JP3510455B2 - Magnetic bearing device using second class superconductor - Google Patents

Magnetic bearing device using second class superconductor

Info

Publication number
JP3510455B2
JP3510455B2 JP23289497A JP23289497A JP3510455B2 JP 3510455 B2 JP3510455 B2 JP 3510455B2 JP 23289497 A JP23289497 A JP 23289497A JP 23289497 A JP23289497 A JP 23289497A JP 3510455 B2 JP3510455 B2 JP 3510455B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
bearing device
superconductor
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23289497A
Other languages
Japanese (ja)
Other versions
JPH1162964A (en
Inventor
重夫 長屋
祐一 佐々野
正晴 南
精一 川浪
裕 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP23289497A priority Critical patent/JP3510455B2/en
Publication of JPH1162964A publication Critical patent/JPH1162964A/en
Application granted granted Critical
Publication of JP3510455B2 publication Critical patent/JP3510455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力貯蔵用フライ
ホイールシステムの超伝導磁気軸受け装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic bearing device for a flywheel system for power storage.

【0002】[0002]

【従来の技術】[Prior art]

(用語の説明) (1)「第2種超伝導体」とは、高温、高磁場下におい
て、超伝導状態と常伝導状態とが混在する物質をいう。 (2)「ピン止め」とは、変形できる(弾性的)物体の
運動を阻止する機構、すなわち摩擦の原因となる機構の
総称。特に第2種超伝導体および電荷密度波(CDW)
状態で注目されている。
(Explanation of Terms) (1) “Type 2 superconductor” refers to a substance in which a superconducting state and a normal conducting state are mixed under high temperature and high magnetic field. (2) "Pinning" is a general term for a mechanism that prevents the movement of a deformable (elastic) object, that is, a mechanism that causes friction. Especially type 2 superconductors and charge density waves (CDW)
Attention is paid to the state.

【0003】第2種超伝導体では、ピン止め中心と磁束
線の相互作用は、関係するエネルギーの種類により、次
のような3つの場合に分けられる。 (a)超伝導の凝縮エネルギーが、場所的に変化してい
る場合、(b)ピン止め中心のもつ歪み場の弾性エネル
ギーが、磁束線により変化する場合、(c)磁束線の磁
気的なエネルギーが、ピン止め中心により変化する場
合、 (3)「ピン止め力」とは、ピン止め中心が原因となっ
て、磁束線系に対して働くある種の静止摩擦力をいう。 (4)「軸受け部分」とは、軸受け装置の内、軸受けと
しての性能を発揮する部分、すなわち、図3の軸受け装
置においては、冷却材容器4の部分と円板5の部分をい
う。 (従来の技術)従来の超伝導磁気軸受け装置を図3に示
す。
In the second type superconductor, the interaction between the pinning center and the magnetic flux line is classified into the following three cases depending on the type of energy involved. (A) When the superconducting condensation energy changes locally, (b) when the elastic energy of the strain field of the pinning center changes due to the magnetic flux lines, (c) when the magnetic flux lines are magnetic. When the energy changes depending on the pinning center, (3) "pinning force" refers to a kind of static friction force acting on the magnetic flux line system due to the pinning center. (4) The "bearing portion" refers to a portion of the bearing device that exhibits performance as a bearing, that is, a portion of the coolant container 4 and a portion of the disc 5 in the bearing device of FIG. (Prior Art) A conventional superconducting magnetic bearing device is shown in FIG.

【0004】図3は、第2種超伝導体1の「ピン止め
力」により生じる浮上力を利用して回転軸6を支持する
超伝導磁気軸受け装置の軸方向の断面図であり、は第
2種超伝導体、2a,2bは永久磁石、は第2種超伝
導体を固定する液体窒素などの入った冷却材容器、5は
回転軸6に取り付けた円板、7a,7bは冷却材容器4
へ冷却材を流す管、8は磁気軸受け装置を組み込んだハ
ウジングである。
[0004] Figure 3 is a cross-sectional view in the axial direction of the superconducting magnetic bearing device for supporting the rotary shaft 6 by utilizing the levitation force generated by the "pinning force," of the two superconductor 1, 1 Second type superconductor, 2a and 2b are permanent magnets, 4 is a coolant container containing liquid nitrogen for fixing the second type superconductor, 5 is a disk attached to the rotating shaft 6, and 7a and 7b are Coolant container 4
Reference numeral 8 denotes a pipe through which a coolant flows, and 8 is a housing in which a magnetic bearing device is incorporated.

