JP3093835B2 - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JP3093835B2
JP3093835B2 JP03281225A JP28122591A JP3093835B2 JP 3093835 B2 JP3093835 B2 JP 3093835B2 JP 03281225 A JP03281225 A JP 03281225A JP 28122591 A JP28122591 A JP 28122591A JP 3093835 B2 JP3093835 B2 JP 3093835B2
Authority
JP
Japan
Prior art keywords
lens
refractive power
group
surface facing
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03281225A
Other languages
Japanese (ja)
Other versions
JPH05119264A (en
Inventor
鈴木敏信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP03281225A priority Critical patent/JP3093835B2/en
Publication of JPH05119264A publication Critical patent/JPH05119264A/en
Application granted granted Critical
Publication of JP3093835B2 publication Critical patent/JP3093835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、倍率が20倍程度で、
開口数が大きく、像面が平坦なアポクロマート級の顕微
鏡対物レンズに関する。
BACKGROUND OF THE INVENTION The present invention relates to an image pickup apparatus having a magnification of about 20 times.
The present invention relates to an apochromat-class microscope objective lens having a large numerical aperture and a flat image surface.

【0002】[0002]

【従来の技術】本発明に最も近い従来技術として、特開
昭61−275811号の対物レンズがある。これは、
倍率が20倍、開口数(NA)が0.75であり、レン
ズの構成としては、物体側に強い凹面を向けたメニスカ
スレンズと物体側に凹面を向けた正メニスカスレンズ成
分を有する第1レンズ群、単一の正レンズ成分及び負レ
ンズと正レンズの接合からなる貼り合わせの2つの正レ
ンズ成分を有する第2レンズ群、及び、正レンズと負レ
ンズとの接合された弱い屈折力の貼り合わせレンズ成分
を有する第3レンズ群からなっている。
2. Description of the Related Art As the prior art closest to the present invention, there is an objective lens disclosed in JP-A-61-275811. this is,
The magnification is 20 times, the numerical aperture (NA) is 0.75, and the first lens has a meniscus lens having a strong concave surface facing the object side and a positive meniscus lens component having a concave surface facing the object side. A second lens group having a group, a single positive lens component and a cemented two positive lens component consisting of a cemented negative lens and a positive lens, and a cemented weakly refractive power cemented lens of a positive lens and a negative lens It comprises a third lens group having a compound lens component.

【0003】また、本発明の仕様とは全く異なるが、レ
ンズ構成の点でやや似ている従来技術として、ドイツ特
許明細書DD288244号のものがある。これは、倍
率が100倍で、NAは0.9であり、レンズの構成と
しては、物体側から、物体側に凹面を向けた正屈折力の
第1群と第2群、両凸の第3群、物体側に凹面を向けた
メニスカス負の第4群、負レンズと正レンズの接合から
なる第5群と第6群、物体側に凸面を向けたメニスカス
の第7群と第8群、物体側に凹面を向けたメニスカスの
第9群からなっている。
[0003] A prior art which is completely different from the specification of the present invention but slightly similar in the lens configuration is that of German Patent Specification DD288244. This means that the magnification is 100 times, the NA is 0.9, and the lens is composed of a first lens unit and a second lens unit having a positive refractive power with a concave surface facing the object side from the object side, and a biconvex first lens. A third group, a negative meniscus fourth group having a concave surface facing the object side, a fifth and sixth groups composed of a cemented negative lens and a positive lens, and a seventh and eighth groups of meniscus having a convex surface facing the object side. Ninth group of meniscus having a concave surface facing the object side.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術の特開
昭61−275811号のものは、NAが0.75と大
きく像面が平坦であることを特徴としているが、収差図
によると、軸外性能が不十分である。特に、非点収差が
残存しており、コマ収差も良好とは言い難く、これでは
高NAのメリットを生かしきっているとは言えない。2
0倍以下の低倍においては、視野全体を観察することが
多く、より一層の像面平坦性が求められている。
The prior art disclosed in Japanese Patent Application Laid-Open No. 61-275811 is characterized by a large NA of 0.75 and a flat image surface. Insufficient off-axis performance. In particular, astigmatism remains, and it is difficult to say that the coma aberration is good. Therefore, it cannot be said that the advantage of high NA is fully utilized. 2
At low magnifications of 0 or less, the entire field of view is often observed, and further image plane flatness is required.

【0005】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、倍率が20倍程度で、NAが
大きく、しかも、コントラストと解像力に優れ、広視野
にわたって像面が極めて平坦なアポクロマート級の顕微
鏡対物レンズを提供することである。
The present invention has been made in view of such circumstances, and has as its object to provide a magnification of about 20 times, a large NA, excellent contrast and resolution, and an extremely flat image surface over a wide field of view. It is an object of the present invention to provide an apochromat-grade microscope objective lens.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の顕微鏡対物レンズは、物体から順に、物体側に凹面
を向けたメニスカスレンズ成分を含み、最像側面が像側
に凸面を向けた正屈折力の第1レンズ群、物体側に凹面
を向けたメニスカス形状で、前記第1レンズ群を通る物
体からの射出光束を発散光束として射出させる負屈折力
の第2レンズ群、前記発散光束を収斂光束に変換する正
屈折力の第3レンズ群、物体側に凸面を向けたメニスカ
ス形状で、負屈折力の第4レンズ群、物体側に凹面を向
けたメニスカス形状で弱い屈折力の第5レンズ群からな
る。そして、f3 、f4 、f5 、fをそれぞれ第3レン
ズ群、第4レンズ群、第5レンズ群、全系の焦点距離と
する時、 (1)0.2<f/f3 <0.5 (2)−0.5<f/f4 <−0.1 (3)|f/f5 |<0.1 の各条件を満足するものである。
A microscope objective according to the present invention, which achieves the above object, includes, in order from the object, a meniscus lens component having a concave surface facing the object side, and the most image side surface has a convex surface facing the image side. A first lens group having a positive refractive power, a second lens group having a negative refractive power, having a meniscus shape having a concave surface facing the object side and emitting a light beam emitted from an object passing through the first lens group as a divergent light beam; A third lens group having a positive refractive power that converts the light into a convergent light beam, a fourth lens group having a negative refractive power in a meniscus shape having a convex surface facing the object side, and a fourth lens group having a weak refractive power having a concave surface facing the object side. It consists of five lens groups. When f 3 , f 4 , f 5 , and f are respectively the third lens group, the fourth lens group, the fifth lens group, and the focal length of the entire system, (1) 0.2 <f / f 3 < 0.5 (2) −0.5 <f / f 4 <−0.1 (3) | f / f 5 | <0.1

【0007】[0007]

【作用】以下、上記構成を採用した理由と作用について
説明する。一般的に、像面湾曲や非点収差、コマ収差等
の軸外収差を良好に補正するためには、対物レンズの最
像側に、物体側に凸面を向けたメニスカス形状のレンズ
を配置する方法(の方法とする。)と、さらに、その
像側に、物体側に凹面を向けたメニスカス形状のレンズ
を付け加える方法(の方法とする。)が知られてい
る。軸外性能としては、の方法の方が優れている。
The reason and operation of the above configuration will be described below. In general, in order to favorably correct off-axis aberrations such as curvature of field, astigmatism, and coma, a meniscus-shaped lens having a convex surface facing the object side is disposed on the most image side of the objective lens. There is known a method and a method of adding a meniscus lens having a concave surface facing the object side on the image side. The method is superior in off-axis performance.

【0008】従来技術である特開昭61−275811
号では、の方法を採用している。これは、20倍程度
の倍率で、NAが0.7〜0.8であると、射出側のN
A(NA’とする。)が、0.035〜0.04という
極めて大きい値であることに関係する。NA’が大きい
と、対物レンズ最終面の有効径が大きくなってしまうた
め、全系の焦点距離との関係でパワー配置が難しく、
の方法を採用できなかったものと考えられる。
[0008] Japanese Patent Application Laid-Open No. 61-275811
No. adopts the following method. This is because the magnification is about 20 times, and if the NA is 0.7 to 0.8, the emission side N
A (referred to as NA ') is related to a very large value of 0.035 to 0.04. If NA 'is large, the effective diameter of the final surface of the objective lens becomes large, so it is difficult to arrange the power in relation to the focal length of the entire system.
It is probable that this method could not be adopted.

【0009】ところで、より高倍の対物レンズ、例えば
倍率100倍で、NAが0.9の場合、NA’は0.0
09となって、前記20倍の場合の1/3以下である。
したがって、対物レンズ最終面の有効径も小さくなり、
の方法を採用するのに苦労はない。
By the way, when a higher magnification objective lens, for example, 100 × magnification and NA is 0.9, NA ′ is 0.0
09, which is 1/3 or less of the case of 20 times.
Therefore, the effective diameter of the final surface of the objective lens is also small,
There is no difficulty in adopting this method.

【0010】本発明においては、軸外収差を極めて良好
に補正するために、の方法を採用している。第4レン
ズ群と第5レンズ群がそれに相当する。第4、第5レン
ズ群による収差補正を有効にするため、第2レンズ群
に、物体側に凹面を向けた負屈折力のメニスカスレンズ
を配置する。これにより、第1レンズ群を通る物体から
の射出光束を発散光束として射出させる。第3レンズ群
には、前記発散光束を収斂光束に変換する正屈折力を配
置する。光線高は、第3レンズ群で最も大きく、第4レ
ンズ群の最像側面に向かって、小さくなっていく。第4
レンズ群の最像側面の負の屈折力によりペッツバール和
を小さくし、軸外収差補正をする。その後、第5レンズ
群に弱い屈折力のメニスカスレンズを配置して、光線高
を再び大きくしながら、より一層の軸外収差補正を行っ
て行く。
In the present invention, the following method is employed in order to correct off-axis aberrations extremely well. The fourth lens group and the fifth lens group correspond thereto. In order to make the aberration correction by the fourth and fifth lens groups effective, a meniscus lens having a negative refractive power and a concave surface facing the object side is arranged in the second lens group. As a result, the light beam emitted from the object passing through the first lens group is emitted as a divergent light beam. In the third lens group, a positive refractive power for converting the divergent light beam into a convergent light beam is arranged. The ray height is the largest in the third lens group and decreases toward the most image side surface of the fourth lens group. 4th
The Petzval sum is reduced by the negative refractive power on the most image side surface of the lens unit, and the off-axis aberration is corrected. Thereafter, a meniscus lens having a low refractive power is arranged in the fifth lens group, and the off-axis aberration is further corrected while increasing the ray height again.

【0011】前記条件(1)、(2)、(3)共に、前
述の各レンズ群の働きを効果的に行わせるためのもので
ある。条件(1)の上限を越えると、第3レンズ群の屈
折力が大きくなりすぎるし、その下限を越えると、屈折
力が小さくなりすぎる。この屈折力の大小によって、第
4レンズ群の最像側面での光線高が異なってしまい、コ
マ収差の対称性が悪化してしまうのはもちろんのこと、
球面収差も悪化してしまう。
The above conditions (1), (2) and (3) are for effectively performing the functions of the above-described lens groups. When the value exceeds the upper limit of the condition (1), the refractive power of the third lens unit becomes too large. When the value exceeds the lower limit, the refractive power becomes too small. Depending on the magnitude of this refracting power, the ray height on the most image side surface of the fourth lens group is different, and the symmetry of coma aberration is of course deteriorated.
Spherical aberration also worsens.

【0012】条件(2)は、第4レンズ群の屈折力の範
囲を示すもので、その上限を越えると、屈折力が小さく
なりすぎるし、下限を越えると、屈折力が大きくなりす
ぎる。どちらにしても、この範囲を越えると、第5レン
ズ群に異常な屈折力を持たせることになって、コマ収差
の対称性が悪くなってしまう。
The condition (2) indicates the range of the refractive power of the fourth lens group. If the upper limit is exceeded, the refractive power becomes too small, and if the lower limit is exceeded, the refractive power becomes too large. In any case, if the ratio exceeds this range, the fifth lens group will have abnormal refractive power, and the symmetry of coma aberration will be deteriorated.

【0013】条件(3)は、第5レンズ群の屈折力の範
囲を示すもので、その上限を越えると、屈折力が大きく
なりすぎて、条件(1)、(2)と同様に、コマ収差の
対称性が悪化してしまう。
The condition (3) indicates the range of the refractive power of the fifth lens group. If the upper limit of the condition (3) is exceeded, the refractive power becomes too large. The symmetry of the aberration is deteriorated.

【0014】[0014]

【実施例】次に、本発明の顕微鏡対物レンズの実施例
1、2について説明する。実施例1、2のレンズ構成を
示す断面図をそれぞれ図1、図2に示す。
Next, Embodiments 1 and 2 of the microscope objective lens of the present invention will be described. FIGS. 1 and 2 are cross-sectional views showing lens structures of Examples 1 and 2, respectively.

【0015】実施例1は、第1群G1は、物体側に凹面
を向けた負メニスカスレンズ、両凸レンズ、物体側に凸
面を向けた負メニスカスレンズと両凸レンズの接合レン
ズの3群からなり、第2群G2は、両凹レンズと両凸レ
ンズの接合レンズ1枚からなり、第3群G3は、両凸レ
ンズ1枚からなり、第4群G4は、両凸レンズと両凹レ
ンズの接合レンズ1枚からなり、第5群G5は、凹平レ
ンズと平凸レンズの接合レンズ1枚からなる。
In the first embodiment, the first group G1 comprises three groups: a negative meniscus lens having a concave surface facing the object side, a biconvex lens, and a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex lens. The second group G2 is composed of one cemented lens of a biconcave lens and a biconvex lens, the third group G3 is composed of one biconvex lens, and the fourth group G4 is composed of one cemented lens of a biconvex lens and a biconcave lens. The fifth unit G5 includes one cemented lens composed of a concave flat lens and a plano-convex lens.

【0016】実施例2は、油浸系にするために設けた平
行平面板Pをレンズ系の物体側に有し(なお、この板P
と第1群G1の前面との間の空気凸レンズによってペッ
ツバール和を小さく抑えている。)、第1群G1は、物
体側に凹面を向けた負メニスカスレンズ、物体側に凹面
を向けた正メニスカスレンズ、両凹レンズと両凸レンズ
の接合レンズの3群からなり、第2群G2は、両凹レン
ズと両凸レンズの接合レンズ1枚からなり、第3群G3
は、両凸レンズ1枚からなり、第4群G4は、両凸レン
ズと両凹レンズの接合レンズ1枚からなり、第5群G5
は、凹平レンズと平凸レンズの接合レンズ1枚からな
る。なお、この実施例は、後記するように倍率が20倍
と低倍であるにもかかわらず、油浸系を採用している。
この理由は、倍率を低倍から高倍へ変換して行くとき、
高倍は油浸系を採用せざるを得ないが、低倍に乾燥系を
採用すると、乾燥系と油浸系が混在し、オイルの供給、
拭き取り等の取り扱いが面倒になるので、低倍にも油浸
系を採用した方が望ましいからである。
The second embodiment has a parallel plane plate P provided on the object side of the lens system for providing an oil immersion system.
The Petzval sum is kept small by an air convex lens between the lens and the front surface of the first group G1. ), The first group G1 comprises three groups: a negative meniscus lens having a concave surface facing the object side, a positive meniscus lens having a concave surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens. The third group G3 comprises one cemented lens of a biconcave lens and a biconvex lens.
Consists of one biconvex lens, the fourth group G4 consists of one cemented lens of a biconvex lens and a biconcave lens, and the fifth group G5
Consists of one cemented lens of a concave flat lens and a plano-convex lens. In addition, this embodiment employs an oil immersion system although the magnification is as low as 20 times as described later.
The reason for this is that when converting the magnification from low to high,
Oil immersion system must be adopted for high magnification, but if drying system is adopted for low magnification, drying system and oil immersion system are mixed, oil supply,
This is because it is desirable to employ an oil immersion system even at a low magnification because handling such as wiping becomes troublesome.

【0017】以下に各実施例のレンズデータを示すが、
記号は、βは倍率、NAは開口数、fは全系の合成焦点
距離、WDはワーキングディスタンス、f3 、f4 、f
5 はそれぞれ第3群G3、第4群G4、第5群G5の焦
点距離、r1 、r2 …は物体側から順に示した各レンズ
面の曲率半径、d1 、d2 …は物体側から順に示した各
レンズ面間の間隔、nd1、nd2…は物体側から順に示し
た各レンズのd線の屈折率、νd1、νd2…は物体側から
順に示した各レンズのアッベ数である。
The lens data of each embodiment is shown below.
The symbols are β for magnification, NA for numerical aperture, f for the combined focal length of the whole system, WD for working distance, f 3 , f 4 , f
5 are focal lengths of the third group G3, the fourth group G4, the fifth group G5, r 1 , r 2 ... Are the radii of curvature of the respective lens surfaces shown in order from the object side, and d 1 , d 2 . , N d1 , n d2 ... are the refractive indices of the d-line of each lens shown in order from the object side, and ν d1 , ν d2 ... are the Abbe of each lens shown in order from the object side. Is a number.

【0018】実施例1 β=20× ,NA=0.7 ,f=9 ,WD=1.0002 f3 =24.497, f4 =-34.97 ,f5 =3241 r1 = -2.9906 d1 = 4.7738 nd1 =1.67
790 νd1 =55.33 r2 = -5.3974 d2 = 0.2000 r3 = 320.9597 d3 = 2.9000 nd2 =1.43
875 νd2 =94.97 r4 = -7.1847 d4 = 0.2000 r5 = 30.2999 d5 = 1.2000 nd3 =1.61
340 νd3 =43.84 r6 = 9.6627 d6 = 4.6000 nd4 =1.43
875 νd4 =94.97 r7 = -13.1375 d7 = 1.7000 r8 = -10.4265 d8 = 1.4000 nd5 =1.61
340 νd5 =43.84 r9 = 13.9904 d9 = 5.3000 nd6 =1.43
875 νd6 =94.97 r10= -11.9300 d10= 0.1000 r11= 18.5521 d11= 4.0000 nd7 =1.43
875 νd7 =94.97 r12= -23.8697 d12= 0.1000 r13= 20.4655 d13= 4.5000 nd8 =1.57
501 νd8 =41.49 r14= -14.3511 d14= 2.6000 nd9 =1.52
130 νd9 =52.55 r15= 7.5061 d15= 5.0000 r16= -7.9296 d16= 1.5000 nd10=1.52
130 νd10=52.55 r17= ∞ d17= 3.7159 nd11=1.57
135 νd11=52.92 r18= -10.5558 f/f3 = 0.367 f/f4 =-0.257 f/f5 = 0.003
Example 1 β = 20 ×, NA = 0.7, f = 9, WD = 1.002 f 3 = 24.497, f 4 = −34.97 , F 5 = 3241 r 1 = -2.9906 d 1 = 4.7738 n d1 = 1.67
790 ν d1 = 55.33 r 2 = -5.3974 d 2 = 0.2000 r 3 = 320.9597 d 3 = 2.9000 nd 2 = 1.43
875 ν d2 = 94.97 r 4 = -7.1847 d 4 = 0.2000 r 5 = 30.2999 d 5 = 1.2000 n d3 = 1.61
340 ν d3 = 43.84 r 6 = 9.6627 d 6 = 4.6000 n d4 = 1.43
875 ν d4 = 94.97 r 7 = -13.1375 d 7 = 1.7000 r 8 = -10.4265 d 8 = 1.4000 n d5 = 1.61
340 ν d5 = 43.84 r 9 = 13.9904 d 9 = 5.3000 nd 6 = 1.43
875 ν d6 = 94.97 r 10 = -11.9300 d 10 = 0.1000 r 11 = 18.5521 d 11 = 4.0000 n d7 = 1.43
875 ν d7 = 94.97 r 12 = -23.8697 d 12 = 0.1000 r 13 = 20.4655 d 13 = 4.5000 n d8 = 1.57
501 ν d8 = 41.49 r 14 = -14.3511 d 14 = 2.6000 nd9 = 1.52
130 ν d9 = 52.55 r 15 = 7.5061 d 15 = 5.0000 r 16 = -7.9296 d 16 = 1.5000 n d10 = 1.52
130 ν d10 = 52.55 r 17 = ∞ d 17 = 3.7159 n d11 = 1.57
135 ν d11 = 52.92 r 18 = -10.5558 f / f 3 = 0.367 f / f 4 = -0.257 f / f 5 = 0.003
.

【0019】実施例2 β=20× ,NA=0.8 ,f=9 ,WD=0.19 f3 =26.795, f4 =-45.43 ,f5 =536.32 油浸液: nd =1.51548 ,νd =43.10 r1 = ∞ d1 = 0.3000 nd1 =1.51
633 νd1 =64.15 r2 = ∞ d2 = 0.2800 r3 = -2.9483 d3 = 4.4064 nd2 =1.67
790 νd2 =55.33 r4 = -4.7306 d4 = 0.2000 r5 = -103.1912 d5 = 3.0000 nd3 =1.49
700 νd3 =81.61 r6 = -6.5185 d6 = 0.2000 r7 = -285.8879 d7 = 1.1500 nd4 =1.61
340 νd4 =43.84 r8 = 9.6803 d8 = 4.9500 nd5 =1.43
875 νd5 =94.97 r9 = -9.9408 d9 = 1.6000 r10= -9.7058 d10= 1.2000 nd6 =1.61
340 νd6 =43.84 r11= 19.1518 d11= 5.6000 nd7 =1.43
875 νd7 =94.97 r12= -11.9628 d12= 0.1400 r13= 24.7125 d13= 4.4000 nd8 =1.43
875 νd8 =94.97 r14= -21.2067 d14= 0.1000 r15= 22.7408 d15= 4.5000 nd9 =1.57
501 νd9 =41.49 r16= -19.0975 d16= 3.8550 nd10=1.52
130 νd10=52.55 r17= 8.9527 d17= 5.3000 r18= -8.7430 d18= 1.4000 nd11=1.52
130 νd11=52.55 r19= ∞ d19= 4.1000 nd12=1.57
135 νd12=52.92 r20= -11.2472 f/f3 = 0.336 f/f4 =-0.198 f/f5 = 0.017
Embodiment 2 β = 20 ×, NA = 0.8, f = 9, WD = 0.19 f 3 = 26.795, f 4 = -45.43 , F 5 = 536.32 Oil immersion liquid: n d = 1.51548, ν d = 43.10 r 1 = ∞ d 1 = 0.3000 n d1 = 1.51
633 ν d1 = 64.15 r 2 = ∞ d 2 = 0.2800 r 3 = -2.9483 d 3 = 4.4064 n d2 = 1.67
790 ν d2 = 55.33 r 4 = -4.7306 d 4 = 0.2000 r 5 = -103.1912 d 5 = 3.0000 n d3 = 1.49
700 ν d3 = 81.61 r 6 = -6.5185 d 6 = 0.2000 r 7 = -285.8879 d 7 = 1.1500 nd 4 = 1.61
340 ν d4 = 43.84 r 8 = 9.6803 d 8 = 4.9500 n d5 = 1.43
875 ν d5 = 94.97 r 9 = -9.9408 d 9 = 1.6000 r 10 = -9.7058 d 10 = 1.2000 nd 6 = 1.61
340 ν d6 = 43.84 r 11 = 19.1518 d 11 = 5.6000 n d7 = 1.43
875 ν d7 = 94.97 r 12 = -11.9628 d 12 = 0.1400 r 13 = 24.7125 d 13 = 4.4000 n d8 = 1.43
875 ν d8 = 94.97 r 14 = -21.2067 d 14 = 0.1000 r 15 = 22.7408 d 15 = 4.5000 nd9 = 1.57
501 ν d9 = 41.49 r 16 = -19.0975 d 16 = 3.8550 n d10 = 1.52
130 ν d10 = 52.55 r 17 = 8.9527 d 17 = 5.3000 r 18 = -8.7430 d 18 = 1.4000 n d11 = 1.52
130 ν d11 = 52.55 r 19 = ∞ d 19 = 4.1000 n d12 = 1.57
135 ν d12 = 52.92 r 20 = -11.2472 f / f 3 = 0.336 f / f 4 = -0.198 f / f 5 = 0.017
.

【0020】上記各実施例の対物レンズは、例えば以下
に示すレンズデータを有し、図3にレンズ断面を示す結
像レンズと組み合わせて用いられる。ただし、データ
中、r1'、r2'…は物体側から順に示した各レンズ面の
曲率半径、d1'、d2'…は物体側から順に示した各レン
ズ面間の間隔、nd1' 、nd2' …は物体側から順に示し
た各レンズのd線の屈折率、νd1' 、νd2' …は物体側
から順に示した各レンズのアッベ数である。
The objective lens of each of the above embodiments has, for example, the following lens data and is used in combination with an imaging lens whose lens section is shown in FIG. Here, in the data, r 1 ′, r 2 ′... Are the radii of curvature of the respective lens surfaces shown in order from the object side, d 1 ′, d 2 ′. d1 ', n d2' ... d-line refractive index of each lens shown in order from the object side, ν d1 ', ν d2' ... is the Abbe number of the lens shown in order from the object side.

【0021】r1'= 68.7541 d1'= 7.7321
d1'=1.48749 νd1'=70.20 r2'= -37.5679 d2'= 3.4742 nd2'=
1.80610 νd2'=40.95 r3'= -102.8477 d3'= 0.6973 r4'= 84.3099 d4'= 6.0238 nd3'=
1.83400 νd3'=37.16 r5'= -50.7100 d5'= 3.0298 nd4'=
1.64450 νd4'=40.82 r6'= 40.6619 。
R 1 '= 68.7541 d 1 ' = 7.7321
n d1 '= 1.48749 ν d1 ' = 70.20 r 2 '= -37.5679 d 2 ' = 3.4742 n d2 '=
1.80610 ν d2 '= 40.95 r 3 ' = -102.8477 d 3 '= 0.6973 r 4' = 84.3099 d 4 '= 6.0238 n d3' =
1.83400 ν d3 '= 37.16 r 5 ' = -50.7100 d 5 '= 3.0298 nd 4 ' =
1.64450 v d4 '= 40.82 r 6 ' = 40.6619.

【0022】この場合、実施例1、2の対物レンズと図
3の結像レンズの間の間隔は50mm〜170mmの間
の何れの位置でもよいが、この間隔を105mmとした
場合についの実施例1、2の球面収差、非点収差、歪曲
収差、コマ収差を表す収差図をそれぞれ図4、図5に示
す。なお、上記間隔が50mm〜170mmの間で10
5mm以外の位置においてもほぼ同様の収差状況を示
す。
In this case, the distance between the objective lens of the first and second embodiments and the imaging lens of FIG. 3 may be any position between 50 mm and 170 mm. FIGS. 4 and 5 show aberration diagrams representing spherical aberration, astigmatism, distortion, and coma aberration of Nos. 1 and 2, respectively. In addition, when the above-mentioned interval is 50 mm to 170 mm, 10
At positions other than 5 mm, almost the same aberration is shown.

【0023】[0023]

【発明の効果】以上説明したように、本発明によると、
倍率が20倍程度で、NAが0.7〜0.8と大きい顕
微鏡対物レンズにおいて、解像力とコントラストに優
れ、広視野にわたって像面を極めて平坦にすることがで
きる。
As described above, according to the present invention,
In a microscope objective lens having a magnification of about 20 times and a large NA of 0.7 to 0.8, the resolution and contrast are excellent, and the image plane can be extremely flat over a wide field of view.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の顕微鏡対物レンズの実施例1のレンズ
断面図である。
FIG. 1 is a sectional view of a microscope objective lens according to a first embodiment of the present invention.

【図2】実施例2のレンズ断面図である。FIG. 2 is a sectional view of a lens according to a second embodiment.

【図3】各実施例の顕微鏡対物レンズと共に用いる結像
レンズのレンズ断面図である。
FIG. 3 is a lens cross-sectional view of an imaging lens used with the microscope objective lens of each embodiment.

【図4】実施例1の球面収差、非点収差、歪曲収差、コ
マ収差を表す収差図である。
FIG. 4 is an aberration diagram showing a spherical aberration, an astigmatism, a distortion, and a coma of the first embodiment.

【図5】実施例2の球面収差、非点収差、歪曲収差、コ
マ収差を表す収差図である。
FIG. 5 is an aberration diagram showing a spherical aberration, an astigmatism, a distortion, and a coma of the second embodiment.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G4…第4レンズ群 G5…第5レンズ群 P …平行平面板 G1 first lens group G2 second lens group G3 third lens group G4 fourth lens group G5 fifth lens group P parallel plane plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体から順に、物体側に凹面を向けたメ
ニスカスレンズ成分を含み、最像側面が像側に凸面を向
けた正屈折力の第1レンズ群、物体側に凹面を向けたメ
ニスカス形状で、前記第1レンズ群を通る物体からの射
出光束を発散光束として射出させる負屈折力の第2レン
ズ群、前記発散光束を収斂光束に変換する正屈折力の第
3レンズ群、物体側に凸面を向けたメニスカス形状で、
負屈折力の第4レンズ群、物体側に凹面を向けたメニス
カス形状で弱い屈折力の第5レンズ群からなり、次の各
条件を満足することを特徴とする顕微鏡対物レンズ: (1)0.2<f/f3 <0.5 (2)−0.5<f/f4 <−0.1 (3)|f/f5 |<0.1 ただし、f3 、f4 、f5 、fはそれぞれ第3レンズ
群、第4レンズ群、第5レンズ群、全系の焦点距離であ
る。
1. A first lens unit having a positive refractive power and a meniscus having a meniscus lens component having a concave surface facing the object side and a convex surface facing the image side, and a meniscus having a concave surface facing the object side. A second lens group having a negative refractive power that emits a light beam emitted from an object passing through the first lens group as a divergent light beam; a third lens group having a positive refractive power that converts the divergent light beam into a convergent light beam; With a meniscus shape with the convex surface facing the
A microscope objective lens comprising a fourth lens group having a negative refractive power and a fifth lens group having a meniscus-shaped weak refractive power having a concave surface facing the object side and satisfying the following conditions: (1) 0 .2 <f / f 3 <0.5 (2) -0.5 <f / f 4 <-0.1 (3) | f / f 5 | <0.1 , however, f 3, f 4, f 5 and f are the focal lengths of the third lens unit, the fourth lens unit, the fifth lens unit, and the entire system, respectively.
JP03281225A 1991-10-28 1991-10-28 Microscope objective lens Expired - Fee Related JP3093835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03281225A JP3093835B2 (en) 1991-10-28 1991-10-28 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03281225A JP3093835B2 (en) 1991-10-28 1991-10-28 Microscope objective lens

Publications (2)

Publication Number Publication Date
JPH05119264A JPH05119264A (en) 1993-05-18
JP3093835B2 true JP3093835B2 (en) 2000-10-03

Family

ID=17636113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03281225A Expired - Fee Related JP3093835B2 (en) 1991-10-28 1991-10-28 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP3093835B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313163B2 (en) * 1992-12-10 2002-08-12 オリンパス光学工業株式会社 Microscope objective lens
US5708531A (en) * 1994-09-13 1998-01-13 Nikon Corporation Objective lens system
JPH09222565A (en) * 1996-02-15 1997-08-26 Nikon Corp Microscope objective
DE10316415B4 (en) * 2003-04-10 2011-01-05 Carl Zeiss Microimaging Gmbh Plan apochromatic microscope objective
DE10317746B4 (en) * 2003-04-17 2010-11-25 Carl Zeiss Jena Gmbh Planapochromatic microscope objective
JP5885537B2 (en) 2012-02-28 2016-03-15 オリンパス株式会社 Microscope objective lens

Also Published As

Publication number Publication date
JPH05119264A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP3140111B2 (en) High magnification microscope objective
US4976522A (en) Objective lens system for endoscopes
JP3280402B2 (en) Microscope objective lens
JP3985937B2 (en) Microscope objective lens for fluorescence
JP3299808B2 (en) Immersion microscope objective lens
US5502596A (en) Immersion microscope objective
JP2002031760A (en) Objective lens for microscope
US7982961B2 (en) Dry-type microscope objective lens
JPH07281097A (en) Liquid immersion system microscope objective lens
JP4576402B2 (en) Microscope zoom objective lens
JP4742355B2 (en) Immersion microscope objective lens
JP3454935B2 (en) Microscope objective lens
JP4098492B2 (en) Immersion microscope objective lens
JP4488283B2 (en) Afocal zoom lens for microscope
JP3093835B2 (en) Microscope objective lens
JP4959230B2 (en) Microscope objective lens
JP4457666B2 (en) Microscope objective lens
JPH10288740A (en) Long operating distance microscope objective lens
JPH08136816A (en) Objective lens of microscope
JP3335391B2 (en) High magnification microscope objective
JP3288441B2 (en) Near UV objective lens
JPH08286112A (en) Objective lens for microscope
JPH10133119A (en) Microscope objective lens
JPH09138351A (en) Low-magnification microscopic object lens
JP3363237B2 (en) Microscope objective lens for fluorescence

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees