培養装
置10の他の構成を示すものである。なお、前記各種実
施例と同種の部位には、同一符号を付して重複した説明
を省略する。
【0055】すなわち、大型の水槽11を用いてクロレ
ラ等の培養を行なう場合の例であって、ドラフトチュー
ブ12と散気管13とから成る攪拌装置15を水槽11
内に複数並列に配設し、水槽11内の培養液全体を平均
的にかき回すことができるようにしてある。各散気管1
3に連結する各供給管15には、それぞれエアーポンプ
14が設けてあり、各エアーポンプ14から延びる各排
出管は一つの排出管18に連結している。また、ドラフ
トチューブ12の配設位置に対応して水槽11の気相部
16には空気排出口17が複数個設けてあって、前記排
出管18からの分岐管にそれぞれ連結している。このよ
うに、培養装置10をある程度大型化すれば、より大規
模な培養池と組合わせることができる。
【0056】なお、前記第1及び第2実施例において
は、前記開閉手段を配管の混合液送出管の途中に設けた
が、混合液送入管側に設けてもよく、この場合でも循環
経路の一部を接続、非接続にすることにより、培養装置
内の混合液を培養池に供給しないことが、結局、培養池
内の混合液を培養装置に供給しないこととなる。
【0057】また、前記第2実施例においては、前記制
御手段としてタイムスイッチから成るものを挙げたが、
これだけに限定されるものではなく、例えばマイクロコ
ンピュータによって構成してもよい。その他、本発明に
係る微細藻類の大量培養装置は、図示した前記第1〜第
4実施例の具体的構成に限定されるものではない。
【0058】
【発明の効果】本発明に係る微細藻類の大量培養システ
ムによれば、高効率なCO2 の混入並びに微細藻類の増
殖機能の活性化に寄与する培養装置と、大量培養に寄与
する培養池とを配管で連通し、配管途中に設けた開閉手
段の切換操作により、ある時期には非接続状態にして前
記培養装置を種株培養に利用し、またある時期には接続
状態にして前記培養装置を培養池に対し、二酸化炭素の
混入並びに微細藻類の増殖機能の活性化に利用するか
ら、先ず、従来は煩わしかった種株の入手、保存、一次
増殖の手間が省け、良好な種株の保存、増殖が容易とな
る。このため、希望する品種を選ぶことができ、また環
境悪化による雑菌の繁殖を極力抑えることができ、また
種株にかかるコストを低減でき、更に輸送中に死滅する
という事態をなくすことができる。
【0059】また、従来は培養池でCO2 を混入してい
たが、CO2 混入は培養装置で行なうようにしたため、
培養液へのCO2 の混入効率が良く、ロスが少なくなっ
た。また、培養装置により良好環境を作り、培養液を一
定時間滞留させることにより微細藻類の増殖機能を活性
化する機能を付加したから、培養池での受光面積当りの
増殖効率を大幅に向上させることができる。
【0060】また、前記培養池の開口部に、光透過材質
からなるカバー部材を設ければ、培養池中の培養液を外
気と遮断して閉鎖状態にすることができ、CO2 の放出
や、雑菌の混入を極力防ぐことができる。
【0061】更に、前記開閉手段の接続状態と非接続状
態との切換操作を所定間隔毎に間欠的に行なう制御手段
を有する場合には、クロレラ等の微細藻類が培養装置内
に滞留する時間を制御できるため、微細藻類の活性化状
態の調節が自動的に行えるようになり、微細藻類の増殖
効率を更に向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る微細藻類の大量培養
システムの全体を概略的に示す模式図である。
【図2】本発明の第1実施例に係る微細藻類の大量培養
システムを構成する培養装置を示す正面図である。
【図3】本発明の第2実施例に係る微細藻類の大量培養
システムの全体を概略的に示す模式図である。
【図4】本発明の第3実施例に係る微細藻類の大量培養
システムを構成する培養装置を示す正面図である。
【図5】本発明の第4実施例に係る微細藻類の大量培養
システムを構成する培養装置を示す正面図である。
【図6】従来の培養池を示す模式図である。
【符号の説明】
10…培養装置 11…水槽 14…ポンプ(エアーポンプ) 13…散気管 19…循環路管 21…調整弁 22…二酸化炭素供給源 25…攪拌装置 30…培養池 30a…開口部 31…配管 33…カバー部材 35…開閉手段(バルブ) 40…制御手段(タイムスイッチ)
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−142778(JP,A) 特開 平6−153912(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12M 1/00 - 3/10

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】微細藻類を、培養液中にて二酸化炭素を供
    給しつつ大量に培養するための大量培養システムであっ
    て、 光透過材質からなる閉鎖状の水槽内に攪拌装置を配設
    し、該攪拌装置を構成する散気管の空気入口部と前記水
    槽の空気排出口とをポンプを介在させた循環路管により
    連通し、該循環路管の途中に、二酸化炭素供給源から調
    整弁を介して二酸化炭素を補給する補給管を連結してな
    る培養装置を有し、 前記培養装置と、該培養装置とは別に設けられた大量培
    養用の培養池とを、培養液及び微細藻類の混合液を循環
    させる配管により環状に連通し、該配管の途中に、前記
    培養池内の混合液を培養装置に供給しない非接続状態
    と、前記培養池内の混合液を培養装置に供給し循環させ
    る接続状態とに切換操作が可能な開閉手段を設け、前記配管の途中と前記開閉手段とを、前記培養装置を迂
    回するバイパス路により接続して、前記開閉手段が非接
    続状態の際、前記培養池内の混合液が前記バイパス路を
    通ってそのまま培養地に戻るよう設定し、 前記開閉手段が非接続状態の際、前記培養装置を種株培
    養に利用する一方、前記開閉手段が接続状態の際、前記
    培養装置を前記培養池に対し、二酸化炭素の混入並びに
    微細藻類の増殖機能の活性化に利用すべく構成し 前記開閉手段の接続状態と非接続状態との切換操作を所
    定間隔毎に間欠的に行ない、前記培養装置内に微細藻類
    が滞留する時間を制御することにより、微細藻類の活性
    化状態を調節する制御手段を有する ことを特徴とする微
    細藻類の大量培養システム。
  2. 【請求項2】前記培養池の開口部に、該開口部を覆う光
    透過材質からなるカバー部材を設けたことを特徴とする
    請求項1記載の微細藻類の大量培養システム。
JP32856194A 1994-12-28 1994-12-28 微細藻類の大量培養システム Expired - Lifetime JP3510929B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32856194A JP3510929B2 (ja) 1994-12-28 1994-12-28 微細藻類の大量培養システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32856194A JP3510929B2 (ja) 1994-12-28 1994-12-28 微細藻類の大量培養システム

Publications (2)

Publication Number Publication Date
JPH08173139A JPH08173139A (ja) 1996-07-09
JP3510929B2 true JP3510929B2 (ja) 2004-03-29

Family

ID=18211656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32856194A Expired - Lifetime JP3510929B2 (ja) 1994-12-28 1994-12-28 微細藻類の大量培養システム

Country Status (1)

Country Link
JP (1) JP3510929B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863834B1 (ko) * 2018-02-26 2018-06-11 대한민국 이동성이 높은 적조생물 맞춤형 고밀도 배양장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO320950B1 (no) * 2004-06-11 2006-02-20 Priforsk Partners As Anordning for algeproduksjon
CN100562564C (zh) 2005-12-12 2009-11-25 中国科学院过程工程研究所 用于大规模培养微藻的补碳装置及其使用方法和用途
DE102009022754A1 (de) * 2009-05-26 2010-12-02 Christian-Albrechts-Universität Zu Kiel Photobioreaktor
JP5975602B2 (ja) * 2011-03-03 2016-08-23 株式会社筑波バイオテック研究所 微細藻類連続培養装置およびこの装置を用いた微細藻類連続培養方法
US9476023B2 (en) 2011-07-27 2016-10-25 Ihi Corporation Culture device
US20160213353A1 (en) 2011-10-28 2016-07-28 Hironari Masui Ultrasound imaging apparatus, ultrasound imaging method and ultrasound imaging program
JP2015198649A (ja) * 2014-03-31 2015-11-12 住友共同電力株式会社 藻類の培養システム及び藻類の培養方法
JP6471020B2 (ja) * 2015-03-30 2019-02-13 大陽日酸株式会社 熱交換器
US11319522B2 (en) * 2015-05-19 2022-05-03 Zhongzhi He Photobioreactor used for algae cultivation, and algae cultivation system
FR3095210A1 (fr) * 2019-04-21 2020-10-23 Dominique Delobel Système de production de micro organismes photosynthétiques
CN110396470A (zh) * 2019-08-27 2019-11-01 济宁学院 微藻固定烟气co2转化生物质的设备及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863834B1 (ko) * 2018-02-26 2018-06-11 대한민국 이동성이 높은 적조생물 맞춤형 고밀도 배양장치

Also Published As

Publication number Publication date
JPH08173139A (ja) 1996-07-09

Similar Documents

Publication Publication Date Title
US8955249B2 (en) Light rod for accelerating algae growth
Goldman Outdoor algal mass cultures—I. Applications
US20210079325A1 (en) Large scale mixotrophic production systems
CN105961303B (zh) 一种鱼-菌-藻共生的生态养殖系统及其运行方法
JP3510929B2 (ja) 微細藻類の大量培養システム
US20120021505A1 (en) Circulatory photobioreactor
CN108575866A (zh) 一种鱼菜共生系统
WO2010138571A1 (en) Photobioreactor and method for culturing and harvesting microorganisms
JP3240452U (ja) 藻類を成長させるためのシステム
CN104560637A (zh) 一种可旋转挂膜式微藻光合反应器
KR101856678B1 (ko) 광생물반응기
KR20190094622A (ko) 미세조류 배양장치
KR20100113179A (ko) 관형 스피루리나 배양장치
JP5324532B2 (ja) 循環型の光生物反応器
KR101930526B1 (ko) 고부유물질 함유 가축액상분뇨 적합한 미세조류배양 시스템, 배양 방법 및 이를 이용한 조류비료
CN106172009A (zh) 植物无糖培养系统及植物培养容器
CN111465682A (zh) 培养罐
CN102344888B (zh) 循环式光生物反应器
CN204529840U (zh) 一种可旋转挂膜式微藻光合反应器
KR101154622B1 (ko) 식물성 플랑크톤의 배양시설
CN217230682U (zh) 复合式藻类养殖设备
CN105638542A (zh) 浮动式养殖装置及养殖方法
KR20170127890A (ko) 고부유물질 함유 가축액상분뇨 적합한 미세조류배양 시스템, 배양 방법 및 이를 이용한 조류비료
EP2412793A1 (en) Circulatory photobioreactor
CN104862207A (zh) 一种吊袋式微藻光反应器及吊袋式微藻养殖系统

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

EXPY Cancellation because of completion of term