【0005】図3に示す装置は、液体窒素の温度以上の
高温で、第2種超伝導体1の「ピン止め力」による磁気
浮上機構を用いた超伝導磁気軸受け装置であり、回転軸
6は回転軸に取り付けた円板5に取り付けた永久磁石
a、2bと、循環器系の管7a、7bにより液体窒素等
の冷却材を循環するハウジング内の冷却材容器4に格納
した第2種超伝導体との間に生じる「ピン止め力」に
よって生じる磁気力を用いて浮上する。
The device shown in FIG. 3 is a superconducting magnetic bearing device using a magnetic levitation mechanism by the "pinning force" of the second-type superconductor 1 at a temperature higher than the temperature of liquid nitrogen, and the rotating shaft 6 Is the permanent magnet 2 attached to the disk 5 attached to the rotating shaft
a, occurs between the 2b, circulatory tube 7a, the second type superconductor 1 that is stored in the cooling Zaiyo device 4 in the housing to circulate a coolant, such as by Ri liquids nitrogen 7b " Levitate using the magnetic force generated by the "pinning force".

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の技術に
は、次のような問題がある。4は、第2種超伝導体
と永久磁石2a,2bとの間に働く単位面積当たりの磁
気力(以下、第1の磁気反発力という)、及び、第2種
超伝導体の代わりに永久磁石2a,2bと同磁極が対
向する永久磁石を設けた時に働く単位面積当たりの磁気
力(以下、第2の磁気反発力という)を示している。
However, the conventional techniques have the following problems. FIG. 4 shows a type 2 superconductor 1.
A permanent magnet 2a, a magnetic force per unit area acting between the 2b (hereinafter referred to as a first magnetic repulsive force), and, second type permanent magnet 2a in place of the superconductor 1, the same and 2b magnetic force per unit area acting upon the magnetic poles provided that permanent Hisa磁stone to opposite (hereinafter referred to as a second magnetic repulsive force) shows.

【0007】図4に示すように、第1の磁気反発力は、
第2の磁気反発力に比べて間隙に対して急峻な立ち上が
りを示す。そして、第1の磁気反発力と第2の磁気反発
力の大きさは、間隙の大きさと反比例するように変化す
る。間隙が同じ場合、第2の磁気反発力の方が第1の磁
気反発力より大きい。そのため、第1の磁気反発力は、
同じ間隙の場合、第2の磁気反発力に比べて小さい浮上
力しか得られない。本発明は、これらの問題を解決する
ことができる磁気軸受け装置を提供することを目的とす
る。
As shown in FIG. 4, the first magnetic repulsive force is
Compared with the second magnetic repulsive force, it shows a steep rise with respect to the gap. Then, the first magnetic repulsion force and the second magnetic repulsion
The magnitude of the force varies inversely with the size of the gap.
It If the gap is the same, the second magnetic repulsion force is the first magnetic repulsion force.
Greater than repulsive force. For this reason, the first magnetic repulsive force,
In the case of the same gap , only a small levitation force is obtained as compared with the second magnetic repulsive force. An object of the present invention is to provide a magnetic bearing device that can solve these problems.

【0008】[0008]

【課題を解決するための手段】本発明に係る磁気軸受け
装置は、回転軸に直交するように取り付けた円板の下方
の冷却材容器内に、円周状に周方向へ離して交互に配置
した複数個の第2種超伝導体及び複数個の第1永久磁石
と、円板に第1永久磁石と同磁極が対向するように取り
付けたリング状の第2永久磁石を備える。または、本発
明に係る磁気軸受け装置は、第2種超伝導体と、第1永
久磁石と、第2永久磁石と、冷却材容器と、回転軸に直
交するように取り付けた円板と、ハウジングとからな
り、第2種超伝導体は、管により冷却材を循環するハウ
ジング内の冷却材容器に格納され、第2永久磁石は、円
板に取り付けられ、第1永久磁石は、第2永久磁石と
磁極が対向するように冷却材容器に取り付けられ、回転
軸は、第2永久磁石と第2種超伝導体との間に生じる第
1の磁気反発力と、第2永久磁石と第1永久磁石との間
に働く第2の磁気反発力により、浮上し、回転軸の重
量と磁気反発力とが釣り合っていて、第2の磁気反発力
よりも第1の磁気反発力の方が大きくなるように、第1
永久磁石の上面を第2種超伝導体の上面より下方に配置
する。
SUMMARY OF THE INVENTION A magnetic bearing device according to the present invention is arranged circumferentially in a coolant container below a disc mounted so as to be orthogonal to a rotation axis, circumferentially and alternately. comprising the a plurality of second type superconductor and a plurality of first permanent magnets, the ring-shaped second permanent magnet mounted to the first permanent magnet and the magnetic pole is opposed to the disc. Alternatively, the magnetic bearing device according to the present invention includes a second-type superconductor, a first permanent magnet, a second permanent magnet, a coolant container, a disc mounted so as to be orthogonal to the rotation axis, and a housing. The second-type superconductor is stored in a coolant container in a housing in which a coolant is circulated by a pipe, a second permanent magnet is attached to a disc, and a first permanent magnet is a second permanent magnet. Same as magnet
The magnetic poles are attached to the coolant container so as to face each other, and the rotating shaft has a first magnetic repulsive force generated between the second permanent magnet and the second type superconductor, a second permanent magnet and a first permanent magnet. by a second magnetic repulsive force acting between the, float, have balanced and the weight and magnetic repulsive force of the rotating shaft than the second magnetic repulsive force toward the first magnetic repulsive force increases To be the first
The upper surface of the permanent magnet is arranged below the upper surface of the second type superconductor.

