JP3510401B2 - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JP3510401B2
JP3510401B2 JP28236595A JP28236595A JP3510401B2 JP 3510401 B2 JP3510401 B2 JP 3510401B2 JP 28236595 A JP28236595 A JP 28236595A JP 28236595 A JP28236595 A JP 28236595A JP 3510401 B2 JP3510401 B2 JP 3510401B2
Authority
JP
Japan
Prior art keywords
lens
object side
lens group
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28236595A
Other languages
Japanese (ja)
Other versions
JPH09101462A (en
Inventor
敏信 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP28236595A priority Critical patent/JP3510401B2/en
Publication of JPH09101462A publication Critical patent/JPH09101462A/en
Application granted granted Critical
Publication of JP3510401B2 publication Critical patent/JP3510401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は顕微鏡対物レンズ
で、特に倍率が100倍程度、開口数が0.95程度
で、像面が平坦なアポクロマート級に顕微鏡対物レンズ
に関するものである。 【0002】 【従来の技術】本発明の対物レンズに類似する顕微鏡対
物レンズの従来例として特公平3−58495号に記載
されているレンズ系が知られている。この対物レンズ
は、物体側から順に、物体側に凹面を向けた正のメニス
カスレンズ成分と正のメニスカスレンズ成分と、接合レ
ンズ成分とを有し物体からの光束を収斂光束に変換する
正の屈折力の第1レンズ群と、前記の収斂光束中に配置
されていて屈折力の小さい接合レンズを有する第2レン
ズ群と、物体側に凸面を向けたメニスカスレンズ成分と
これに続く負のレンズ成分とを有する負の屈折力の第3
レンズ群とからなる。 【0003】 【発明が解決しようとする課題】前記従来の顕微鏡対物
レンズは、球面収差や軸上色収差がアポクロマートレベ
ルに補正されていない。これは、この従来例の目的とす
る作動距離を長くするようにするためで、作動距離を長
くすると必然的に収差補正が難しくなるためである。 【0004】本発明の目的は、倍率が100倍程度で、
開口数が0.95程度で、アポクロマート級の顕微鏡対
物レンズを提供することにある。 【0005】上記の通りの乾燥系の高NA、高倍アポク
ロマート対物レンズは半導体や磁気ヘッド等を対象とし
た高解像観察、測定にとって特に有用である。 【0006】 【課題を解決するための手段】本発明の顕微鏡対物レン
ズは、物体側から順に、物体側に凹面を向けた正のメニ
スカスレンズと複数の接合正レンズ成分とを少なくとも
有していて物体からの光束を収斂光束にする正の屈折力
の第1レンズ群と、最も物体側に凸面を有すると共に最
も像側の面が像側に凹形状を有しており負レンズと正レ
ンズと負レンズとを接合した3枚接合レンズ成分からな
る第2レンズ群と、最も物体側が凸面のメニスカスレン
ズ成分と物体側に凹面を向けたメニスカスレンズ成分と
を有する第3レンズ群とを備え下記の条件(1),
(2),(3)を満足することを特徴とする。 【0007】(1) 0.7<R2 /R3 <1.3 (2) N1 >N2 ,N3 >N2 (3) f/f2 <−0.1 ただし、R2 ,R3 はそれぞれ第2レンズ群の最も像側
の面の曲率半径および第3レンズ群の最も物体側の面の
曲率半径、N1 ,N2 ,N3 はそれぞれ第2レンズ群の
3枚接合レンズの物体側の負レンズ、正レンズ、像側の
負レンズの屈折率、fは全系の焦点距離、f2 は第2レ
ンズ群の焦点距離である。 【0008】一般に、像面の平坦な乾燥系プラン対物レ
ンズは、収差に悪影響を与えないために最も物体側に凹
面を向けた正のメニスカスレンズを配置する。また複数
の接合レンズ成分を配置するのは、色収差を良好に補正
するためである。そしてこれらレンズ成分を有する正の
屈折力を持つ第1レンズ群により物体からの光束を収斂
光束に変換する作用を有している。又、第2レンズ群、
第3レンズ群は、第1レンズ群で補正不足になった収差
を補正するために負の屈折力のレンズを設けている。つ
まり第2レンズ群は負レンズと正レンズと負レンズの3
枚接合レンズを配置した。この3枚接合レンズは、色収
差を補正すると共にこれら3枚のレンズの屈折率を条件
(2)に示すように設定して二つの接合面に負の屈折力
を持たせることにより、補正不足の球面収差や軸上色収
差の曲がりも補正している。又、3枚接合レンズ全体の
形状を、最も物体側の面を物体側に凸の面、最も像側の
面を像側に強い凹面にし、収斂光束中での収差発生を極
力少なくしている。更に第3レンズ群の最も物体側の面
を強い凸面にすることと合わせ第2レンズ群の最も像側
の面の負の屈折力を有効に働かせるようにしている。 【0009】条件(1)は、第2レンズ群の最も像側の
面と第3レンズ群の最も物体側の面の曲率半径の関係を
規定するものである。 【0010】上記の二つの面の曲率半径が近い値である
ほど、この二つの面で形成される空気レンズの働きによ
る負の屈折力が収差補正にとって有効になる。つまり収
斂光束中での収差の発生を極力減らし、負の屈折力を有
効に働かせることが出来る。 【0011】この条件(1)の上限の1.3を越えると
第3レンズ群の最も物体側の面の正の屈折力が強くなり
すぎ、又下限の0.7を越えると第2レンズ群の最も像
側の面の負の屈折力が強くなりすぎて、いずれも収斂光
束中での収差の発生が増加する。 【0012】又、条件(2)を満足しないと3枚接合レ
ンズの両接合面が正の屈折力になり、負の屈折力が不足
して球面収差や軸上色収差の補正が困難になる。 【0013】条件(3)は第2レンズ群の焦点距離を規
定するもので、このレンズ群の負の屈折力により収差を
良好に補正するためのものである。この条件(3)を満
足しないと、第2レンズ群の負の屈折力が不足し球面収
差や軸上色収差の曲がりが補正不足になる。 【0014】又、第3レンズ群は、物体側に凹面を向け
たメニスカスレンズ成分によってコマ収差を中心とした
軸外収差を補正して像面平坦性を良くする役割を有す
る。 【0015】 【発明の実施の形態】次に本発明の顕微鏡対物レンズの
実施の形態を実施例をもとに説明する。本発明の顕微鏡
対物レンズは、図1に示す通りで、第1レンズ群G1
は、物体側に凹面を向けたメニスカスレンズと三つの接
合レンズ成分と両凸レンズとよりなり、第2レンズ群G
2は負レンズと正レンズと負レンズの3枚接合レンズ成
分よりなり、第3レンズ群G3は物体側に凸面を向けた
接合メニスカスレンズ成分と物体側に凹面を向けた接合
メニスカスレンズ成分からなる。 【0016】以下、本発明顕微鏡対物レンズの実施例
