JPH08286112A - Objective lens for microscope - Google Patents

Objective lens for microscope

Info

Publication number
JPH08286112A
JPH08286112A JP7086978A JP8697895A JPH08286112A JP H08286112 A JPH08286112 A JP H08286112A JP 7086978 A JP7086978 A JP 7086978A JP 8697895 A JP8697895 A JP 8697895A JP H08286112 A JPH08286112 A JP H08286112A
Authority
JP
Japan
Prior art keywords
lens
cemented
positive
group
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7086978A
Other languages
Japanese (ja)
Inventor
Yasushi Fujimoto
靖 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7086978A priority Critical patent/JPH08286112A/en
Publication of JPH08286112A publication Critical patent/JPH08286112A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a dry system plan apochromat microscope objective lens which has a long operation distance although it has very high power and a high numerical aperture. CONSTITUTION: This objective lens consists of a 1st group G1 having a positive meniscus lens which has a concave surface on the object side, a 2nd group G2 which consists of a three-element cemented lens of a positive, a negative, and a positive lens and converges luminous flux, a 3rd group G3 including a cemented lens element arranged in the converged luminous flux, and a 4th group G4 which has a negative lens element having the concave surface on the object side, a concave surface on the image side as the most image-side lens surface, and negative refracting power on the whole, and satisfies a condition (1) of the curvature of the object-side concave surface of the most object- side lens, a condition (2) of the negative refracting power of the object-side cemented surface of the three-element cemented lens, a condition (3) of the positive refracting power of the 2nd group G2 on the most image-side surface, and a condition (4) of the sum of the absolute values of refracting power of the 2nd group G2 on the cemented surface and the most image-side surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ICウエハーの検査等
に利用される乾燥系顕微鏡対物レンズに関し、特に、倍
率が150×程度で、開口数が大きく、作動距離の長い
超高倍プランアポクロマート顕微鏡対物レンズに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry microscope objective lens used for inspection of IC wafers and the like, and more particularly to an ultra-high magnification plan apochromat microscope having a magnification of about 150 ×, a large numerical aperture and a long working distance. The present invention relates to an objective lens.

【0002】[0002]

【従来の技術】現在、半導体は年々集積度が上がり、パ
ターンも微細化している。そのため、従来の100×程
度の対物レンズでは微細な構造を十分に観察できない。
そこで、さらに高倍率の対物レンズが求められている。
2. Description of the Related Art At present, the degree of integration of semiconductors is increasing year by year, and patterns are becoming finer. For this reason, a fine structure cannot be sufficiently observed with a conventional objective lens of about 100 ×.
Therefore, there is a demand for an objective lens with a higher magnification.

【0003】しかしながら、一般に、人間の眼による観
察では、対物レンズの開口数(NA)の100倍程度の
総合倍率が上限とされている。なぜなら、一般的な観察
方法では、これ以上に倍率を上げてもぼけた像が観察さ
れるだけで、微細なパターンを認識することはできない
ためである。そのため、標準的な10×接眼レンズを用
いた場合、NAが1を越えることのない乾燥系顕微鏡対
物レンズでは、100×が限界であると考えられてき
た。むろん、試料と対物レンズの間をオイル等で満たし
てNAを上げれば、さらに倍率を上げて観察することも
可能ではあるが、半導体のような試料ではオイルで浸漬
することは適当ではない。
However, in general, when observing with the human eye, the upper limit is a total magnification of about 100 times the numerical aperture (NA) of the objective lens. This is because with a general observation method, even if the magnification is further increased, a blurred image is observed, and a fine pattern cannot be recognized. Therefore, when a standard 10 × eyepiece is used, it has been considered that 100 × is the limit for a dry microscope objective lens whose NA does not exceed 1. Obviously, if the space between the sample and the objective lens is filled with oil or the like to raise the NA, the magnification can be further increased for observation, but immersion in oil is not appropriate for a sample such as a semiconductor.

【0004】上記の考えによれば、100×を越える倍
率は無効な倍率であるが、これは肉眼観察において言え
ることであり、TV装置や画像解析を用いた検査では、
撮像素子の解像度が低いため、肉眼観察と同様の解像を
得るためには、倍率を上げる必要がある。また、コヒー
レント性を増した照明を行うことにより、従来はコント
ラスト不足で観察できなかった微細パターンにコントラ
ストを付けて観察することができるということが分かっ
てきた。
According to the above idea, a magnification of more than 100 × is an invalid magnification, but this can be said in the naked eye observation, and in the inspection using the TV device or the image analysis,
Since the resolution of the image sensor is low, it is necessary to increase the magnification in order to obtain a resolution similar to that observed with the naked eye. Further, it has been found that by performing illumination with increased coherence, it is possible to perform contrast observation on a fine pattern that could not be conventionally observed due to insufficient contrast.

【0005】このような状況の中で、最近では150×
以上の超高倍顕微鏡対物レンズの要望が強まっている。
超高倍顕微鏡対物レンズは、微細なパターンを検査する
ためのものであるから、当然アポクロマートであること
が必要である。アポクロマートでない顕微鏡対物レンズ
は解像が劣り、微細なパターンを観察することができな
い。また、安全性・操作性の面から、作動距離が長い顕
微鏡対物レンズが求められている。作動距離の短いレン
ズは、試料を汚したり傷付けたりする恐れがあり、慎重
な取扱いを必要とするので操作性が悪い。
Under these circumstances, recently, 150 ×
The demand for the above ultra-high magnification microscope objective lens is increasing.
Since the ultra-high magnification microscope objective lens is for inspecting a fine pattern, it is naturally required to be an apochromat. A microscope objective lens that is not an apochromat has a poor resolution and cannot observe a fine pattern. In addition, a microscope objective lens having a long working distance is required from the viewpoint of safety and operability. A lens with a short working distance has a possibility of contaminating or scratching the sample, and requires careful handling, so the operability is poor.

【0006】しかしながら、倍率を上げ、なおかつ作動
距離を長くすることは、色収差、球面収差を著しく悪化
させるために、設計が非常に困難であった。なぜなら
ば、倍率を上げるためには、対物レンズの焦点距離を短
くする必要があり、そのため、各レンズ面のパワーが強
くなり、収差の発生量が増大するからである。また、作
動距離を長くしようとすると、レンズに入射する光束が
大きくなるために、限られた全長でこの光束を収束させ
るためには、各レンズ面のパワーを強くしなければなら
ず、これによりまた収差の発生量が増大する。もし、顕
微鏡対物レンズの全長を長くすれば、各レンズ面での光
線の曲がりを少なくすることができるので、収差の発生
量を抑えることができ、作動距離を長くすることは可能
であるが、汎用性に乏しくあまり一般的ではない。
However, increasing the magnification and increasing the working distance significantly deteriorates the chromatic aberration and the spherical aberration, which makes it very difficult to design. This is because it is necessary to shorten the focal length of the objective lens in order to increase the magnification, which increases the power of each lens surface and increases the amount of aberration generated. In addition, when trying to increase the working distance, the luminous flux incident on the lens becomes large. Therefore, in order to converge this luminous flux with a limited total length, it is necessary to increase the power of each lens surface. In addition, the amount of aberration generated increases. If the entire length of the microscope objective lens is increased, the bending of the light beam on each lens surface can be reduced, so that the amount of aberration can be suppressed and the working distance can be increased. It lacks general versatility and is not very general.

【0007】従来の顕微鏡対物レンズの中で、特公平4
−26446号のものは、倍率が150×から200×
と高倍で、NAも0.95と大きく、色収差も良く補正
されている。しかし、作動距離は0.4mmしかなく、
操作性が非常に劣る。0.4mmという作動距離は、対
物レンズの焦点距離の0.3〜0.4倍程度でしかな
い。
Among the conventional microscope objective lenses, Japanese Patent Publication No.
-No. 26446 has a magnification of 150x to 200x
With high magnification, NA is as large as 0.95, and chromatic aberration is well corrected. However, the working distance is only 0.4 mm,
Operability is very poor. The working distance of 0.4 mm is only 0.3 to 0.4 times the focal length of the objective lens.

【0008】倍率が100×程度のものとして、次のよ
うな発明がある。特公平4−26447号には、倍率1
00×、NA0.85で、作動距離2.3mm、あるい
は、NA0.8で、作動距離2.9mmという発明が記
載されている。前者は、作動距離が対物レンズの焦点距
離の1.1倍程度しかなく、後者は、作動距離は対物レ
ンズの焦点距離の1.4倍程度あるが、NAが0.8し
かなく、微細な構造を観察するにはまだまだ不十分てあ
る。
There are the following inventions with a magnification of about 100 ×. Japanese Examined Patent Publication No. 4-26447 has a magnification of 1
The invention discloses that the working distance is 2.3 mm at 00 ×, NA 0.85, or the working distance is 2.9 mm at NA 0.8. In the former, the working distance is only about 1.1 times the focal length of the objective lens, and in the latter, the working distance is about 1.4 times the focal length of the objective lens, but the NA is only 0.8, which is very small. It is still insufficient to observe the structure.

【0009】特公平3−58493号には、倍率100
×、NA0.9、作動距離0.75mmの発明が記載さ
れている。しかし、作動距離0.75mmは、機械的作
動距離に直すとさらに短くなり、高倍の顕微鏡対物レン
ズの作動距離としては不十分である。また、0.75m
mは対物レンズの焦点距離の0.8倍程度しかない。
Japanese Patent Publication No. 3-58493 has a magnification of 100.
The invention of x, NA 0.9, and working distance 0.75 mm is described. However, the working distance of 0.75 mm is further shortened when converted into a mechanical working distance, which is not sufficient as a working distance of a microscope objective lens of high magnification. In addition, 0.75m
m is only about 0.8 times the focal length of the objective lens.

【0010】特開平4−220616号には、倍率10
0×、NA0.9、作動距離2.48mmの発明が記載
されている。この対物レンズは、高NAでありながら、
長い作動距離を有している。しかしながら、通常の顕微
鏡対物レンズの全長の倍以上の長さが必要であり、特殊
な顕微鏡以外では用いることができず、汎用性が非常に
乏しい。
Japanese Patent Laid-Open No. 4-220616 discloses a magnification of 10
The invention of 0x, NA 0.9, working distance 2.48 mm is described. This objective lens has a high NA,
Has a long working distance. However, it is necessary to have a length more than twice the total length of a normal microscope objective lens, and it cannot be used except for a special microscope, and its versatility is very poor.

【0011】特開平4−40409号には、倍率100
×、NA0.8で、作動距離4.77mm、あるいは、
NA0.75で、作動距離5.3mmの顕微鏡対物レン
ズが記載されている。しかしながら、NA0.8では、
微細な構造を観察するには不十分である。
Japanese Patent Laid-Open No. 4-40409 discloses a magnification of 100.
×, NA 0.8, working distance 4.77 mm, or
A microscope objective with an NA of 0.75 and a working distance of 5.3 mm is described. However, with NA 0.8,
Insufficient for observing fine structures.

【0012】上記4つの発明は、100×程度の顕微鏡
対物レンズであり、さらに高倍率の顕微鏡対物レンズを
実現させるためには、レンズ構成的に難しい。
The above four inventions are microscope objective lenses of about 100 ×, and it is difficult to construct a microscope objective lens of higher magnification in terms of lens configuration.

【0013】本発明の仕様とは異なるが、特開平4−7
0618号には、倍率が250×とさらに大きく、NA
0.9、作動距離が0.67mmから1.25mmとい
う長作動距離の顕微鏡対物レンズが記載されている。し
かし、250×という倍率を達成するために、レンズ構
成が非常に複雑となっている。
Although it is different from the specification of the present invention, Japanese Patent Laid-Open No. 4-7
No. 0618 has a larger magnification of 250 ×, NA
A microscope objective having a long working distance of 0.9 and a working distance of 0.67 mm to 1.25 mm is described. However, in order to achieve the magnification of 250 ×, the lens structure is very complicated.

【0014】[0014]

【発明が解決しようとする課題】本発明は上記のような
従来技術の問題点に鑑みてなされたものであり、その目
的は、超高倍、高開口数でありながら、作動距離の長
い、乾燥系プランアポクロマート顕微鏡対物レンズを提
供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art as described above, and an object thereof is ultra-high magnification and high numerical aperture, and long working distance and drying. System plan apochromat microscope objective lens.

【0015】[0015]

【課題を解決するための手段】上記目的を達成する本発
明の顕微鏡対物レンズは、物体側から順に、物体側に凹
面を向けた正メニスカスレンズを有する第1レンズ群G
1、正レンズと負レンズと正レンズの3枚接合レンズか
らなり、光束を収斂光束とする第2レンズ群G2、収斂
光束中に配置された接合レンズ成分を有する第3レンズ
群G3、物体側に凹面を向けた負レンズ成分を有し、最
も像側のレンズ面が像側に凹面であり、全体として負屈
折力を持つ第4レンズ群G4からなり、次の条件を満足
することを特徴とするものである。 (1) |RA |>|RB | (2) (NB −NA )|H1 |/|RC |>0.1 (3) (NC −1)|H2 |/|RD |>0.24 (4) 0.36<(NB −NA )|H1 |/|RC
+(NC −1)|H2 |/|RD |<0.53 ただし、RA 、RB はそれぞれ第1レンズ群G1中の最
も物体側正メニスカスレンズの物体側、像側の面の曲率
半径、NA 、NB 、NC はそれぞれ第2レンズ群G2の
物体側正レンズ、負レンズ、像側正レンズの屈折率、R
C 、H1 は第2レンズ群G2の物体側接合面の曲率半径
とその接合面での最大開口数の光線が通る光線高、
D 、H2 は第2レンズ群G2の最も像側の面の曲率半
径とその面での最大開口数の光線が通る光線高である。
A microscope objective lens of the present invention which achieves the above object comprises a first lens group G having, in order from the object side, a positive meniscus lens having a concave surface facing the object side.
1. A second lens group G2 including a three-lens cemented lens including a positive lens, a negative lens, and a positive lens, which makes a light beam a convergent light beam, a third lens group G3 having a cemented lens component arranged in the convergent light beam, the object side Is characterized by having a negative lens component with a concave surface facing toward, a lens surface closest to the image side being a concave surface toward the image side, and consisting of a fourth lens group G4 having a negative refracting power as a whole, and satisfying the following condition: It is what (1) | R A |> | R B | (2) (N B -N A) | H 1 | / | R C |> 0.1 (3) (N C -1) | H 2 | / | R D |> 0.24 (4) 0.36 <(N B −N A ) | H 1 | / | R C |
+ (N C -1) | H 2 | / | R D | <0.53 However, R A, the object side of the most object side positive meniscus lens of the R B are each in the first lens group G1, the image side surface , N A , N B , and N C are the refractive indices of the object-side positive lens, the negative lens, and the image-side positive lens of the second lens group G2, R
C and H 1 are the radius of curvature of the object-side cemented surface of the second lens group G2 and the ray height at which the ray of the maximum numerical aperture at that cemented surface passes,
R D and H 2 are the ray heights through which the rays having the maximum radius of curvature on the surface closest to the image side of the second lens group G2 and the maximum numerical aperture on that surface pass.

【0016】この場合、以下の条件を満足することが望
ましい。 (5) νA −νB >30 (6) νC −νB >30 ただし、νA 、νB 、νC はそれぞれ第2レンズ群G2
の物体側正レンズ、負レンズ、像側正レンズのアッベ数
である。
In this case, it is desirable to satisfy the following conditions. (5) ν A −ν B > 30 (6) ν C −ν B > 30 where ν A , ν B , and ν C are the second lens group G2, respectively.
Are the Abbe numbers of the object-side positive lens, the negative lens, and the image-side positive lens.

【0017】さらに、第3レンズ群G3中に物体側に凸
面を向けた接合メニスカスレンズを有し、以下の条件を
満足することが望ましい。 (7) νD <νE ただし、νD 、νE はそれぞれ第3レンズ群G3中の物
体側に凸面を向けた接合メニスカスレンズの正レンズ、
負レンズのアッベ数である。
Furthermore, it is desirable to have a cemented meniscus lens having a convex surface facing the object side in the third lens group G3 and satisfy the following conditions. (7) ν DE where ν D and ν E are positive lenses of a cemented meniscus lens whose convex surface faces the object side in the third lens group G3,
It is the Abbe number of a negative lens.

【0018】[0018]

【作用】以下、上記構成を採用した理由とその作用につ
いて説明する。まず、物体側に凹面に向けた正メニスカ
スレンズを有する第1レンズ群によって、物体から出る
高NAの光線の開き角を除々に小さくしている。
The reason why the above structure is adopted and its function will be described below. First, the divergence angle of a high NA ray emerging from an object is gradually reduced by the first lens group having a positive meniscus lens facing the concave surface on the object side.

【0019】一般に、作動距離が短い場合、最も物体側
のレンズの物体側凹面に強い曲率を持たせてペッツバー
ル和を補正している。ところが、作動距離が長い場合、
物体側凹面の曲率が強いままだと、この面に入射する光
線の入射角は小さくなるため、光線の曲がりが小さくな
る。そのため、最初のレンズ面で光線を十分に収束する
ことができず、後に続くレンズ面に大きな屈折力が必要
となり、全系として球面収差の発生量が増える。したが
って、長い作動距離を達成するためには、最も物体側レ
ンズの物体側凹面の曲率は、上記(1)の条件式を満足
する必要がある。この条件を外れて像側の面の曲率半径
が物体側の面より大きくなると、ペッツバール和の補正
には有利であるが、物体側のレンズ面での光線の曲がり
が小さくなるため、後のレンズ面に大きな屈折力が必要
となり、全体として収差の発生量が増えるのである。
Generally, when the working distance is short, the Petzval sum is corrected by giving a strong curvature to the object-side concave surface of the lens closest to the object. However, if the working distance is long,
If the curvature of the concave surface on the object side remains strong, the angle of incidence of the light ray incident on this surface becomes small, and therefore the bending of the light ray becomes small. Therefore, the light rays cannot be sufficiently converged on the first lens surface, a large refractive power is required on the lens surfaces that follow, and the amount of spherical aberration generated increases in the entire system. Therefore, in order to achieve a long working distance, the curvature of the object-side concave surface of the most object-side lens needs to satisfy the conditional expression (1). If this condition is exceeded and the radius of curvature of the image-side surface becomes larger than that of the object-side surface, this is advantageous for correcting Petzval sum, but the bending of light rays on the lens surface on the object side becomes smaller, so A large refractive power is required for the surface, and the amount of aberration generated increases as a whole.

【0020】次に、第2レンズ群は、第1レンズ群で除
々に曲げられた光束をさらに収斂光束に変える働きをし
ている。一般に、レンズ系の倍率が上がれば上がる程、
また、作動距離が伸びれば伸びる程、レンズの球面収差
や色収差の補正が困難になる。本発明のような対物レン
ズでは、倍率が非常に大きく、作動距離も非常に大きい
ため、これらの収差を補正することは通常では困難であ
る。そこで、最も光線高の高くなる第2レンズ群に正レ
ンズ、負レンズ、正レンズの3枚の接合レンズを用いる
ことによって、色収差の性能を大きく向上させている。
Next, the second lens group has a function of converting the light beam gradually bent by the first lens group into a convergent light beam. Generally, the higher the magnification of the lens system,
Further, as the working distance increases, it becomes more difficult to correct spherical aberration and chromatic aberration of the lens. With an objective lens such as the present invention, it is usually difficult to correct these aberrations because the magnification is very large and the working distance is also very large. Therefore, by using three cemented lenses, a positive lens, a negative lens, and a positive lens, in the second lens group having the highest ray height, the chromatic aberration performance is greatly improved.

【0021】また、上記(2)式の条件にあるように、
この3枚接合レンズの物体側接合面の負屈折力を大きく
効かせることにより、球面収差を良好に補正し、かつ、
光線高を上げることによって後群のレンズでの収差補正
を容易にしている。(2)式の条件を外れ下限の0.1
を越えると、球面収差や軸上色収差が補正不足となり性
能が劣化する。また、第3レンズ群に入射する光線高が
あまり高くならず、第3レンズ群の接合面での負屈折力
を大きくすることができない。もし、低い光線高のま
ま、第3レンズ群の接合面での負屈折力を大きくする
と、光線を再び収斂光束にするために大きな正屈折力が
必要となり、全体として球面収差が補正不足となる。第
3レンズ群の接合面に十分な負屈折力を持たせることが
困難であるような場合には、さらに次の条件式を満たす
ことが望ましい。
Further, as in the condition of the above equation (2),
By making great use of the negative refracting power of the cemented surface on the object side of the three-lens cemented lens, spherical aberration is satisfactorily corrected, and
By raising the ray height, it is easy to correct aberrations in the rear lens group. The condition of the formula (2) is not satisfied, and the lower limit of 0.1 is satisfied.
If it exceeds, spherical aberration and axial chromatic aberration will be undercorrected and the performance will deteriorate. Further, the height of the light ray incident on the third lens group is not so high that the negative refractive power at the cemented surface of the third lens group cannot be increased. If the negative refracting power at the cemented surface of the third lens group is increased while the ray height is low, a large positive refracting power is required to convert the ray into a convergent light beam, and spherical aberration is undercorrected as a whole. . In the case where it is difficult to give the cemented surface of the third lens group a sufficient negative refractive power, it is desirable to further satisfy the following conditional expression.

【0022】 (2') (NB −NA )|H1 |/|RC |>0.13 上記(3)式の条件は、第2レンズ群の最も像側の面で
の正屈折力を表している。この条件を外れ下限の0.2
4を越えると、第2レンズ群での収斂作用が弱まり、そ
の代わりに第3レンズ群に大きな正屈折力が必要とな
る。その結果、第4レンズ群に入射するその光線の角度
が急になり、その光線を発散させる強い負のパワーが第
4レンズ群に必要となるため、各群の収差量が大きくな
り収差補正が困難となる。
(2 ′) (N B −N A ) | H 1 | / | R C |> 0.13 The condition of the above expression (3) is that the positive refraction on the most image side surface of the second lens group is Represents power. If this condition is not satisfied, the lower limit of 0.2
When it exceeds 4, the converging action in the second lens group is weakened, and instead, a large positive refractive power is required in the third lens group. As a result, the angle of the light ray incident on the fourth lens group becomes steep, and strong negative power for diverging the light ray is required for the fourth lens group, so that the aberration amount of each group becomes large and aberration correction is performed. It will be difficult.

【0023】上記(4)式の条件は、前記の第2レンズ
群の接合面の負屈折力と、最も像側の面での正屈折力の
それぞれの絶対値の和の条件である。(4)式の下限の
0.36を外れると、第2レンズ群での光線の屈折が少
なくなり、収差を補正するためのパワーを十分に得るこ
とができない。一方、上限の0.53を越えると、各面
での収差の発生量が大きくなりすぎて、補正できる限界
を越えてしまう。
The condition of the above formula (4) is a condition of the sum of the absolute values of the negative refractive power of the cemented surface of the second lens group and the positive refractive power of the surface closest to the image side. If the lower limit of 0.36 in the expression (4) is not satisfied, the refraction of light rays in the second lens group becomes small, and sufficient power for correcting aberration cannot be obtained. On the other hand, when the upper limit of 0.53 is exceeded, the amount of aberration generated on each surface becomes too large, which exceeds the correction limit.

【0024】このように、本発明では、第2レンズ群に
正負正の3枚の接合レンズを用いることで諸収差を良好
に補正しているが、3枚接合レンズを用いない構成で
は、球面収差や軸上色収差が補正不足となり、超高倍、
長作動距離を達成できなくなる。
As described above, according to the present invention, various aberrations are satisfactorily corrected by using three cemented lenses of positive, negative, and positive in the second lens group. Aberration and axial chromatic aberration are undercorrected, and ultra high magnification,
Long working distance cannot be achieved.

【0025】収斂光束中に配置された接合レンズ成分を
含む第3レンズ群は、第2レンズ群で取りきれなかった
色収差を補正する機能を有しており、そのため、よく知
られるような3枚接合レンズを有することが望ましい。
また、色収差以外にも、球面収差、コマ収差、非点収差
を良好に補正する働きをしている。
The third lens group, which includes the cemented lens component and is arranged in the convergent light beam, has a function of correcting chromatic aberration that cannot be completely removed by the second lens group. Therefore, three well-known lenses are used. It is desirable to have a cemented lens.
In addition to chromatic aberration, it also functions to favorably correct spherical aberration, coma and astigmatism.

【0026】第4レンズ群は、物体側に凹面を向けた負
レンズ成分によって、収斂光線を発散させ像に導く作用
をしている。また、最も像側のレンズ面を像側に凹面と
することで、負のペッツバール和を発生させ、像面の平
坦性を補正している。
The fourth lens group has a function of diverging a convergent light beam and guiding it to an image by a negative lens component having a concave surface facing the object side. Further, by making the lens surface closest to the image side concave on the image side, a negative Petzval sum is generated and the flatness of the image surface is corrected.

【0027】以上述べた本発明の顕微鏡対物レンズにお
いて、以下の条件(5)、(6)、(7)を満足すれ
ば、さらに望ましい。 (5) νA −νB >30 (6) νC −νB >30 (7) νD <νE ただし、νA 、νB 、νC はそれぞれ第2レンズ群G2
の物体側正レンズ、負レンズ、像側正レンズのアッベ
数、νD 、νE はそれぞれ第3レンズ群G3中の物体側
に凸面を向けた接合メニスカスレンズの正レンズ、負レ
ンズのアッベ数である。
In the microscope objective lens of the present invention described above, it is more desirable if the following conditions (5), (6) and (7) are satisfied. (5) ν A −ν B > 30 (6) ν C −ν B > 30 (7) ν DE where ν A , ν B , and ν C are the second lens group G2, respectively.
Abbe numbers of the object-side positive lens, the negative lens, and the image-side positive lens, ν D and ν E are the positive and negative Abbe numbers of the cemented meniscus lens with the convex surface facing the object side in the third lens group G3, respectively. Is.

【0028】上記(5)、(6)式は第2レンズ群で色
収差を良好に補正するための条件である。(5)、
(6)式のように、正レンズと負レンズのアッベ数の差
を大きくすることにより、色収差を良好に補正できる。
なお、2次スペクトルを良好に補正するためには、これ
らの3枚のレンズにさらに異常分散性を有する硝材を用
いればよい。
The above expressions (5) and (6) are conditions for favorably correcting chromatic aberration in the second lens group. (5),
By increasing the difference in Abbe number between the positive lens and the negative lens as in the expression (6), chromatic aberration can be favorably corrected.
In order to satisfactorily correct the secondary spectrum, a glass material having extraordinary dispersion may be used for these three lenses.

【0029】上記(7)式は、第4レンズ群で軸外の色
収差を良好に補正するための条件である。この条件を外
れて正レンズのアッベ数が負レンズのアッベ数より大き
くなると、軸上と軸外の色収差のバランスをとることが
困難となる。
The above expression (7) is a condition for favorably correcting off-axis chromatic aberration in the fourth lens group. If this condition is not satisfied and the Abbe number of the positive lens becomes larger than the Abbe number of the negative lens, it becomes difficult to balance on-axis and off-axis chromatic aberration.

【0030】[0030]

【実施例】以下に、本発明の顕微鏡対物レンズの実施例
1〜3について説明する。各実施例のレンズデータは後
記するが、図1、図2、図3はそれぞれ実施例1、2、
3のレンズ構成を示す断面図である。
EXAMPLES Examples 1 to 3 of the microscope objective lens of the present invention will be described below. The lens data of each example will be described later, but FIGS. 1, 2 and 3 show examples 1, 2 and 3, respectively.
It is sectional drawing which shows the lens structure of 3.

【0031】実施例1の各群の構成については、第1レ
ンズ群G1は、物体側に凹面を向けた単体の正メニスカ
スレンズ2枚からなり、第2レンズ群G2は、両凸レン
ズと両凹レンズと両凸レンズの3枚接合レンズからな
り、第3レンズ群G3は、両凸レンズと物体側に凹面を
向けた負メニスカスレンズの接合レンズ3枚と、両凸レ
ンズと両凹レンズの接合メニスカスレンズとからなり、
第4レンズ群G4は、両凹レンズと、物体側に凹面を向
けた正メニスカスレンズと両凹レンズの接合レンズとか
らなっている。
Regarding the constitution of each group of the first embodiment, the first lens group G1 is composed of two single positive meniscus lenses with the concave surface facing the object side, and the second lens group G2 is a biconvex lens and a biconcave lens. The third lens group G3 includes three biconvex lenses, a negative meniscus lens cemented with a concave surface facing the object side, and a biconvex lens and biconcave lens cemented meniscus lens. ,
The fourth lens group G4 includes a biconcave lens, and a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave lens.

【0032】実施例2の各群の構成については、第1レ
ンズ群G1は、物体側に凹面を向けた単体の正メニスカ
スレンズと、物体側に平面を向けた平凸レンズとからな
り、第2レンズ群G2は、両凸レンズと両凹レンズと両
凸レンズの3枚接合レンズからなり、第3レンズ群G3
は、両凸レンズと物体側に凹面を向けた負メニスカスレ
ンズの接合レンズと、像側に凹面を向けた負メニスカス
レンズと両凸レンズと物体側に凹面を向けた負メニスカ
スレンズの3枚接合レンズと、両凸レンズと両凹レンズ
の接合メニスカスレンズとからなり、第4レンズ群G4
は、両凹レンズと、像側に平面を向けた凸平レンズと平
凹レンズの接合レンズとからなっている。
With respect to the configuration of each group in Example 2, the first lens group G1 is composed of a single positive meniscus lens having a concave surface facing the object side and a plano-convex lens having a flat surface facing the object side. The lens group G2 includes a double-convex lens, a double-concave lens, and a double-convex cemented lens, and a third lens group G3.
Is a cemented lens made up of a biconvex lens and a negative meniscus lens having a concave surface facing the object side, a negative meniscus lens having a concave surface facing the image side, and a biconvex lens, and a negative meniscus lens having a concave surface facing the object side. , A biconvex lens and a cemented meniscus lens of a biconcave lens, and a fourth lens group G4
Is composed of a biconcave lens, and a cemented lens of a plano-concave lens and a plano-concave lens having a flat surface facing the image side.

【0033】実施例3の各群の構成については、第1レ
ンズ群G1は、物体側に凹面を向けた単体の正メニスカ
スレンズ2枚からなり、第2レンズ群G2は、両凸レン
ズと両凹レンズと両凸レンズの3枚接合レンズからな
り、第3レンズ群G3は、両凸レンズと物体側に凹面を
向けた負メニスカスレンズの接合レンズと、像側に凹面
を向けた負メニスカスレンズと両凸レンズと物体側に凹
面を向けた負メニスカスレンズの3枚接合レンズと、両
凸レンズと両凹レンズの接合メニスカスレンズとからな
り、第4レンズ群G4は、両凹レンズと、像側に平面を
向けた凸平レンズと平凹レンズの接合レンズとからなっ
ている。
Regarding the constitution of each group of the third embodiment, the first lens group G1 is composed of two single positive meniscus lenses with the concave surface facing the object side, and the second lens group G2 is a biconvex lens and a biconcave lens. The third lens group G3 includes a cemented lens of a biconvex lens and a negative meniscus lens having a concave surface facing the object side, a negative meniscus lens having a concave surface facing the image side, and a biconvex lens. The fourth lens group G4 includes a double-concave negative meniscus lens cemented lens with a concave surface facing the object side, and a double-concave and double-concave lens cemented meniscus lens. It consists of a lens and a cemented lens of a plano-concave lens.

【0034】何れの実施例も、倍率150×、NA0.
9と、超高倍率、高NAであり、作動距離については、
実施例1では、対物レンズの焦点距離の1.36倍、実
施例2では、同じく1.55倍、実施例3では、同じく
1.48倍と長作動距離を達成している。
In each embodiment, the magnification is 150 ×, NA0.
9 and super high magnification, high NA, and working distance,
In Example 1, a long working distance of 1.36 times the focal length of the objective lens, in Example 2 was 1.55 times, and in Example 3 was 1.48 times.

【0035】以下に、各実施例のレンズデータを示す
が、記号は、上記の他、fは対物レンズの焦点距離、N
Aは開口数、βは倍率、WDは作動距離である。また、
1 、r2 …は物体側から順に示した各レンズ面の曲率
半径、d1 、d2 …は物体側から順に示した各レンズ面
間の間隔、nd1、nd2…は物体側から順に示した各レン
ズのd線の屈折率、νd1、νd2…は物体側から順に示し
た各レンズのアッベ数である。
The lens data of each embodiment will be shown below. In addition to the above, the symbol is f, the focal length of the objective lens, and N.
A is the numerical aperture, β is the magnification, and WD is the working distance. Also,
r 1 , r 2 ... Is the radius of curvature of each lens surface shown in order from the object side, d 1 , d 2 ... Is the distance between the lens surfaces shown in order from the object side, and n d1 , n d2 ... Is from the object side. The d-line refractive index of each lens, ν d1 , ν d2 ... Shown in order is the Abbe number of each lens shown in order from the object side.

【0036】実施例1 f=1.2 , NA=0.9 , β=150 , WD=1.637 r1 = -4.8153 d1 = 3.0600 nd1 =1.74100 νd1 =52.65 r2 = -3.7601 d2 = 0.1000 r3 = -84.8138 d3 = 2.4600 nd2 =1.56907 νd2 =71.30 r4 = -9.5427 d4 = 0.1000 r5 = 11.3685 d5 = 4.5000 nd3 =1.43875 νd3 =94.97 r6 = -9.0634 d6 = 1.6000 nd4 =1.72600 νd4 =53.57 r7 = 24.9477 d7 = 4.6500 nd5 =1.43875 νd5 =94.97 r8 = -10.1258 d8 = 0.1000 r9 = 17.8509 d9 = 5.2500 nd6 =1.43875 νd6 =94.97 r10= -8.8561 d10= 1.0000 nd7 =1.61340 νd7 =43.84 r11= -32.7446 d11= 0.2000 r12= 24.0740 d12= 3.6000 nd8 =1.43875 νd8 =94.97 r13= -8.6667 d13= 1.0000 nd9 =1.64450 νd9 =40.82 r14= -36.3396 d14= 0.1000 r15= 12.5940 d15= 4.0000 nd10=1.43875 νd10=94.97 r16= -8.0348 d16= 1.0000 nd11=1.74000 νd11=31.71 r17= -90.7321 d17= 0.7600 r18= 15.8159 d18= 3.1600 nd12=1.76182 νd12=26.55 r19= -7.8535 d19= 0.8000 nd13=1.80610 νd13=40.95 r20= 18.5376 d20= 4.1900 r21= -3.5477 d21= 0.8000 nd14=1.51633 νd14=64.15 r22= 67.4681 d22= 0.6400 r23= -6.8723 d23= 1.5000 nd15=1.78472 νd15=25.71 r24= -2.7221 d24= 0.8000 nd16=1.53996 νd16=59.57 r25= 9.6162 RA = -4.8153 RB = -3.7601 NA = 1.43875 νA = 94.97 NB = 1.726 νB = 53.57 NC = 1.43875 νC = 94.97 RC = -9.0634 RD =-10.1258 H1 = 5.84 H2 = 6.5 νD = 26.55 νE = 40.95 (1)|RA |>|RB | (2)(NB −NA )|H1 |/|RC |= 0.19 (3)(NC −1)|H2 |/|RD |= 0.28 (4)(NB −NA )|H1 |/|RC |+(NC
1)|H2 |/|RD |= 0.47 (5)νA −νB = 41.4 (6)νC −νB = 41.4 (7)νD <νE
Example 1 f = 1.2, NA = 0.9, β = 150, WD = 1.637 r 1 = -4.8153 d 1 = 3.0600 n d1 = 1.74100 ν d1 = 52.65 r 2 = -3.7601 d 2 = 0.1000 r 3 = -84.8138 d 3 = 2.4600 n d2 = 1.56907 ν d2 = 71.30 r 4 = -9.5427 d 4 = 0.1000 r 5 = 11.3685 d 5 = 4.5000 n d3 = 1.43875 ν d3 = 94.97 r 6 = -9.0634 d 6 = 1.6000 n d4 = 1.72600 ν d4 = 53.57 r 7 = 24.9477 d 7 = 4.6500 n d5 = 1.43875 ν d5 = 94.97 r 8 = -10.1258 d 8 = 0.1000 r 9 = 17.8509 d 9 = 5.2500 n d6 = 1.43875 ν d6 = 94.97 r 10 = -8.8561 d 10 = 1.0000 n d7 = 1.61340 ν d7 = 43.84 r 11 = -32.7446 d 11 = 0.2000 r 12 = 24.0740 d 12 = 3.6000 n d8 = 1.43875 ν d8 = 94.97 r 13 = -8.6667 d 13 = 1.0000 n d9 = 1.64450 ν d9 = 40.82 r 14 = -36.3396 d 14 = 0.1000 r 15 = 12.5940 d 15 = 4.0000 n d10 = 1.43875 ν d10 = 94.97 r 16 = -8.0348 d 16 = 1.0000 n d11 = 1.74000 ν d11 = 31.71 r 17 = -90.7321 d 17 = 0.7600 r 18 = 15.8159 d 18 = 3.1600 n d12 = 1.761 82 ν d12 = 26.55 r 19 = -7.8535 d 19 = 0.8000 n d13 = 1.80610 ν d13 = 40.95 r 20 = 18.5376 d 20 = 4.1900 r 21 = -3.5477 d 21 = 0.8000 n d14 = 1.51633 ν d14 = 64.15 r 22 = 67.4681 d 22 = 0.6400 r 23 = -6.8723 d 23 = 1.5000 n d15 = 1.78472 ν d15 = 25.71 r 24 = -2.7221 d 24 = 0.8000 n d16 = 1.53996 ν d16 = 59.57 r 25 = 9.6162 R A = -4.8153 R B = -3.7601 N A = 1.43875 ν A = 94.97 N B = 1.726 ν B = 53.57 N C = 1.43875 ν C = 94.97 R C = -9.0634 R D = -10.1258 H 1 = 5.84 H 2 = 6.5 ν D = 26.55 ν E = 40.95 (1) | R A |> | R B | (2) (N B -N A) | H 1 | / | R C | = 0.19 (3) (N C -1) | H 2 | / | R D | = 0.28 (4 ) (N B -N A) | H 1 | / | R C | + (N C -
1) | H 2 | / | RD || 0.47 (5) ν A −ν B = 41.4 (6) ν C −ν B = 41.4 (7) ν DE
.

【0037】実施例2 f=1.2 , NA=0.9 , β=150 , WD=1.86 r1 = -3.9188 d1 = 2.1900 nd1 =1.88300 νd1 =40.78 r2 = -3.2806 d2 = 0.1100 r3 = ∞ d3 = 2.6300 nd2 =1.56907 νd2 =71.30 r4 = -11.2366 d4 = 0.1200 r5 = 12.1870 d5 = 3.8000 nd3 =1.43875 νd3 =94.97 r6 = -10.2129 d6 = 1.0000 nd4 =1.64450 νd4 =40.82 r7 = 11.2157 d7 = 5.3500 nd5 =1.49700 νd5 =81.61 r8 = -11.2157 d8 = 0.1500 r9 = 10.6293 d9 = 5.7400 nd6 =1.43875 νd6 =94.97 r10= -10.3968 d10= 1.3500 nd7 =1.75500 νd7 =52.33 r11= -33.7903 d11= 0.2500 r12= 14.3932 d12= 1.2000 nd8 =1.74000 νd8 =31.71 r13= 5.6196 d13= 5.4800 nd9 =1.43875 νd9 =94.97 r14= -5.3801 d14= 1.1000 nd10=1.74000 νd10=31.71 r15= -19.1219 d15= 2.7400 r16= 7.2843 d16= 3.0400 nd11=1.78472 νd11=25.68 r17= -5.7970 d17= 0.9000 nd12=1.88300 νd12=40.78 r18= 7.0454 d18= 4.4800 r19= -4.4881 d19= 0.8000 nd13=1.51633 νd13=64.15 r20= 17.4174 d20= 0.6100 r21= 5.0346 d21= 1.5000 nd14=1.74000 νd14=31.71 r22= ∞ d22= 0.6000 nd15=1.72916 νd15=54.68 r23= 4.9962 RA = -3.9188 RB = -3.2806 NA = 1.43875 νA = 94.97 NB = 1.6445 νB = 40.82 NC = 1.497 νC = 81.61 RC =-10.2129 RD =-11.2157 H1 = 5.47 H2 = 6.06 νD = 25.68 νE = 40.78 (1)|RA |>|RB | (2)(NB −NA )|H1 |/|RC |= 0.11 (3)(NC −1)|H2 |/|RD |= 0.27 (4)(NB −NA )|H1 |/|RC |+(NC
1)|H2 |/|RD |= 0.38 (5)νA −νB = 54.15 (6)νC −νB = 40.79 (7)νD <νE
Example 2 f = 1.2, NA = 0.9, β = 150, WD = 1.86 r 1 = -3.9188 d 1 = 2.1900 n d1 = 1.88300 ν d1 = 40.78 r 2 = -3.2806 d 2 = 0.1100 r 3 = ∞ d 3 = 2.6300 n d2 = 1.56907 ν d2 = 71.30 r 4 = -11.2366 d 4 = 0.1200 r 5 = 12.1870 d 5 = 3.8000 n d3 = 1.43875 ν d3 = 94.97 r 6 = -10.2129 d 6 = 1.0000 n d4 = 1.64450 ν d4 = 40.82 r 7 = 11.2157 d 7 = 5.3500 n d5 = 1.49700 ν d5 = 81.61 r 8 = -11.2157 d 8 = 0.1500 r 9 = 10.6293 d 9 = 5.7400 n d6 = 1.43875 ν d6 = 94.97 r 10 =- 10.3968 d 10 = 1.3500 n d7 = 1.75500 ν d7 = 52.33 r 11 = -33.7903 d 11 = 0.2500 r 12 = 14.3932 d 12 = 1.2000 n d8 = 1.74000 ν d8 = 31.71 r 13 = 5.6196 d 13 = 5.4800 n d9 = 1.43875 ν d9 = 94.97 r 14 = -5.3801 d 14 = 1.1000 n d10 = 1.74000 ν d10 = 31.71 r 15 = -19.1219 d 15 = 2.7400 r 16 = 7.2843 d 16 = 3.0400 n d11 = 1.78472 ν d11 = 25.68 r 17 =- 5.7970 d 17 = 0.9000 n d12 = 1.88300 ν d12 = 40.78 r 18 = 7.0454 d 18 = 4.4800 r 19 = -4.4881 d 19 = 0.8000 n d13 = 1.51633 ν d13 = 64.15 r 20 = 17.4174 d 20 = 0.6100 r 21 = 5.0346 d 21 = 1.5000 n d14 = 1.74000 ν d14 = 31.71 r 22 = ∞ d 22 = 0.6000 n d15 = 1.72916 ν d15 = 54.68 r 23 = 4.9962 R A = -3.9188 R B = -3.2806 n A = 1.43875 ν A = 94.97 n B = 1.6445 ν B = 40.82 n C = 1.497 ν C = 81.61 R C = -10.2129 R D = -11.2157 H 1 = 5.47 H 2 = 6.06 ν D = 25.68 ν E = 40.78 (1) | R A |> | R B | (2) (N B -N A) | H 1 | / | R C | = 0.11 ( 3) (N C -1) | H 2 | / | R D | = 0.27 (4) (N B -N A) | H 1 | / | R C | + (N C −
1) | H 2 | / | RD || 0.38 (5) ν A −ν B = 54.15 (6) ν C −ν B = 40.79 (7) ν DE
.

【0038】実施例3 f=1.2 , NA=0.9 , β=150 , WD=1.78 r1 = -4.2286 d1 = 2.3200 nd1 =1.88300 νd1 =40.78 r2 = -3.5839 d2 = 0.1100 r3 = -17.9868 d3 = 2.6900 nd2 =1.56907 νd2 =71.30 r4 = -6.4513 d4 = 0.1200 r5 = 16.6330 d5 = 4.9600 nd3 =1.43875 νd3 =94.97 r6 = -6.7429 d6 = 1.4000 nd4 =1.64450 νd4 =40.82 r7 = 36.4383 d7 = 4.7900 nd5 =1.49700 νd5 =81.61 r8 = -9.6810 d8 = 0.1500 r9 = 13.0785 d9 = 5.3900 nd6 =1.43875 νd6 =94.97 r10= -9.7593 d10= 1.3500 nd7 =1.75500 νd7 =52.33 r11= -25.8225 d11= 0.2500 r12= 18.5014 d12= 1.2000 nd8 =1.74000 νd8 =31.71 r13= 6.4825 d13= 4.7200 nd9 =1.43875 νd9 =94.97 r14= -7.9108 d14= 1.1000 nd10=1.74000 νd10=31.71 r15= -21.2552 d15= 2.7400 r16= 7.4953 d16= 3.0400 nd11=1.76182 νd11=26.52 r17= -5.6936 d17= 0.9000 nd12=1.88300 νd12=40.78 r18= 7.0138 d18= 4.4800 r19= -4.3215 d19= 0.8000 nd13=1.51633 νd13=64.15 r20= 12.2169 d20= 0.6100 r21= 4.3393 d21= 1.5000 nd14=1.74000 νd14=31.71 r22= ∞ d22= 0.6000 nd15=1.72916 νd15=54.68 r23= 4.0997 RA = -4.2286 RB = -3.5839 NA = 1.43875 νA = 94.97 NB = 1.6445 νB = 40.82 NC = 1.497 νC = 81.61 RC = -6.7429 RD = -9.681 H1 = 5.46 H2 = 6.61 νD = 26.52 νE = 40.78 (1)|RA |>|RB | (2)(NB −NA )|H1 |/|RC |= 0.17 (3)(NC −1)|H2 |/|RD |= 0.34 (4)(NB −NA )|H1 |/|RC |+(NC
1)|H2 |/|RD |= 0.51 (5)νA −νB = 54.15 (6)νC −νB = 40.79 (7)ν<νE
Example 3 f = 1.2, NA = 0.9, β = 150, WD = 1.78 r 1 = -4.2286 d 1 = 2.3200 n d1 = 1.88300 ν d1 = 40.78 r 2 = -3.5839 d 2 = 0.1100 r 3 = -17.9868 d 3 = 2.6900 n d2 = 1.56907 ν d2 = 71.30 r 4 = -6.4513 d 4 = 0.1200 r 5 = 16.6330 d 5 = 4.9600 n d3 = 1.43875 ν d3 = 94.97 r 6 = -6.7429 d 6 = 1.4000 n d4 = 1.64450 ν d4 = 40.82 r 7 = 36.4383 d 7 = 4.7900 n d5 = 1.49700 ν d5 = 81.61 r 8 = -9.6810 d 8 = 0.1500 r 9 = 13.0785 d 9 = 5.3900 n d6 = 1.43875 ν d6 = 94.97 r 10 = -9.7593 d 10 = 1.3500 n d7 = 1.75500 ν d7 = 52.33 r 11 = -25.8225 d 11 = 0.2500 r 12 = 18.5014 d 12 = 1.2000 n d8 = 1.74000 ν d8 = 31.71 r 13 = 6.4825 d 13 = 4.7200 n d9 = 1.43875 ν d9 = 94.97 r 14 = -7.9108 d 14 = 1.1000 n d10 = 1.74000 ν d10 = 31.71 r 15 = -21.2552 d 15 = 2.7400 r 16 = 7.4953 d 16 = 3.0400 n d11 = 1.76182 ν d11 = 26.52 r 17 = -5.6936 d 17 = 0.9000 n d12 = 1.88300 ν d12 = 40.78 r 18 = 7.0138 d 18 = 4.4800 r 19 = -4.3215 d 19 = 0.8000 n d13 = 1.51633 ν d13 = 64.15 r 20 = 12.2169 d 20 = 0.6100 r 21 = 4.3393 d 21 = 1.5000 n d14 = 1.74000 ν d14 = 31.71 r 22 = ∞ d 22 = 0.6000 n d15 = 1.72916 ν d15 = 54.68 r 23 = 4.0997 R A = -4.2286 R B = -3.5839 n A = 1.43875 ν A = 94.97 n B = 1.6445 ν B = 40.82 n C = 1.497 ν C = 81.61 R C = -6.7429 R D = -9.681 H 1 = 5.46 H 2 = 6.61 ν D = 26.52 ν E = 40.78 (1) | R A |> | R B | (2) (N B -N A) | H 1 | / | R C | = 0.17 ( 3) (N C -1) | H 2 | / | R D | = 0.34 (4) (N B -N A) | H 1 | / | R C | + (N C −
1) | H 2 | / | R D | = 0.51 (5) ν A -ν B = 54.15 (6) ν C -ν B = 40.79 (7) ν D <ν E
.

【0039】上記実施例1〜3は何れも対物レンズから
の射出光が平行光束となる無限遠補正型の対物レンズで
あり、それ自身では結像しない。そこで、例えば以下に
示すレンズデータを有し、図4にレンズ断面を示す結像
レンズと組み合わせて使用される。ただし、レンズデー
タ中、r1'、r2'…は物体側から順に示した各レンズ面
の曲率半径、d1'、d2'…は物体側から順に示した各レ
ンズ面間の間隔、nd1' 、nd2' …は物体側から順に示
した各レンズのd線の屈折率、νd1' 、νd2'…は物体
側から順に示した各レンズのアッベ数である。
In each of Examples 1 to 3 described above, the infinity correction type objective lens in which the light emitted from the objective lens becomes a parallel light beam, and it does not form an image by itself. Therefore, for example, it is used in combination with an imaging lens having the lens data shown below and showing the lens cross section in FIG. However, in the lens data, r 1 ′, r 2 ′ ... Are the radii of curvature of the respective lens surfaces shown in order from the object side, d 1 ′, d 2 ′ ... are the intervals between the lens surfaces shown in order from the object side, n d1 ', n d2 ' ... are d-line refractive indices of the lenses shown in order from the object side, and v d1 ', v d2 ' ... are Abbe numbers of the lenses shown in order from the object side.

【0040】 r1'= 68.7541 d1'= 7.7321 nd1'=1.48749 νd1'=70.20 r2'= -37.5679 d2'= 3.4742 nd2'=1.80610 νd2'=40.95 r3'= -102.8477 d3'= 0.6973 r4'= 84.3099 d4'= 6.0238 nd3'=1.83400 νd3'=37.16 r5'= -50.7100 d5'= 3.0298 nd4'=1.64450 νd4'=40.82 r6'= 40.6619 。R 1 '= 68.7541 d 1 ' = 7.7321 n d1 '= 1.48749 ν d1 ' = 70.20 r 2 '= -37.5679 d 2 ' = 3.4742 n d2 '= 1.80610 ν d2 ' = 40.95 r 3 '= -102.8477 d 3 '= 0.6973 r 4 ' = 84.3099 d 4 '= 6.0238 n d3 ' = 1.83400 ν d3 '= 37.16 r 5 ' = -50.7100 d 5 '= 3.0298 n d4 ' = 1.64450 ν d4 '= 40.82 r 6 ' = 40.6619.

【0041】この場合、実施例1〜3の対物レンズと図
4の結像レンズの間の間隔は50mm〜170mmの間
の何れの位置でもよいが、この間隔を119mmとした
場合の実施例1〜3の収差図をそれぞれ図5〜図7に示
す。ただし、これら収差図において、(a)は球面収
差、(b)は歪曲収差、(c)は非点収差、(d)はコ
マ収差を示す。これら収差図中、IM.Hは像高を示
す。なお、上記間隔が50mm〜170mmの間で11
9mm以外の位置においてもほぼ同様の収差状況を示
す。
In this case, the distance between the objective lenses of Examples 1 to 3 and the imaging lens of FIG. 4 may be any position between 50 mm and 170 mm, but Example 1 when this distance is 119 mm Aberration diagrams of 3 to 3 are shown in FIGS. 5 to 7, respectively. However, in these aberration diagrams, (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, and (d) shows coma. In these aberration diagrams, IM. H indicates the image height. In addition, if the above-mentioned interval is between 50 mm and 170 mm, 11
Almost the same aberration situation is shown at positions other than 9 mm.

【0042】[0042]

【発明の効果】以上の説明から明らかなように、本発明
の顕微鏡対物レンズは、倍率が150×程度と超高倍率
で、作動距離が長く、しかも高解像で見えが良い、IC
ウエハー標本等の観察に適したレンズ系である。
As is apparent from the above description, the microscope objective lens of the present invention has an ultra-high magnification of about 150 ×, a long working distance, and a high resolution and good visibility.
It is a lens system suitable for observing a wafer sample or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の顕微鏡対物レンズの実施例1のレンズ
断面図である。
FIG. 1 is a lens cross-sectional view of a first example of a microscope objective lens according to the present invention.

【図2】実施例2のレンズ断面図である。FIG. 2 is a lens cross-sectional view of Example 2.

【図3】実施例3のレンズ断面図である。FIG. 3 is a lens cross-sectional view of Example 3.

【図4】各実施例の顕微鏡対物レンズと共に用いる結像
レンズの1例のレンズ断面図である。
FIG. 4 is a lens cross-sectional view of an example of an imaging lens used with the microscope objective lens of each example.

【図5】実施例1の球面収差、歪曲収差、非点収差、コ
マ収差を示す収差図である。
FIG. 5 is an aberration diagram showing spherical aberration, distortion, astigmatism, and coma of Example 1.

【図6】実施例2の球面収差、歪曲収差、非点収差、コ
マ収差を示す収差図である。
FIG. 6 is an aberration diagram showing spherical aberration, distortion, astigmatism, and coma of Example 2.

【図7】実施例3の球面収差、歪曲収差、非点収差、コ
マ収差を示す収差図である。
FIG. 7 is an aberration diagram showing spherical aberration, distortion, astigmatism, and coma of Example 3.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G4…第4レンズ群 G1 ... First lens group G2 ... Second lens group G3 ... Third lens group G4 ... Fourth lens group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、物体側に凹面を向けた
正メニスカスレンズを有する第1レンズ群G1、正レン
ズと負レンズと正レンズの3枚接合レンズからなり、光
束を収斂光束とする第2レンズ群G2、収斂光束中に配
置された接合レンズ成分を有する第3レンズ群G3、物
体側に凹面を向けた負レンズ成分を有し、最も像側のレ
ンズ面が像側に凹面であり、全体として負屈折力を持つ
第4レンズ群G4からなり、次の条件を満足することを
特徴とする顕微鏡対物レンズ。 (1) |RA |>|RB | (2) (NB −NA )|H1 |/|RC |>0.1 (3) (NC −1)|H2 |/|RD |>0.24 (4) 0.36<(NB −NA )|H1 |/|RC
+(NC −1)|H2 |/|RD |<0.53 ただし、RA 、RB はそれぞれ第1レンズ群G1中の最
も物体側正メニスカスレンズの物体側、像側の面の曲率
半径、NA 、NB 、NC はそれぞれ第2レンズ群G2の
物体側正レンズ、負レンズ、像側正レンズの屈折率、R
C 、H1 は第2レンズ群G2の物体側接合面の曲率半径
とその接合面での最大開口数の光線が通る光線高、
D 、H2 は第2レンズ群G2の最も像側の面の曲率半
径とその面での最大開口数の光線が通る光線高である。
1. A first lens group G1 having a positive meniscus lens having a concave surface facing the object side in order from the object side, and a triplet cemented lens including a positive lens, a negative lens, and a positive lens, wherein the light beam is a convergent light beam. A second lens group G2, a third lens group G3 having a cemented lens component arranged in the convergent light beam, a negative lens component having a concave surface facing the object side, and the most image-side lens surface is a concave surface facing the image side. A microscope objective lens characterized by comprising a fourth lens group G4 having a negative refracting power as a whole and satisfying the following conditions. (1) | R A |> | R B | (2) (N B -N A) | H 1 | / | R C |> 0.1 (3) (N C -1) | H 2 | / | R D |> 0.24 (4) 0.36 <(N B −N A ) | H 1 | / | R C |
+ (N C -1) | H 2 | / | R D | <0.53 However, R A, the object side of the most object side positive meniscus lens of the R B are each in the first lens group G1, the image side surface , N A , N B , and N C are the refractive indices of the object-side positive lens, the negative lens, and the image-side positive lens of the second lens group G2, R
C and H 1 are the radius of curvature of the object-side cemented surface of the second lens group G2 and the ray height at which the ray of the maximum numerical aperture at that cemented surface passes,
R D and H 2 are the ray heights through which the rays having the maximum radius of curvature on the surface closest to the image side of the second lens group G2 and the maximum numerical aperture on that surface pass.
【請求項2】 以下の条件を満足することを特徴とする
請求項1記載の顕微鏡対物レンズ。 (5) νA −νB >30 (6) νC −νB >30 ただし、νA 、νB 、νC はそれぞれ第2レンズ群G2
の物体側正レンズ、負レンズ、像側正レンズのアッベ数
である。
2. The microscope objective lens according to claim 1, which satisfies the following condition. (5) ν A −ν B > 30 (6) ν C −ν B > 30 where ν A , ν B , and ν C are the second lens group G2, respectively.
Are the Abbe numbers of the object-side positive lens, the negative lens, and the image-side positive lens.
【請求項3】 第3レンズ群G3中に物体側に凸面を向
けた接合メニスカスレンズを有し、以下の条件を満足す
ることを特徴とする請求項1又は2記載の顕微鏡対物レ
ンズ。 (7) νD <νE ただし、νD 、νE はそれぞれ第3レンズ群G3中の物
体側に凸面を向けた接合メニスカスレンズの正レンズ、
負レンズのアッベ数である。
3. The microscope objective lens according to claim 1, wherein a cemented meniscus lens having a convex surface facing the object side is provided in the third lens group G3, and the following condition is satisfied. (7) ν DE where ν D and ν E are positive lenses of a cemented meniscus lens whose convex surface faces the object side in the third lens group G3,
It is the Abbe number of a negative lens.
JP7086978A 1995-04-12 1995-04-12 Objective lens for microscope Withdrawn JPH08286112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7086978A JPH08286112A (en) 1995-04-12 1995-04-12 Objective lens for microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7086978A JPH08286112A (en) 1995-04-12 1995-04-12 Objective lens for microscope

Publications (1)

Publication Number Publication Date
JPH08286112A true JPH08286112A (en) 1996-11-01

Family

ID=13901970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7086978A Withdrawn JPH08286112A (en) 1995-04-12 1995-04-12 Objective lens for microscope

Country Status (1)

Country Link
JP (1) JPH08286112A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105340A (en) * 1998-07-29 2000-04-11 Nikon Corp Objective lens for microscope
US6069744A (en) * 1997-04-15 2000-05-30 Olympus Optical Co., Ltd. Microscopic objective having a long working distance
WO2004090603A1 (en) * 2003-04-10 2004-10-21 Carl Zeiss Jena Gmbh Plan apochromatic microscope objective
WO2004092802A1 (en) * 2003-04-17 2004-10-28 Carl Zeiss Jena Gmbh Plan apochromatic microscope objective
JP2008145787A (en) * 2006-12-11 2008-06-26 Olympus Corp Long operation distance objective lens
JP2008542825A (en) * 2005-05-23 2008-11-27 ケーエルエー−テンカー テクノロジィース コーポレイション Broadband objective lens with improved lateral aberration performance
CN113900227A (en) * 2021-10-09 2022-01-07 中国科学院苏州生物医学工程技术研究所 Objective lens with large field of view and high resolution broadband

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069744A (en) * 1997-04-15 2000-05-30 Olympus Optical Co., Ltd. Microscopic objective having a long working distance
JP2000105340A (en) * 1998-07-29 2000-04-11 Nikon Corp Objective lens for microscope
WO2004090603A1 (en) * 2003-04-10 2004-10-21 Carl Zeiss Jena Gmbh Plan apochromatic microscope objective
WO2004092802A1 (en) * 2003-04-17 2004-10-28 Carl Zeiss Jena Gmbh Plan apochromatic microscope objective
JP2008542825A (en) * 2005-05-23 2008-11-27 ケーエルエー−テンカー テクノロジィース コーポレイション Broadband objective lens with improved lateral aberration performance
JP2008145787A (en) * 2006-12-11 2008-06-26 Olympus Corp Long operation distance objective lens
CN113900227A (en) * 2021-10-09 2022-01-07 中国科学院苏州生物医学工程技术研究所 Objective lens with large field of view and high resolution broadband
CN113900227B (en) * 2021-10-09 2022-07-05 中国科学院苏州生物医学工程技术研究所 Objective lens with large field of view and high resolution broadband

Similar Documents

Publication Publication Date Title
US7262922B2 (en) Immersion microscope objective lens
JP6397717B2 (en) Microscope imaging lens, microscope apparatus, and imaging optical system
JP3457992B2 (en) Immersion microscope objective lens
JP3280402B2 (en) Microscope objective lens
JPH06160720A (en) Liquid immersion system microscope objective lens
US7982961B2 (en) Dry-type microscope objective lens
JPH0735983A (en) Immersion objective lens system microscope
JP4742355B2 (en) Immersion microscope objective lens
JP3126028B2 (en) High magnification objective lens
JP4098492B2 (en) Immersion microscope objective lens
US6069744A (en) Microscopic objective having a long working distance
JP4488283B2 (en) Afocal zoom lens for microscope
JP4457666B2 (en) Microscope objective lens
JPH08286112A (en) Objective lens for microscope
JP4033651B2 (en) Microscope objective lens
JP3384163B2 (en) Microscope objective lens
JP3093835B2 (en) Microscope objective lens
JPH08136816A (en) Objective lens of microscope
JP3944099B2 (en) Immersion microscope objective lens
JP3450422B2 (en) Microscope objective lens
JPH05196875A (en) Near ultraviolet objective
JPH0572482A (en) Ultraviolet objective lens
JPH0426446B2 (en)
JP2013015718A (en) Catadioptric system and imaging device having the same
JPH09138351A (en) Low-magnification microscopic object lens

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702