【0009】したがって、次のように作用する。第2種
超伝導体と第1永久磁石との間に働く第1の磁気反発力
と、第2永久磁石と第1永久磁石との間に働く第2の磁
気反発力をあわせた磁気反発力を得ることができる。
Therefore, it operates as follows. A first magnetic repulsive force acting between the second type superconductor and a first permanent magnet, the combined second magnetic repulsive force acting between the second permanent magnet and the first permanent magnet A magnetic repulsive force can be obtained.

【0010】ただし、永久磁石同士間の磁気反発力が大
きくなると、径方向に対して不安定となるので、第1永
久磁石に取り付けた調整機構により、第2永久磁石と
間に働く磁気反発力のバランスをとり、第2種超伝導
第2永久磁石の間に働く径方向の保持力により径方向
の安定性を高める。
[0010] However, the magnetic repulsion between each other permanent magnets increases, the unstable to the radial direction, the adjustment mechanism attached to the first permanent magnet, acting between the second permanent magnet A type 2 superconductor that balances magnetic repulsion
Increasing the radial stability by holding force in the radial direction acting between the second permanent magnet.

【0011】また、第2種超伝導体と第2永久磁石と
間隔よりも第1永久磁石と第2永久磁石との間隔を大き
くすることによって、第1永久磁石と第2永久磁石と
間に働く第2の磁気反発力よりも第2種超伝導体と第2
永久磁石との間に働く第1の磁気反発力を大きくでき
る。
[0011] By the second type superconductor and than the distance between the second permanent magnet sizes and spacing between the first permanent magnet and the second permanent magnet <br/> Kusuru, the first permanent magnet than that of the second magnetic repulsive force acting between the second permanent magnet and the two superconductors second
The first magnetic repulsive force acting between the permanent magnet and the permanent magnet can be increased.

【0012】[0012]

【発明の実施の形態】発明の実施の形態を図1、図
2、及び図5に示す。図1は、実施の形態に係る超伝
導磁気軸受け装置の軸方向の断面図である。図1中にお
いて、1a,1bは第2種超伝導体、2a,2bは第2
永久磁石、3a〜3dは第1永久磁石、4は第2種超伝
導体1a,1bを固定する液体窒素等の入った冷却材容
器、5は回転軸6に取り付けた円板、7a,7bは冷却
材容器4へ冷却材を流す管、8は磁気軸受け装置を組み
込んだハウジングを示している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention is shown in FIGS. 1, 2 and 5. Figure 1 is a Ru axial sectional view der superconducting magnetic bearing device according to this embodiment. In Figure 1
There are, 1a, 1b is the second type superconductors, 2a, 2b is second
Permanent magnets, 3a to 3d are first permanent magnets, 4 is a coolant container containing liquid nitrogen or the like for fixing the second-type superconductors 1a and 1b , 5 is a disk attached to the rotating shaft 6, 7a , Reference numeral 7b denotes a pipe for flowing the coolant to the coolant container 4, and 8 denotes a housing in which a magnetic bearing device is incorporated.

【0013】図2は、一実施の形態に係る超伝導磁気軸
受け装置の上面図であり、図2中において、1a〜1i
冷却材容器4の中に円周状に配置した第2種超伝導
体、2a,2bは円板5に取り付けたリング状の第2永
久磁石、3a〜3sは冷却材容器4の中に円周状に取り
付けた第1永久磁石を示している。
[0013] Figure 2 is a top view of the engagement Ru superconducting magnetic bearing device according to an embodiment, in FIG. 2, 1a-1i
Is a type II superconductor circumferentially arranged in the coolant container 4 , 2a and 2b are second ring-shaped permanent magnets attached to the disc 5, and 3a to 3s are inside the coolant container 4. It shows a first permanent magnet mounted circumferentially.

【0014】図2に示すように、第2種超伝導体1a〜
iは、リング状の第2永久磁石2aと第2永久磁石2
bの径の中間の円周上に等間隔に配置されている。ま
た、第1永久磁石a〜3sは、第2種超伝導体a〜
iと第2永久磁石2a,2bとが重なる面積と同じ面
積が重なるように配置している。
As shown in FIG. 2, the second-type superconductivityBody 1a ~
1i is, Ring-shapedSecond permanent magnet 2a and second permanent magnet 2
bEvenly spaced on the circumference of the middle of the diameter. Well
First permanent magnetThreea-3s is, Type II superconductors1a ~
1i andSecond permanent magnetStone 2a, 2b andThe same surface as the overlapping area
So that the products overlapIt

【0015】図1〜図2に示すように、回転軸6は、円
板5に取り付けられ、第2永久磁石2a,2bも、円板
5に取り付けられている。第2種超伝導体1a〜1
、循環器系の管7a,7bによって液体窒素といった
冷却材を循環するハウジング8内の冷却材器4に格納
されている。第1永久磁石3a〜3sは、第2永久磁
a,2bと同磁極が対向するように冷却材容器4の中
に取り付けられている。転軸6は、円盤5に取り付け
た第2永久磁石2a,2bと、ハウジング8内の冷却材
容器4に格納した第2種超伝導体1a〜1iとの間に生
じる「ピン止め力」すなわち第1の磁気反発力と、第
永久磁石2a,2bと同磁極が対向するように冷却材容
器4に取り付けた第1永久磁石3a〜3sとの間に働く
第2の磁気反発力により、浮上している。
[0015] As shown in FIGS. 1-2, the rotating shaft 6 is attached to the disc 5, the second permanent magnets 2a, 2b are also attached to the disc 5. Second type superconductor 1 a to 1 i
It is stored in the pipe 7a, 7 b of the circulatory system depending on the coolant container 4 in the housing 8 for circulating coolant such liquid nitrogen. First permanent magnet 3a~3s, the second permanent magnet
2 a, 2 b and the pole is attached to <br/> in the coolant vessel 4 so as to face each other. Rotating shaft 6, and the second permanent magnet 2 a, 2 b attached to the disk 5, the coolant in the housing 8
The “pinning force”, that is, the first magnetic repulsion force generated between the second-type superconductors 1 a to 1 i stored in the container 4 , and the second
It cooled such permanent magnet 2 a, 2 b and the pole faces Zaiyo
It is levitated by the second magnetic repulsive force acting between the first permanent magnets 3a to 3s attached to the container 4 .

【0016】図5は、第1の実施の形態において、異な
る間隙を設定することにより、動剛性を下げることがで
きることを示した図である。「動剛性」とは、軸受けの
静的なバネ定数(ゆっくりと押した時に発生する単位長
さ当たりの反発力)ではなく、動的に変化が与えられた
時に発生する単位長さ当たりの反発力をいう。
FIG. 5 is a diagram showing that the dynamic rigidity can be lowered by setting different gaps in the first embodiment. "Dynamic rigidity" is not the static spring constant of the bearing (repulsive force per unit length generated when pushed slowly), but the repulsion per unit length generated when a dynamic change is given. Say power.

【0017】[0017]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。本発明に係る
磁気軸受装置によれば冷却材容器に第2種超伝導体の
他に、円周状に第1永久磁石を配置し、第1永久磁石と
同磁極が対向するよう円板に取り付けたリング状の第2
永久磁石を配置することにより、第2種超伝導体と第2
永久磁石の間に働く第1の磁気反発力と、第2永久磁
第1永久磁石の間に働く第2の磁気反発力を合わせた
浮上力を得ることが出来る。更に、回転軸に遠い第1永
久磁石の中心を回転軸に遠い第2永久磁石より径方向の
外側に、また回転軸に近い第1永久磁石の中心を回転軸
に近い第2永久磁石より径方向の内側に設置することに
より、回転軸が径方向にずれた場合にも、径方向の剛性
を高くすることが出来る。
Since the present invention is constructed as described above, it has the following effects. According to the present invention
According to the magnetic bearing device, the <br/> other second type superconductor in coolant container, a first permanent magnet arranged circumferentially, <br/> same pole as the first permanent magnet The ring-shaped second attached to the disk so that they face each other.
By arranging the permanent magnet, and a second type superconductors second
A first magnetic repulsive force acting between the permanent magnet, a second permanent magnet
If it is possible to obtain a floating force of the combined second magnetic repulsive force acting between the first permanent magnet. Further, the center of the first permanent magnet farther to the rotation axis on the outside of the distant second permanent magnet by Ri径direction to the rotation axis and the rotation axis of the first center of permanent magnet close to the rotational axis
By installing the inner side of the second permanent magnet by Ri径direction close to, if the rotation axis is displaced in the radial direction, it is possible to increase the rigidity in the radial direction.

【0018】[0018]

【0019】第1永久磁石により生じる磁場と第2永久
石により生じる磁場によって作用しあう径方向の反発
力が釣り合うように、調整機構で第1永久磁石を設置す
ることにより、第2永久磁石と第2種超伝導体の間に働
く径方向の保持力により、安定な磁気浮上が可能な磁気
軸受け装置にすることが出来る。に、第1永久磁石と
第2永久磁石との間隙を、第2永久磁石と第2種超伝導
体との間隙より若干多く設けることにより、回転軸の重
量と釣り合う浮上力が得られる間隙の位置で、第1の磁
気反発力(第2永久磁石と第2種超伝導体との間に働く
磁気反発力)の方が、第2の磁気反発力(第1永久磁
第2永久磁石との間に働く磁気反発力)より大きくな
るため、安定な磁気軸受装置にすることが出来る。
た、磁気軸受の場合、回転系の振動が交流磁場を発生
し、磁束フローにより磁気反発力が減衰するので、動剛
性が大きいとエネルギー損失が大きくなるが、図5に示
すようにあらかじめ第1永久磁石と第2永久磁石の間
に、間隙のオフセットを設定しておくことにより、図5
に示すように剛性を小さくでき、エネルギー損失を抑え
ることが出来る。
[0019]FirstPermanent magnetOn stoneMagnetic field generated by the second permanent
PorcelainOn stoneArises fromWork together by a magnetic fieldRadial repulsion
Adjusting mechanism to balance the powerFirst permanent magnetInstall
By doingSecond permanent magnetAnd type 2 superconductivityof a bodyWorking in between
Magnetic force that enables stable magnetic levitation due to the holding force in the radial direction
It can be a bearing device.ChangeThe first permanent magnetStone and
Second permanent magnetStone andGapToSecond permanent magnetStone andType 2 superconductivity
Body andBy setting a little more than the gap of
At the position of the gap where the levitation force that balances the amount is obtained, the first magnetic
Repulsive force (second permanent magnet)Stone andType 2 superconductivityBody andWork between
The magnetic repulsion force is the second magnetic repulsion force (the first permanent magnet).stone
WhenSecond permanent magnetStone andMagnetic repulsion that acts between)
Therefore, a stable magnetic bearing device can be obtained.Well
In the case of magnetic bearings, the vibration of the rotating system generates an alternating magnetic field.
However, since the magnetic repulsion force is attenuated by the magnetic flux flow,
The energy loss increases with theShown in 5
So thatBetween the first and second permanent magnets beforehand
By setting the gap offset to
As shown in, rigidity can be reduced and energy loss can be suppressed.
Rukoto can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る超伝導磁気軸
受け装置を示す軸方向断面図。
FIG. 1 is an axial sectional view showing a superconducting magnetic bearing device according to a first embodiment of the invention.

【図2】図1の超伝導磁気軸受け装置の第2種超伝導体
と第1永久磁石と第2永久磁石との配置を示す平面図。
FIG. 2 is a second-type superconductor of the superconducting magnetic bearing device of FIG .
FIG. 3 is a plan view showing the arrangement of the first permanent magnet and the second permanent magnet .

【図3】従来の超伝導磁気軸受け装置を示す軸方向断面
図。
FIG. 3 is an axial sectional view showing a conventional superconducting magnetic bearing device.

【図4】永久磁石と第2種超伝導体との間隙と、永久磁
石間の間隙とが同じ場合において、第1の磁気反発力及
び第2の磁気反発力と間隙との関係を示す図
FIG. 4 is a gap between a permanent magnet and a type 2 superconductor and a permanent magnet.
If the gap between stones is the same, the first magnetic repulsive force
FIG . 5 is a diagram showing the relationship between the second magnetic repulsive force and the gap .

【図5】永久磁石と第2種超伝導体との間隙よりも永久
磁石間の間隙を広げた場合において、第1の磁気反発力
及び第2の磁気反発力と間隙との関係を示す図。
FIG. 5 is more permanent than the gap between the permanent magnet and the type 2 superconductor.
The first magnetic repulsive force when the gap between the magnets is widened.
FIG. 6 is a diagram showing the relationship between the second magnetic repulsive force and the gap.

【符号の説明】1a〜1i …第2種超伝導体2a,2b …第2永久磁石3a〜3s …第1永久磁石 4…冷却材容器 5…円板 6…回転軸7a,7b …管 8…ハウジング[Explanation of Codes ] 1a to 1i ... Second-type superconductors 2a and 2b ... Second permanent magnets 3a to 3s ... First permanent magnet 4 ... Coolant container 5 ... Disk 6 ... Rotating shafts 7a, 7b ... Tube 8 …housing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南 正晴 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 川浪 精一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 河島 裕 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (56)参考文献 特開 平9−166142(JP,A) 特開 平8−219158(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16C 32/00 - 32/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaharu Minami, 2-1-1 Shinhama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Seiichi Kawanami 2-chome, Niihama, Arai-cho, Takasago-shi, Hyogo No. 1 Mitsubishi Heavy Industries, Ltd., Takasago Research Laboratory (72) Inventor, Yutaka Kawashima 2-1-1, Niihama, Arai-cho, Takasago, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd., Takasago Works (56) Reference JP-A-9-166142 (JP, A) JP-A-8-219158 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F16C 32/00-32/06

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転軸に直交するように取り付けた円板
の下方の冷却材容器内に円周状に周方向へ離して交互に
配置した複数個の第2種超伝導体及び複数個の第1永久
磁石と、 前記円板に前記第1永久磁石と同磁極が対向するように
取り付けたリング状の第2永久磁石とを備えることを特
徴とする磁気軸受け装置。
1. A plurality of second-type superconductors circumferentially and alternately arranged in a coolant container below a disc mounted so as to be orthogonal to a rotation axis in a circumferential direction. and a magnetic bearing device comprising a plurality of first permanent magnets, said the disk first permanent magnet and the magnetic poles and a ring-shaped second permanent magnet mounted so as to face.
【請求項2】 第2種超伝導体と、第1永久磁石と、第
2永久磁石と、冷却材容器と、回転軸に直交するように
取り付けた円板と、ハウジングとからなり、 前記第2種超伝導体は、管により冷却材を循環するハウ
ジング内の冷却材容器に格納され、 前記第2永久磁石は、前記円板に取り付けられ、 前記第1永久磁石は、前記第2永久磁石と同磁極が対向
するように前記冷却材容器に取り付けられ、 前記回転軸は、前記第2永久磁石と前記第2種超伝導体
との間に生じる第1の磁気反発力と、前記第2永久磁石
と前記第1永久磁石との間に働く第2の磁気反発力によ
り、浮上し、 前記回転軸の重量と磁気反発力とが釣り合っていて、前
記第2の磁気反発力よりも前記第1の磁気反発力の方が
大きくなるように、前記第1永久磁石の上面を前記第2
種超伝導体の上面より下方に配置 することを特徴とする
磁気軸受け装置。
2. A second-type superconductor, a first permanent magnet, a second permanent magnet, a coolant container, a disc mounted so as to be orthogonal to a rotation axis, and a housing. The second-class superconductor is stored in a coolant container inside a housing in which a coolant is circulated by a pipe, the second permanent magnet is attached to the disc, and the first permanent magnet is the second permanent magnet. Is attached to the coolant container so that the same magnetic poles face each other, and the rotating shaft has a first magnetic repulsive force generated between the second permanent magnet and the second type superconductor; The second magnetic repulsive force acting between the permanent magnet and the first permanent magnet levitates , and the weight of the rotating shaft and the magnetic repulsive force are balanced,
The first magnetic repulsive force is more preferable than the second magnetic repulsive force.
The upper surface of the first permanent magnet to the second
A magnetic bearing device characterized by being arranged below the upper surface of a seed superconductor .
【請求項3】 回転軸に直交するように取り付けた円板
の下方の冷却材容器内に円周状に配置した複数個の第2
種超伝導体と、 前記冷却容器内に円周状に配置するように取り付けた第
1永久磁石と、 前記円板に前記第1永久磁石と同磁極が対向するように
取り付けたリング状の第2永久磁石とを備え、 前記複数個の第2種超伝導体が前記回転軸を囲んで等間
隔に配置され、 各前記第2種超伝導体の間に前記第1永久磁石が1対ず
つ離れて設けられている ことを特徴とする磁気軸受け装
置。
3. A disc mounted so as to be orthogonal to the axis of rotation.
A plurality of second circumferentially arranged cooling medium containers below the
A seed superconductor and a first superconductor mounted so as to be circumferentially arranged in the cooling container.
1 permanent magnet, so that the same magnetic pole as the first permanent magnet faces the disk
An attached ring-shaped second permanent magnet, wherein the plurality of second-type superconductors surround the rotation shaft and are evenly spaced.
Spaced apart from each other, and the first permanent magnets are not paired between the second type superconductors.
A magnetic bearing device characterized in that they are provided apart from each other .
【請求項4】 回転軸に直交するように取り付けた円板
の下方の冷却材容器 内に円周状に配置した複数個の第2
種超伝導体と、 前記冷却容器内に円周状に配置するように取り付けた第
1永久磁石と、 前記円板に前記第1永久磁石と同磁極が対向するように
取り付けたリング状の第2永久磁石とを備え、 直径の異なる前記第2永久磁石が前記回転軸を囲んで、
かつ互いに離れて配置され、 前記複数個の第2種超伝導体が前記2つの第2永久磁石
の継の中間の円周状に等間隔に配置され、 各前記第2種超伝導体の間に前記第1永久磁石が1対ず
つ離れて設けられ、 前記回転軸に近い前記第1永久磁石の中心を前記回転軸
に近い第2永久磁石より径方向の内側に設置し、前記回
転軸に遠い第1永久磁石の中心を前記回転軸に遠い第2
永久磁石より径方向の外側に設置する ことを特徴とする
磁気軸受け装置。
4. A disc mounted so as to be orthogonal to the rotation axis.
A plurality of second circumferentially arranged cooling medium containers below the
A seed superconductor and a first superconductor mounted so as to be circumferentially arranged in the cooling container.
1 permanent magnet, so that the same magnetic pole as the first permanent magnet faces the disk
An attached ring-shaped second permanent magnet, wherein the second permanent magnets having different diameters surround the rotating shaft,
And the plurality of second-type superconductors are arranged apart from each other, and the plurality of second-type superconductors are the second permanent magnets.
No. 1 pair of the first permanent magnets are arranged at equal intervals along the circumference of the middle of the joint, and between the second type superconductors.
And the center of the first permanent magnet close to the rotating shaft
Installed on the inner side in the radial direction from the second permanent magnet close to
The center of the first permanent magnet far from the axis of rotation is the second far from the axis of rotation.
A magnetic bearing device that is installed on the outer side of the permanent magnet in the radial direction .
【請求項5】 前記複数個の第2種超伝導体が前記回転
軸を囲んで等間隔に配置され、 各前記第2種超伝導体の間に前記第1永久磁石が1対ず
つ離れて設けられていることを特徴とする請求項1に記
載の磁気軸受け装置。
5. The plurality of second-type superconductors are arranged at equal intervals surrounding the rotating shaft, and the first permanent magnets are separated by one pair between each of the second-type superconductors. The magnetic bearing device according to claim 1, wherein the magnetic bearing device is provided.
【請求項6】 直径の異なる2つの前記第2永久磁石が
前記回転軸を囲んで、かつ互いに離れて配置されている
ことを特徴とする請求項1,3,5の内のいずれか1項
に記載の磁気軸受け装置。
6. any one of claims 1, 3 and 5 in which two of said second permanent magnets having different diameters surrounding the rotary shaft, and characterized in that it is spaced apart from each other The magnetic bearing device described in <br />.
【請求項7】 直径の異なる2つの前記第2永久磁石が
前記回転軸を囲んで、かつ互いに離れて配置され、 前記複数個の第2種超伝導体が前記2つの第2永久磁石
の径の中間の円周上に等間隔に配置され、 各前記第2種超伝導体の間に前記第1永久磁石が1対ず
つ離れて設けられ、 前記回転軸に近い前記第1永久磁石の中心を前記回転軸
に近い第2永久磁石より径方向の内側に設置し、前記回
転軸に遠い第1永久磁石の中心を前記回転軸に遠い第2
永久磁石より径方向の外側に設置することを特徴とする
請求項1に記載の磁気軸受け装置。
7. The two second permanent magnets having different diameters are arranged so as to surround the rotation shaft and apart from each other, and the plurality of second type superconductors have a diameter of the two second permanent magnets. Of the first permanent magnets, which are arranged at equal intervals on the circumference of the middle of the first permanent magnet, are separated from each other by a pair between the second type superconductors, and the center of the first permanent magnets is close to the rotation axis. Is installed radially inward of the second permanent magnet close to the rotary shaft, and the center of the first permanent magnet remote from the rotary shaft is located farther from the rotary shaft.
The magnetic bearing device according to claim 1, wherein the magnetic bearing device is installed radially outside the permanent magnet.
【請求項8】 前記回転軸に近い前記第1永久磁石のN
極と前記回転軸に近い第2永久磁石のN極とが対向し、
前記回転軸に遠い第1永久磁石のS極と前記回転軸に遠
い第2永久磁石のS極とが対向することを特徴とする
求項4または請求項7に記載の磁気軸受け装置。
8. The N of the first permanent magnet near the rotation axis
The pole and the N pole of the second permanent magnet near the rotation axis face each other,
wherein said S pole farther to the rotation axis the first permanent magnet and the S pole of the distant second permanent magnets in said rotary shaft is opposed
The magnetic bearing device according to claim 4 or claim 7.
JP23289497A 1997-08-28 1997-08-28 Magnetic bearing device using second class superconductor Expired - Fee Related JP3510455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23289497A JP3510455B2 (en) 1997-08-28 1997-08-28 Magnetic bearing device using second class superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23289497A JP3510455B2 (en) 1997-08-28 1997-08-28 Magnetic bearing device using second class superconductor

Publications (2)

Publication Number Publication Date
JPH1162964A JPH1162964A (en) 1999-03-05
JP3510455B2 true JP3510455B2 (en) 2004-03-29

Family

ID=16946516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23289497A Expired - Fee Related JP3510455B2 (en) 1997-08-28 1997-08-28 Magnetic bearing device using second class superconductor

Country Status (1)

Country Link
JP (1) JP3510455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448945A (en) * 2018-03-26 2018-08-24 中国石油大学(华东) A kind of induction type super-conductive magnetic suspension load-shedding equipment for vertical shaft type hydrogenerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021587B3 (en) * 2008-04-30 2009-12-10 Siemens Aktiengesellschaft Magnetic bearing for use in machine i.e. electrical machine, has superconducting material whose part is arranged between pairs of axially and radially magnetized secondary magnets provided for axially and radially magnetized primary magnets
EP3273078A1 (en) * 2016-07-19 2018-01-24 Siemens Aktiengesellschaft Active magnetic bearing and method for cooling an active magnetic bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448945A (en) * 2018-03-26 2018-08-24 中国石油大学(华东) A kind of induction type super-conductive magnetic suspension load-shedding equipment for vertical shaft type hydrogenerator
CN108448945B (en) * 2018-03-26 2019-06-14 中国石油大学(华东) A kind of induction type super-conductive magnetic suspension load-shedding equipment for vertical shaft type hydrogenerator

Also Published As

Publication number Publication date
JPH1162964A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US6359357B1 (en) Combination radial and thrust magnetic bearing
US6081057A (en) Spindel motor for a disc drive
US8760021B2 (en) Centrifugally decoupling touchdown bearings
US6191515B1 (en) Combined passive magnetic bearing element and vibration damper
EP0687827A1 (en) Hybrid magnetic/foil gas bearings
JP3510455B2 (en) Magnetic bearing device using second class superconductor
JPS599312A (en) Magnetic bearing applied with magnetic fluid
US5986373A (en) Magnetic bearing assembly
TWI484106B (en) Hybrid type of magnet bearing system
US20040227421A1 (en) Magnetic suspension bearing
JP3358362B2 (en) Superconducting magnetic bearing device
JPH08296645A (en) Magnetic bearing device
KR100570539B1 (en) Spindle motor with magnetic thrust bearing and hydrodynamic journal bearing
US5789838A (en) Three-axis force actuator for a magnetic bearing
JP2601386Y2 (en) Magnetic fluid bearing
JP4229928B2 (en) Superconducting support mechanism
JPS63148846A (en) Bearing mechanism for motor
JP3236925B2 (en) Superconducting bearing device
JP2001343020A (en) Superconductive magnetic bearing and superconductive flywheel
JP3324319B2 (en) Magnetic bearing device
JPH03255220A (en) Magnetic bearing device
JPH10306823A (en) Permanent magnet and magnetic levitation support structure using the permanent magnet
JP3385771B2 (en) Superconducting magnetic bearing device
JPH07736Y2 (en) Magnetic fluid bearing
JPH04337110A (en) Magnetic bearing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

LAPS Cancellation because of no payment of annual fees