1,2のデーターを示す。 実施例1 f=1.8 ,倍率=100 ×,NA=0.95,作動距離=0.77 r1 =-2.2936 d1 =1.7700 n1 =1.88300 ν1 =40.78 r2 =-2.1326 d2 =0.1416 r3 =-10.6925 d3 =1.1000 n2 =1.61340 ν2 =43.84 r4 =7.1166 d4 =5.5000 n3 =1.61800 ν3 =63.39 r5 =-7.6238 d5 =0.2000 r6 =-64.2877 d6 =1.0000 n4 =1.52944 ν4 =51.72 r7 =10.2264 d7 =6.2000 n5 =1.43875 ν5 =94.97 r8 =-9.6473 d8 =0.2000 r9 =57.3942 d9 =1.2000 n6 =1.61340 ν6 =43.84 r10=9.2329 d10=5.2000 n7 =1.43875 ν7 =94.97 r11=-18.4308 d11=0.3000 r12=15.2753 d12=2.5000 n8 =1.56907 ν8 =71.30 r13=-147.8112 d13=0.2000 r14=13.4472 d14=1.3000 n9 =1.52944 ν9 =51.72 r15=5.5507 d15=5.5000 n10=1.43875 ν10=94.97 r16=-9.4406 d16=1.0001 n11=1.51633 ν11=64.15 r17=4.6960 d17=1.0000 r18=4.5949 d18=3.2000 n12=1.49700 ν12=81.61 r19=-9.4136 d19=1.8812 n13=1.78650 ν13=50.00 r20=5.2173 d20=4.5626 r21=-5.3868 d21=1.5744 n14=1.77250 ν14=49.60 r22=9.3410 d22=1.7000 n15=1.80518 ν15=25.43 r23=-10.1181 R2 =4.696 ,R3 =4.5949,R2 /R3 =1.022 N1 =1.52944 ,N2 =1.43875 ,N3 =1.51633 f2 =-12.69,f/f2 =-0.14 【0017】実施例2 f=1.8 ,倍率=100 ×,NA=0.95,作動距離=0.77 r1 =-2.4614 d1 =1.7700 n1 =1.88300 ν1 =40.78 r2 =-2.1687 d2 =0.1416 r3 =-7.7870 d3 =1.1000 n2 =1.61340 ν2 =43.84 r4 =7.4898 d4 =5.5000 n3 =1.61800 ν3 =63.39 r5 =-7.4334 d5 =0.2000 r6 =-101.0399 d6 =1.0000 n4 =1.52944 ν4 =51.72 r7 =10.6481 d7 =6.2000 n5 =1.43875 ν5 =94.97 r8 =-10.1545 d8 =0.2000 r9 =82.7234 d9 =1.2000 n6 =1.61340 ν6 =43.84 r10=10.8219 d10=5.2000 n7 =1.43875 ν7 =94.97 r11=-22.0339 d11=0.3000 r12=16.1904 d12=2.5000 n8 =1.56907 ν8 =71.30 r13=-61.7442 d13=0.2000 r14=14.3636 d14=1.3000 n9 =1.52944 ν9 =51.72 r15=5.0644 d15=5.5000 n10=1.43875 ν10=94.97 r16=-9.3845 d16=1.0001 n11=1.51633 ν11=64.15 r17=5.3935 d17=1.0000 r18=5.2205 d18=3.2000 n12=1.49700 ν12=81.61 r19=36.9783 d19=2.0552 n13=1.78650 ν13=50.00 r20=6.4087 d20=4.8806 r21=-4.0037 d21=1.0824 n14=1.77250 ν14=49.60 r22=7.2400 d22=1.7000 n15=1.80518 ν15=25.43 r23=-9.6973 R2 =5.3935,R3 =5.2205,R2 /R3 =1.033 N1 =1.52944 ,N2 =1.43875 ,N3 =1.51633 f2 =-13.75,f/f2 =-0.13 ただしr1 ,r2 ,・・・ は物体側から順に示した各レン
ズ面の曲率半径、d1 ,d2 ,・・・ は物体側から順に各
レンズ面間の間隔、n1 ,n2 ,・・・ は物体側から順に
示した各レンズの屈折率、ν1 ,ν2 ,・・・ は物体側か
ら順に示した各レンズのアッベ数である。 【0018】これら実施例1,2はいずれも図1に示す
レンズ構成で、いずれも無限遠設計であって、それ自身
では結像しない。そのため例えば図2に示すような構成
で、下記データーを有する結像レンズを対物レンズの像
側に配置して使用する。 r1'=68.7541 d1'=7.7321 n1'=1.48749 ν1'=70.20 r2'=-37.5679 d2'=3.4742 n2'=1.80610 ν2'=40.95 r3'=-102.8477 d3'=0.6973 r4'=84.3099 d4'=6.0238 n3'=1.83400 ν3'=37.16 r5'=-50.7100 d5'=3.0298 n4'=1.64450 ν4'=40.82 r6'=40.6619 上記結像レンズのデーターにおいて、r1',r2',・・・
は物体側から順に示した各レンズ面の曲率半径、d1',
2',・・・ は物体側から順に各レンズ面間の間隔、
1',n2',・・・ は物体側から順に各レンズのd線に対
する屈折率、ν1',ν2',・・・ は物体側から順に各レン
ズのアッベ数である。尚実施例1,2および結像レンズ
のデーターの長さの単位はmmである。 【0019】上記の実施例1,2と上記結像レンズとの
間の間隔は、50mm〜170mmの間のいずれの値でもよ
い。又実施例1,2の収差状況は、夫々図3、図4に示
す通りである。これら収差図は、上記データーを有する
図2に示す結像レンズを配置した時のもので、各実施例
の対物レンズと結像レンズの間の空気間隔は、116mm
である。しかし上記間隔が50mm〜170mmの間の値で
あれば、116mm以外の値であってもほぼ同様の収差状
況である。 【0020】 【発明の効果】本発明は、上記のような構成であって、
これにより倍率が100倍程度、NAが0.95程度
で、アポクロマート級の顕微鏡対物レンズを実現し得
た。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope objective lens, and more particularly to an apochromat microscope having a magnification of about 100 times, a numerical aperture of about 0.95, and a flat image surface. It relates to an objective lens. 2. Description of the Related Art As a conventional example of a microscope objective lens similar to the objective lens of the present invention, a lens system described in Japanese Patent Publication No. 3-58495 is known. This objective lens has, in order from the object side, a positive meniscus lens component having a concave surface facing the object side, a positive meniscus lens component, and a cemented lens component, and has a positive refraction that converts a light beam from the object into a convergent light beam. A first lens unit having a power, a second lens unit having a cemented lens having a small refractive power disposed in the convergent light beam, a meniscus lens component having a convex surface facing the object side, and a negative lens component following the meniscus lens component The third of negative refractive power having
And a lens group. [0003] In the conventional microscope objective lens, spherical aberration and axial chromatic aberration are not corrected to the apochromatic level. The reason for this is to increase the target working distance in this conventional example, and if the working distance is increased, it becomes inevitably difficult to correct aberrations. An object of the present invention is to provide a magnification of about 100 times,
An object of the present invention is to provide an apochromat class microscope objective lens having a numerical aperture of about 0.95. [0005] The above-described dry high NA, high magnification apochromatic objective lens is particularly useful for high resolution observation and measurement of a semiconductor, a magnetic head, and the like. A microscope objective according to the present invention has at least a positive meniscus lens having a concave surface facing the object side and a plurality of cemented positive lens components in order from the object side. A first lens group having a positive refractive power that converts a light beam from an object into a convergent light beam; a negative lens and a positive lens having a convex surface closest to the object side and a concave surface closest to the image side having a concave shape on the image side ; A second lens group including a cemented lens component cemented with a negative lens, and a third lens group including a meniscus lens component having a convex surface closest to the object side and a meniscus lens component having a concave surface facing the object side. Condition (1),
(2) and (3) are satisfied. (1) 0.7 <R 2 / R 3 <1.3 (2) N 1 > N 2 , N 3 > N 2 (3) f / f 2 <−0.1 where R 2 , R 3 is the radius of curvature of the surface closest to the image in the second lens group and the radius of curvature of the surface closest to the object in the third lens group, and N 1 , N 2 , and N 3 are three cemented elements of the second lens group, respectively. negative lens on the object side of the lens, a positive lens, the refractive index of the negative lens on the image side, f is the focal length of the entire system, f 2 is the focal length of the second lens group. In general, in a dry plan objective having a flat image surface, a positive meniscus lens having a concave surface facing the most object side is arranged so as not to adversely affect aberration. The reason why a plurality of cemented lens components are arranged is to satisfactorily correct chromatic aberration. The first lens group having a positive refractive power and having these lens components has a function of converting a light beam from an object into a convergent light beam. Also, the second lens group,
The third lens group is provided with a lens having a negative refractive power in order to correct an aberration that is insufficiently corrected in the first lens group. That is, the second lens group is composed of a negative lens, a positive lens, and a negative lens.
A cemented lens was arranged. This three-element cemented lens corrects chromatic aberration and sets the refractive index of these three lenses as shown in the condition (2) so that the two cemented surfaces have a negative refractive power. It also corrects the curvature of spherical aberration and axial chromatic aberration. The overall shape of the three-element cemented lens is such that the most object side surface is a convex surface on the object side, and the most image side surface is a strongly concave surface on the image side, thereby minimizing the occurrence of aberration in a convergent light beam. . Further, in combination with making the most object side surface of the third lens group a strong convex surface, the negative refracting power of the most image side surface of the second lens group is effectively used. The condition (1) defines the relationship between the radius of curvature of the surface closest to the image in the second lens unit and the surface closest to the object in the third lens unit. The closer the radii of curvature of the two surfaces are to each other, the more effective the negative refractive power due to the action of the air lens formed by the two surfaces is for correcting aberrations. In other words, the occurrence of aberration in the convergent light beam can be reduced as much as possible, and the negative refractive power can be effectively used. If the upper limit of 1.3 of the condition (1) is exceeded, the positive refractive power of the surface closest to the object side of the third lens unit becomes too strong. In this case, the negative refracting power of the most image-side surface becomes too strong, and in any case, the occurrence of aberration in the convergent light beam increases. If the condition (2) is not satisfied, both cemented surfaces of the three cemented lens will have a positive refractive power, and a negative refractive power will be insufficient, making it difficult to correct spherical aberration and axial chromatic aberration. The condition (3) defines the focal length of the second lens group, and favorably corrects the aberration by the negative refractive power of this lens group. If the condition (3) is not satisfied, the negative refractive power of the second lens group is insufficient, and the spherical aberration and the axial chromatic aberration are insufficiently corrected. The third lens group has a role of correcting off-axis aberrations centering on coma with a meniscus lens component having a concave surface facing the object side to improve image plane flatness. Next, embodiments of a microscope objective lens according to the present invention will be described with reference to examples. The microscope objective lens of the present invention has a first lens group G1 as shown in FIG.
Consists of a meniscus lens having a concave surface facing the object side, three cemented lens components, and a biconvex lens.
Reference numeral 2 denotes a cemented meniscus lens component having a negative lens, a positive lens and a negative lens, and a third lens group G3 includes a cemented meniscus lens component having a convex surface facing the object side and a cemented meniscus lens component having a concave surface facing the object side. . Hereinafter, data of Examples 1 and 2 of the microscope objective according to the present invention will be shown. Example 1 f = 1.8, magnification = 100 ×, NA = 0.95, working distance = 0.77 r 1 = −2.2936 d 1 = 1.7700 n 1 = 1.88300 ν 1 = 40.78 r 2 = −2.1326 d 2 = 0.1416 r 3 = − 10.6925 d 3 = 1.1000 n 2 = 1.61340 ν 2 = 43.84 r 4 = 7.1166 d 4 = 5.5000 n 3 = 1.61800 ν 3 = 63.39 r 5 = -7.6238 d 5 = 0.2000 r 6 = -64.2877 d 6 = 1.0000 n 4 = 1.52944 ν 4 = 51.72 r 7 = 10.2264 d 7 = 6.2000 n 5 = 1.43875 ν 5 = 94.97 r 8 = -9.6473 d 8 = 0.2000 r 9 = 57.3942 d 9 = 1.2000 n 6 = 1.61340 ν 6 = 43.84 r 10 = 9.2329 d 10 = 5.2000 n 7 = 1.43875 v 7 = 94.97 r 11 = -18.4308 d 11 = 0.3000 r 12 = 15.2753 d 12 = 2.5000 n 8 = 1.56907 v 8 = 71.30 r 13 = -147.8112 d 13 = 0.2000 r 14 = 13.4472 d 14 = 1.3000 n 9 = 1.52944 ν 9 = 51.72 r 15 = 5.5507 d 15 = 5.5000 n 10 = 1.43875 ν 10 = 94.97 r 16 = -9.4406 d 16 = 1.0001 n 11 = 1.51633 ν 11 = 64.15 r 17 = 4.6960 d 17 = 1.00 00 r 18 = 4.5949 d 18 = 3.2000 n 12 = 1.49700 ν 12 = 81.61 r 19 = -9.4136 d 19 = 1.8812 n 13 = 1.78650 ν 13 = 50.00 r 20 = 5.2173 d 20 = 4.5626 r 21 = -5.3868 d 21 = 1.5744 n 14 = 1.77250 ν 14 = 49.60 r 22 = 9.3410 d 22 = 1.7000 n 15 = 1.80518 ν 15 = 25.43 r 23 = -10.1181 R 2 = 4.696, R 3 = 4.5949, R 2 / R 3 = 1.022 n 1 = 1.52944, N 2 = 1.43875, N 3 = 1.51633 f 2 = -12.69, f / f 2 = -0.14 [0017] example 2 f = 1.8, magnification = 100 ×, NA = 0.95, working distance = 0.77 r 1 = -2.4614 d 1 = 1.7700 n 1 = 1.88300 v 1 = 40.78 r 2 = -2.1687 d 2 = 0.1416 r 3 = -7.7870 d 3 = 1.1000 n 2 = 1.61340 v 2 = 43.84 r 4 = 7.4898 d 4 = 5.5000 n 3 = 1.61800 ν 3 = 63.39 r 5 = -7.4334 d 5 = 0.2000 r 6 = -101.0399 d 6 = 1.0000 n 4 = 1.52944 ν 4 = 51.72 r 7 = 10.6481 d 7 = 6.2000 n 5 = 1.43875 ν 5 = 94.97 r 8 = -10.1545 d 8 = 0.2000 r 9 = 82.7234 d 9 = 1.2000 n 6 = 1.61340 ν 6 = 43.84 r 10 = 10.8219 d 10 = 5.2000 n 7 = 1.43875 ν 7 = 94.97 r 11 = -22.0339 d 11 = 0.3000 r 12 = 16.1904 d 12 = 2.5000 n 8 = 1.56907 ν 8 = 71.30 r 13 = -61.7442 d 13 = 0.2000 r 14 = 14.3636 d 14 = 1.3000 n 9 = 1.52944 ν 9 = 51.72 r 15 = 5.0644 d 15 = 5.5000 n 10 = 1.43875 ν 10 = 94.97 r 16 = -9.3845 d 16 = 1.0001 n 11 = 1.51633 ν 11 = 64.15 r 17 = 5.3935 d 17 = 1.0000 r 18 = 5.2205 d 18 = 3.2000 n 12 = 1.49700 ν 12 = 81.61 r 19 = 36.9783 d 19 = 2.0552 n 13 = 1.78650 ν 13 = 50.00 r 20 = 6.4087 d 20 = 4.8806 r 21 = -4.0037 d 21 = 1.0824 n 14 = 1.77250 ν 14 = 49.60 r 22 = 7.2400 d 22 = 1.7000 n 15 = 1.80518 ν 15 = 25.43 r 23 = - 9.6973 R 2 = 5.3935, R 3 = 5.2205, R 2 / R 3 = 1.033 N 1 = 1.52944, N 2 = 1.43875, N 3 = 1.51633 f 2 = -13.75, f / f 2 = -0.13, r 1 , r 2, · · · is the radius of curvature of each lens surface shown in order from the object side, d 1, d 2, ··· the spacing between the lens surfaces in order from the object side, n 1, n 2, ··· Is the refractive index of each lens shown in order from the object side, and ν 1 , ν 2 ,... Are the Abbe numbers of each lens shown in order from the object side. Embodiments 1 and 2 each have the lens configuration shown in FIG. 1 and are all designed at infinity, and do not form an image by themselves. For this reason, for example, an imaging lens having the following data is arranged and used on the image side of the objective lens in a configuration as shown in FIG. r 1 '= 68.7541 d 1' = 7.7321 n 1 '= 1.48749 ν 1' = 70.20 r 2 '= -37.5679 d 2' = 3.4742 n 2 '= 1.80610 ν 2' = 40.95 r 3 '= -102.8477 d 3' = 0.6973 r 4 '= 84.3099 d 4' = 6.0238 n 3 '= 1.83400 ν 3' = 37.16 r 5 '= -50.7100 d 5' = 3.0298 n 4 '= 1.64450 ν 4' = 40.82 r 6 '= 40.6619 said binding In the data of the image lens, r 1 ′, r 2 ′,.
Is the radius of curvature of each lens surface shown in order from the object side, d 1 ′,
d 2 ′,... are the distances between the lens surfaces in order from the object side,
n 1 ′, n 2 ′,... are the refractive indices of each lens with respect to the d-line in order from the object side, and ν 1 ′, ν 2 ′,. Note that the unit of the data length of Examples 1 and 2 and the imaging lens is mm. The distance between the first and second embodiments and the imaging lens may be any value between 50 mm and 170 mm. The aberration states of the first and second embodiments are as shown in FIGS. 3 and 4, respectively. These aberration diagrams are obtained when the imaging lens having the above data and shown in FIG. 2 is arranged. The air gap between the objective lens and the imaging lens in each embodiment is 116 mm.
It is. However, if the interval is a value between 50 mm and 170 mm, even if the value is other than 116 mm, almost the same aberration situation is obtained. The present invention has the above-described configuration,
As a result, an apochromat-class microscope objective lens having a magnification of about 100 times and an NA of about 0.95 was realized.

【図面の簡単な説明】 【図1】本発明の顕微鏡対物レンズの構成を示す図 【図2】本発明の顕微鏡対物レンズと共に用いられる結
像レンズの一例を示す図 【図3】本発明の実施例1の収差曲線図 【図4】本発明の実施例2の収差曲線図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a microscope objective lens of the present invention. FIG. 2 is a diagram showing an example of an imaging lens used together with the microscope objective lens of the present invention. FIG. 4 is an aberration curve diagram according to the first embodiment. FIG. 4 is an aberration curve diagram according to the second embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】物体側から順に、物体側に凹面を向けた正
のメニスカスレンズと複数の接合正レンズ成分とを少な
くとも有していて物体からの光束を収斂光束にする正の
屈折力の第1レンズ群と、最も物体側に凸面を有すると
共に最も像側の面が像側に凹形状を有しており負レンズ
と正レンズと負レンズとを接合した3枚接合レンズ成分
からなる第2レンズ群と、最も物体側が凸面のメニスカ
スレンズ成分と物体側に凹面を向けたメニスカスレンズ
成分とを有する第3レンズ群とを備え下記の条件
(1),(2),(3)を満足する顕微鏡対物レンズ。 (1) 0.7<R2 /R3 <1.3 (2) N1 >N2 ,N3 >N2 (3) f/f2 <−0.1 ただし、R2 ,R3 はそれぞれ第2レンズ群の最も像側
の面の曲率半径および第3レンズ群の最も物体側の面の
曲率半径、N1 ,N2 ,N3 はそれぞれ第2レンズ群の
3枚接合レンズの物体側の負レンズ、正レンズ、像側の
負レンズの屈折率、fは全系の焦点距離、f2 は第2レ
ンズ群の焦点距離である。
(57) [Claims 1] In order from the object side, at least a positive meniscus lens having a concave surface facing the object side and a plurality of cemented positive lens components are used to converge a light beam from the object. A first lens group having a positive refractive power to make a light beam, and a negative lens, a positive lens, and a negative lens having a convex surface closest to the object side and a concave surface closest to the image side having a concave shape on the image side . A second lens group including a triplet lens component, and a third lens group including a meniscus lens component having a convex surface closest to the object side and a meniscus lens component having a concave surface facing the object side, are provided with the following conditions (1) and ( A microscope objective lens that satisfies 2) and (3). (1) 0.7 <R 2 / R 3 <1.3 (2) N 1> N 2, N 3> N 2 (3) f / f 2 <-0.1 proviso, R 2, R 3 is object of each curvature of the most object-side surface of radius of curvature and the third lens group on the most image side surface of the second lens group, N 1, N 2, N 3 is cemented triplet lens in the second lens group, respectively a negative lens, a positive lens, the refractive index of the negative lens on the image side of the side, f is the focal length of the entire system, f 2 is the focal length of the second lens group.
JP28236595A 1995-10-05 1995-10-05 Microscope objective lens Expired - Fee Related JP3510401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28236595A JP3510401B2 (en) 1995-10-05 1995-10-05 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28236595A JP3510401B2 (en) 1995-10-05 1995-10-05 Microscope objective lens

Publications (2)

Publication Number Publication Date
JPH09101462A JPH09101462A (en) 1997-04-15
JP3510401B2 true JP3510401B2 (en) 2004-03-29

Family

ID=17651466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28236595A Expired - Fee Related JP3510401B2 (en) 1995-10-05 1995-10-05 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP3510401B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316415B4 (en) * 2003-04-10 2011-01-05 Carl Zeiss Microimaging Gmbh Plan apochromatic microscope objective
WO2024090587A1 (en) * 2022-10-27 2024-05-02 株式会社ニコン Microscope objective lens, microscope optical system, and microscope device

Also Published As

Publication number Publication date
JPH09101462A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
JP3140111B2 (en) High magnification microscope objective
US4830476A (en) Compact zoom lens system
JP3299808B2 (en) Immersion microscope objective lens
US7262922B2 (en) Immersion microscope objective lens
JP3457992B2 (en) Immersion microscope objective lens
JP3318060B2 (en) Immersion microscope objective lens
JP3456323B2 (en) Microscope objective lens
JP2002031760A (en) Objective lens for microscope
JPH05119263A (en) Microscope objective
JP3126028B2 (en) High magnification objective lens
EP3415969A1 (en) Objective
JP3510401B2 (en) Microscope objective lens
JPH08136816A (en) Objective lens of microscope
JP3022583B2 (en) Long working distance high magnification objective lens
JP3384163B2 (en) Microscope objective lens
JP3093835B2 (en) Microscope objective lens
US5532879A (en) Microscope objective lens
JPH07234357A (en) Loupe
JP3450422B2 (en) Microscope objective lens
JPH06160721A (en) High magnification microscope objective lens
US4426136A (en) Projection lens with long working distance
JPH08286112A (en) Objective lens for microscope
JP2709944B2 (en) Telecentric fθ lens
JPH05196875A (en) Near ultraviolet objective
JP2596799B2 (en) Microscope objective lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees