JP3508254B2 - Rechargeable battery charger - Google Patents

Rechargeable battery charger

Info

Publication number
JP3508254B2
JP3508254B2 JP30450694A JP30450694A JP3508254B2 JP 3508254 B2 JP3508254 B2 JP 3508254B2 JP 30450694 A JP30450694 A JP 30450694A JP 30450694 A JP30450694 A JP 30450694A JP 3508254 B2 JP3508254 B2 JP 3508254B2
Authority
JP
Japan
Prior art keywords
charging
battery
current
internal impedance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30450694A
Other languages
Japanese (ja)
Other versions
JPH08163788A (en
Inventor
健司 高橋
徹 菅原
憲一朗 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP30450694A priority Critical patent/JP3508254B2/en
Publication of JPH08163788A publication Critical patent/JPH08163788A/en
Application granted granted Critical
Publication of JP3508254B2 publication Critical patent/JP3508254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
電池、ニッケル・水素電池、シール鉛蓄電池等の二次電
池の充電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries and sealed lead-acid batteries.

【0002】[0002]

【従来の技術】近年、ポータブル機器の発達にともな
い、カセットテープレコーダ、VTR、コンピュータ等
の電子機器、携帯電話等の通信機器、電動工具等の動力
機器等の電源に、二次電池の使用が著しく増加してい
る。これら二次電池の充電においては、0.1〜1.0
C程度の定電流で充電を行う方式が一般的である。この
充電方式では充電に長時間を要することから、最近で
は、1.0C以上の定電流による急速充電が主流であ
る。そこで、急速充電においても充電によるガス発生を
少なくし、充電効率を向上させるために特開昭64−8
1628号公報のように、パルス波形をなす電流により
充電を行う充電方法が提案されている。
2. Description of the Related Art In recent years, with the development of portable equipment, the use of secondary batteries has been increasing as a power source for cassette tape recorders, VTRs, electronic equipment such as computers, communication equipment such as mobile phones, and power equipment such as electric tools. It has increased significantly. In charging these secondary batteries, 0.1 to 1.0
A method of charging with a constant current of about C is common. Since this charging method requires a long time for charging, recently, rapid charging with a constant current of 1.0 C or more is predominant. Therefore, in order to reduce gas generation due to charging even in quick charging and to improve charging efficiency, Japanese Patent Laid-Open No. 64-8 has been proposed.
As disclosed in Japanese Patent No. 1628, a charging method has been proposed in which charging is performed with a current having a pulse waveform.

【0003】[0003]

【発明が解決しようとする課題】二次電池は、長期放置
により電極が不活性化する。不活性化が進んだ二次電池
は、内部インピーダンスが通常のものよりも高い。ま
た、周囲温度が常温よりも低い場合でも電池の内部イン
ピーダンスが高くなる。また、寿命末期の電池は長期放
置されない通常の状態でも内部インピーダンスが高い。
内部インピーダンスの高い電池を上記従来の充電装置で
急速充電しようとすると、電池が発熱し、電気エネルギ
ーが熱に変換されるため充電効率が低下する。また、と
きには電池内圧が上昇し、漏液する危険性がある。本発
明の第1の目的は、電池の内部インピーダンスの大小に
よらず充電操作中に電池を危険な状態まで発熱させず
に、できるだけ急速に充電することが可能な充電装置を
提供することである。本発明の第2の目的は、上記第1
の目的を達成した充電装置において、ユーザーに、電池
が寿命末期であることを知らせることのできる充電装置
を提供することである。
In the secondary battery, the electrodes are inactivated when left standing for a long time. The secondary battery that has been deactivated has a higher internal impedance than a normal one. Further, even when the ambient temperature is lower than the room temperature, the internal impedance of the battery becomes high. In addition, the battery at the end of its life has a high internal impedance even in a normal state where it is not left for a long time.
When a battery having a high internal impedance is attempted to be rapidly charged by the above-mentioned conventional charging device, the battery heats up and electric energy is converted into heat, resulting in a decrease in charging efficiency. Moreover, there is a risk that the internal pressure of the battery rises and the liquid leaks. A first object of the present invention is to provide a charging device that can charge a battery as quickly as possible without causing the battery to generate a dangerous state during a charging operation regardless of the internal impedance of the battery. . The second object of the present invention is to provide the above-mentioned first object.
It is an object of the present invention to provide a charging device capable of notifying a user that a battery is at the end of its life, in the charging device that has achieved the above object.

【0004】[0004]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明における充電装置は、パルス波形をな
す電流により二次電池を充電するパルス充電手段と、パ
ルス充電操作中の電流供給区間の電池電圧Von、及び電
流遮断区間の電池電圧Voffを検出する手段と、Von
off、パルス充電操作中の電流供給時の電流値Iによ
り二次電池の内部インピーダンスZを演算する手段と、
Zの減少に対応させてIと電流供給区間t1の少なくと
も一方を増加させる手段とを備えたことを特徴とする。
上記第2の目的を達成するために、本発明における充電
装置は、インピーダンスZの相対的な値を表示部に表示
する手段を備えたことを特徴とする。
In order to achieve the above first object, a charging device according to the present invention comprises a pulse charging means for charging a secondary battery with a current having a pulse waveform and a current during a pulse charging operation. battery voltage V on the supply interval, and means for detecting a battery voltage V off of the current blocking section, V on,
V off , a means for calculating the internal impedance Z of the secondary battery by the current value I at the time of current supply during pulse charging operation,
And a means for increasing at least one of I and the current supply section t 1 in response to the decrease of Z.
In order to achieve the above-mentioned second object, the charging device in the present invention is characterized by including means for displaying a relative value of the impedance Z on a display unit.

【0005】[0005]

【作用】まず請求項1に相当する発明の作用を説明す
る。本発明における充電装置は、パルス波形をなす電流
により二次電池を充電する。従って急速充電においても
充電によるガス発生を少なくし、充電効率が良好であ
る。パルス充電の際に、電流供給区間の電池電圧Von
及び電流遮断区間の電池電圧Voff、パルス充電操作中
の電流供給時の電流値Iにより二次電池の内部インピー
ダンスZを演算する。内部インピーダンスZは次式
(1)によって求める。
First, the operation of the invention corresponding to claim 1 will be described. The charging device according to the present invention charges the secondary battery with a current having a pulse waveform. Therefore, even in rapid charging, gas generation due to charging is reduced, and charging efficiency is good. During pulse charging, the battery voltage V on in the current supply section,
Also, the internal impedance Z of the secondary battery is calculated from the battery voltage V off in the current interruption section and the current value I when the current is supplied during the pulse charging operation. The internal impedance Z is obtained by the following equation (1).

【0006】Z=(Von−Voff)/I・・・(1) Zが所定値よりも大きいときにはIを低い値にするか、
Iを変化させずにパルス波形における電流供給時間を小
さい値にする。あるいはその両方の手段を用いることで
電池の温度上昇を抑さえながら充電できる。また、Zが
所定値よりも大きい場合でも上記手段により充電初期に
緩やかに充電することにより、Zは充電操作中に低下し
ていく。そこで、電池が危険な状態にまで温度上昇しな
い程度に充電操作中に徐々にIを大きい値にしていく
か、Iを変化させずにパルス波形における電流供給時間
を大きい値にしていく。あるいはその両方の手段を用い
る。このことにより電池の温度上昇を抑さえ、且つ、で
きるだけ急速に充電させることができる。
Z = (V on -V off ) / I (1) When Z is larger than a predetermined value, I is set to a low value, or
The current supply time in the pulse waveform is set to a small value without changing I. Alternatively, by using both means, the battery can be charged while suppressing the temperature rise. Further, even when Z is larger than the predetermined value, Z is gradually lowered during the charging operation by gently charging the initial stage of charging by the above means. Therefore, I is gradually increased during the charging operation so that the temperature of the battery does not rise to a dangerous state, or the current supply time in the pulse waveform is increased without changing I. Alternatively, both means are used. As a result, the temperature rise of the battery can be suppressed and the battery can be charged as quickly as possible.

【0007】次に請求項2に相当する発明の作用を説明
するAA形ニッケル・水素電池を例にとると、正常な状
態では、内部インピーダンスは20〜40mΩ程度であ
るが、寿命末期になると100mΩを越える。そこで、
実測した電池の内部インピーダンスZが、例えば40m
Ω未満のとき充電装置のLEDを3つ、40〜100m
Ω未満のときLEDを2つ、100mΩ以上のときLE
Dを1つ充電装置の表示部に点灯させる手段を設ける。
寿命末期の、内部インピーダンスの高い電池を充電した
場合、充電が進行しても内部インピーダンスが低下する
ことはない。従ってLEDは充電中常に1つしか点灯し
ない。そうすることによりユーザーに電池の寿命時期を
把握させることができる。前述した、長期放置により内
部インピーダンスが高くなった電池は、充電が進行する
に従い内部インピーダンスが低下していくため、充電中
に点灯するLEDの数が増えていくので、ユーザーは寿
命末期の場合と区別することができる。
Next, taking an AA type nickel-hydrogen battery for explaining the operation of the invention corresponding to claim 2, as an example, the internal impedance is about 20 to 40 mΩ in a normal state, but 100 mΩ at the end of life. Over. Therefore,
The measured internal impedance Z of the battery is, for example, 40 m
When less than Ω, 3 LEDs of charging device, 40-100m
Two LEDs when less than Ω, LE when more than 100 mΩ
A means for lighting one D on the display unit of the charging device is provided.
When a battery having a high internal impedance at the end of its life is charged, the internal impedance does not decrease even if charging proceeds. Therefore, only one LED is lit at any time during charging. By doing so, the user can be made aware of the battery life period. As described above, the battery with increased internal impedance due to long-term storage will have a decrease in internal impedance as charging progresses, and the number of LEDs that light up during charging will increase. Can be distinguished.

【0008】[0008]

【実施例】以下図面を参照して本実施例の充電装置の概
要を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An outline of a charging device of this embodiment will be described below with reference to the drawings.

【0009】図2は本発明の一実施例の充電装置概略構
成を示すブロック図である。直流電源装置1より、充電
電流をON及びOFFするためのスイッチ回路2を経て
図3に示すパルス波形をなす充電電流が二次電池5に供
給される。本実施例では図3に示した電流供給区間t1
を8m秒、電流遮断区間t2を2m秒とした。スイッチ
回路2のON及びOFFを制御している制御回路3は、
マイクロコンピュータ4からの出力信号を受けている。
マイクロコンピュータ4は、CPU(セントラル・プロ
セッシング・ユニット)41、メモリ42、出力ポート
43、入力ポートのA/D変換器(アナログ・デジタル
変換器)44等を内蔵しており、電圧測定部7により測
定された二次電池の電圧信号をA/D変換器44に入力
する。この入力をCPU41、及びメモリ42によって
信号処理し、出力ポート43より出力信号を前記制御回
路3に出力する。表示部6は充電開始、充電終了、二次
電池5の状態をLEDで表示する。図4は図2の直流電
源装置1の部分詳細図である。直流電源装置1には、電
源8、抵抗9a〜9d、FET(電界効果形トランジス
タ)10が配置されている。マイクロコンピュータの出
力ポート43からの信号によりFET10を動作させ、
電源8からの電流を抵抗9a〜9dを介することにより電
流値を変化させる。そこで発生した電流を制御回路3に
よりスイッチ回路2でON、OFFさせることでパルス
電流を二次電池5に供給した。本実施例では上記図4に
おける電源8に15Vの定電圧直流電源を用いた。抵抗
a〜9dの抵抗値は、9a=10Ω、9b=12Ω、9c
=15Ω、9d=25Ωとした。充電開始直後から最初
の充電電流が決定するまでは抵抗9bを介し、直流電源
装置1から出力される充電電流値を1.25Aになるよ
うにした。充電電流が決定してからは、電池5の内部イ
ンピ−ダンスが40mΩ未満のときは抵抗9aを介し、
1.50Aの電流を電池5に供給し、電池5の内部イン
ピ−ダンスが40mΩ〜60mΩ未満のときは抵抗9c
を介し、1.00Aの電流を電池5に供給し、電池5の
内部インピ−ダンスが60mΩ〜100mΩ未満のとき
は抵抗9dを介し、0.60Aの電流を電池5に供給
し、電池5の内部インピ−ダンスが100mΩ以上のと
きは抵抗9a、9c、9dを介し、0.30Aの電流を電
池5に供給した。そこで得られた電流値を、本実施例の
ように図3におけるパルス波形における充電区間t1
8m秒、休止区間t2を2m秒としたときの、パルス波
形1周期(10m秒)における出力した電流を下記の
(2)式により平均した値(以下、実効値と記す)とし
て計算し、図5に示すような内部インピ−ダンスと電流
値の関係に制御した。
FIG. 2 is a block diagram showing a schematic configuration of a charging device according to an embodiment of the present invention. The charging current having the pulse waveform shown in FIG. 3 is supplied from the DC power supply device 1 to the secondary battery 5 via the switch circuit 2 for turning the charging current on and off. In this embodiment, the current supply section t 1 shown in FIG.
Was set to 8 msec, and the current interruption section t 2 was set to 2 msec. The control circuit 3 that controls ON and OFF of the switch circuit 2 is
It receives the output signal from the microcomputer 4.
The microcomputer 4 has a CPU (central processing unit) 41, a memory 42, an output port 43, an A / D converter (analog / digital converter) 44 for an input port, and the like built therein. The measured voltage signal of the secondary battery is input to the A / D converter 44. This input is processed by the CPU 41 and the memory 42, and an output signal is output from the output port 43 to the control circuit 3. The display unit 6 displays the start of charging, the end of charging, and the state of the secondary battery 5 with LEDs. FIG. 4 is a partial detailed view of the DC power supply device 1 of FIG. In the DC power supply device 1, a power supply 8, resistors 9 a to 9 d , and FET (field effect transistor) 10 are arranged. The FET 10 is operated by the signal from the output port 43 of the microcomputer,
The current value is changed by passing the current from the power source 8 through the resistors 9 a to 9 d . The pulse current was supplied to the secondary battery 5 by turning on and off the generated current in the switch circuit 2 by the control circuit 3. In this embodiment, a constant voltage DC power supply of 15V is used as the power supply 8 in FIG. The resistance values of the resistors 9 a to 9 d are 9 a = 10Ω, 9 b = 12Ω, and 9 c.
= 15Ω and 9 d = 25Ω. The charging current value output from the DC power supply device 1 was set to 1.25 A through the resistor 9 b from immediately after the start of charging until the first charging current was determined. After the charging current is determined, when the internal impedance of the battery 5 is less than 40 mΩ, the resistance is passed through the resistor 9 a ,
When a current of 1.50 A is supplied to the battery 5 and the internal impedance of the battery 5 is 40 mΩ to less than 60 mΩ, the resistance is 9 c.
A current of 1.00 A is supplied to the battery 5 via the resistor, and when the internal impedance of the battery 5 is less than 60 mΩ to 100 mΩ, a current of 0.60 A is supplied to the battery 5 via the resistor 9 d. When the internal impedance of the battery was 100 mΩ or more, a current of 0.30 A was supplied to the battery 5 through the resistors 9 a , 9 c and 9 d . The obtained current value is output in one cycle (10 msec) of the pulse waveform when the charging period t 1 in the pulse waveform in FIG. 3 is 8 msec and the rest period t 2 is 2 msec as in the present embodiment. The calculated current was calculated as a value (hereinafter, referred to as an effective value) averaged by the following equation (2), and the relation between the internal impedance and the current value was controlled as shown in FIG.

【0010】[0010]

【数1】 [Equation 1]

【0011】つまり、電池5に単電池を用いた場合、充
電開始直後から最初の充電電流が決定するまでは1.0
0A、充電電流が決定してからは、電池5の内部インピ
−ダンスが40mΩ未満のときは1.20A、電池5の
内部インピ−ダンスが40mΩ〜60mΩ未満のときは
0.80A、電池5の内部インピ−ダンスが60mΩ〜
100mΩ未満のときは0.48A、電池5の内部イン
ピ−ダンスが100mΩ以上のときは0.24Aの電流
を電池5に供給した。
In other words, when a single cell is used as the battery 5, the value is 1.0 from immediately after the start of charging until the first charging current is determined.
0 A, after the charging current is determined, 1.20 A when the internal impedance of the battery 5 is less than 40 mΩ, 0.80 A when the internal impedance of the battery 5 is less than 40 mΩ to 60 mΩ, the battery 5 Internal impedance is 60mΩ ~
A current of 0.48 A was supplied to the battery 5 when it was less than 100 mΩ, and a current of 0.24 A was supplied when the internal impedance of the battery 5 was 100 mΩ or more.

【0012】(実施例1 請求項1に対応)図1は本発
明の一実施例の充電制御アルゴリズムを示すフローチャ
ートである。充電装置に充電を行う二次電池を接続し充
電をスタートすると、マイクロコンピュータは、電圧測
定部により充電電流供給前の電池電圧Voffを読み込み
記憶する。次にスイッチ回路をONし二次電池に所定値
の充電電流を供給する。そしてスイッチ回路がONの状
態、すなわちパルス波形の電流供給時の電池電圧Von
読み込む。次にマイクロコンピュータは、Voff
on、充電電流Iより二次電池の内部インピーダンスZ
を演算をする。内部インピーダンスは前述した(2)式
によって求める。求められた二次電池の内部インピーダ
ンスにより充電する電流値を決定する。本実施例では、
図1におけるVoff、Vonの測定はフローチャートのサ
イクルの20回に1回の割合で行い、残りは素通りさせ
た。測定時にはパスる波形の1周期におけるVoff、V
onをそれぞれ4回測定し、その4回の平均値を測定値と
し、インピーダンス演算を行った。このとき、求められ
た内部インピーダンスが大きければ充電電流を小さく
し、逆にインピーダンスが小さければ充電電流を大きく
変化させる。電流値決定の際のインピーダンスと充電電
流の関係の一例を図5に示す。通常のAA型ニッケル・
水素電池の内部インピーダンスは20〜40mΩ程度で
ある。本実施例では1100mAhのAA型ニッケル・
水素電池を5本直列に接続した電池パックを用い、その
内部インピーダンスが200mΩ未満であれば充電電流
は1.2A(実効値)とし、200〜300mΩ未満で
あれば0.8A(実効値)、300〜500mΩ未満で
あれば0.48A(実効値)とし、500mΩ以上であ
れば0.24A(実効値)とした。なお、充電開始時の
充電電流は1.0A(実効値)に設定した。以下、本実
施例の記載中に示す電流値はすべて実効値である。次に
充電が完了か否かの判定をする。本実施例では充電対象
の二次電池に密閉型ニッケル・水素電池を用い、充電末
期に現われる電池電圧の変化量が正から負に移行してか
ら所定値電池電圧が低下することを検出する、いわゆる
−ΔV方式により充電完了を検知した。すなわち、検出
されたVoffの最大の電池電圧値をメモリに取り込み、
そこからの電圧の降下−ΔVを検出し、制御した。充電
が完了ならば充電をストップする。充電完了でなければ
スイッチ回路をOFFし、パルス波形における電流遮断
時の電池電圧Voffの測定に戻る。前記Voffの最大の電
池電圧値をメモリに取り込む操作は、初回の電流値決定
がなされた後から開始した。上記充電が完了か否かの判
定は、電池の種類、電池が密閉型か開放型かの違いによ
り、それぞれ方法が異なるため、使用する電池にふさわ
しい方法で行なう。例えば密閉型ニッケル・カドミウム
電池の場合は本実施例と同様に−△V方式、シール鉛蓄
電池の場合は充電末期に電池電圧がほとんど変化しない
ことを検知する方式で行なえばよい。
Embodiment 1 (corresponding to claim 1) FIG. 1 is a flowchart showing a charge control algorithm according to an embodiment of the present invention. When a secondary battery for charging is connected to the charging device and charging is started, the microcomputer reads and stores the battery voltage V off before the charging current is supplied by the voltage measuring unit. Next, the switch circuit is turned on to supply a charging current of a predetermined value to the secondary battery. Then, the switch circuit is in the ON state, that is, the battery voltage V on when the pulse waveform current is supplied is read. Next, the microcomputer turns V off ,
Internal impedance Z of the secondary battery from V on and charging current I
Is calculated. The internal impedance is obtained by the above-mentioned formula (2). The current value to be charged is determined by the obtained internal impedance of the secondary battery. In this embodiment,
The measurement of V off and V on in FIG. 1 was performed once in every 20 cycles of the flowchart, and the rest was passed through. V off , V in one cycle of the waveform passing during measurement
The on was measured four times, and the average value of the four times was used as the measured value to perform impedance calculation. At this time, if the obtained internal impedance is large, the charging current is reduced, and conversely, if the impedance is small, the charging current is greatly changed. FIG. 5 shows an example of the relationship between the impedance and the charging current when determining the current value. Normal AA type nickel
The internal impedance of the hydrogen battery is about 20-40 mΩ. In this embodiment, 1100 mAh of AA type nickel.
Using a battery pack in which five hydrogen batteries are connected in series, the charging current is 1.2 A (effective value) when the internal impedance is less than 200 mΩ, and 0.8 A (effective value) when the internal impedance is less than 200 to 300 mΩ, When it was less than 300 to 500 mΩ, it was 0.48 A (effective value), and when it was 500 mΩ or more, it was 0.24 A (effective value). The charging current at the start of charging was set to 1.0 A (effective value). Hereinafter, all the current values shown in the description of this embodiment are effective values. Next, it is determined whether charging is completed. In this embodiment, a sealed nickel-hydrogen battery is used as the secondary battery to be charged, and it is detected that the battery voltage change amount appearing at the end of charging shifts from a positive value to a negative value and then a predetermined value of the battery voltage decreases. The completion of charging was detected by the so-called -ΔV method. That is, the maximum battery voltage value of the detected V off is loaded into the memory,
The voltage drop from there -ΔV was detected and controlled. If charging is complete, stop charging. If charging is not completed, the switch circuit is turned off and the process returns to the measurement of the battery voltage V off when the current is cut off in the pulse waveform. The operation of loading the maximum battery voltage value of V off into the memory was started after the initial current value was determined. The method of determining whether or not the charging is completed is different depending on the type of battery and whether the battery is a sealed type or an open type. Therefore, a method suitable for the battery to be used is used. For example, in the case of a sealed nickel-cadmium battery, the method may be the same as in the present embodiment, and in the case of a sealed lead-acid battery, a method may be used in which it is detected that the battery voltage hardly changes at the end of charging.

【0013】(実施例1a)図6に、上述した充電装置
を用い、長期放置により内部インピーダンスが250m
Ωになった1100mAhのAA型ニッケル・水素電池
を5本直列に接続した電池パックを用いて周囲温度20
℃で充電した際の電池電圧V、充電電流I、電池温度上
昇量T、内部インピーダンスZの経時変化(以下、充電
特性と記す)をそれぞれ示す。充電開始時の充電電流I
は1.0Aであり、演算された内部インピーダンスZが
250mΩであることを検知し、充電電流Iは0.8A
に下がる。充電が進むにつれて内部インピーダンスZが
下がってきており、充電開始後10minで200mΩ
未満になり、充電電流Iが1.2Aに上がっている。電
池温度上昇量Tは充電初期にはほとんど0であり、充電
末期に約20℃上昇した。
(Embodiment 1a) FIG. 6 shows an internal impedance of 250 m when left for a long time using the above-mentioned charging device.
Ambient temperature of 20 using a battery pack in which 5 AA type nickel-hydrogen batteries of 1100 mAh that have become Ω are connected in series.
The changes over time in the battery voltage V, the charging current I, the battery temperature increase amount T, and the internal impedance Z (hereinafter referred to as charging characteristics) when charged at 0 ° C. are shown. Charging current I at the start of charging
Is 1.0 A, it is detected that the calculated internal impedance Z is 250 mΩ, and the charging current I is 0.8 A.
Go down to. The internal impedance Z is decreasing as the charging progresses, and 200 mΩ 10 minutes after the start of charging.
And the charging current I has risen to 1.2A. The battery temperature increase amount T was almost 0 at the beginning of charging and increased by about 20 ° C. at the end of charging.

【0014】(比較例1a)図7に内部インピーダンス
の値により充電電流値Iを変化させずに1.2Aでパル
ス充電した以外は実施例1aと同じ条件で充電した際の
充電特性を示す。電池温度上昇量Tは充電初期から増大
し、充電末期には30℃を越えた。
(Comparative Example 1a) FIG. 7 shows the charging characteristics when charged under the same conditions as in Example 1a except that the charging current value I was not changed by the value of the internal impedance and pulse charging was performed at 1.2A. The battery temperature increase amount T increased from the beginning of charging and exceeded 30 ° C. at the end of charging.

【0015】(実施例1b)図8に本実施例の充電装置
を用い、周囲温度0℃における1100mAhのAA型
ニッケル・水素電池を5本直列に接続した電池パックを
充電した際の充電特性を示す。充電開始時に電池の内部
インピーダンスZは200mΩを越えており、充電電流
Iは1.0Aから0.8Aに下がる。充電が進行しても
低温環境であるため内部インピーダンスZの低下は顕著
ではないが、充電開始後30minで200mΩ未満に
なり、充電電流が1.2Aに上がっている。電池温度上
昇量Tはほとんど上昇せず、充電末期でも20℃以下だ
った。
(Embodiment 1b) FIG. 8 shows the charging characteristics when a battery pack in which five AA type nickel metal hydride batteries of 1100 mAh at an ambient temperature of 0 ° C. are connected in series using the battery charger of this embodiment. Show. At the start of charging, the internal impedance Z of the battery exceeds 200 mΩ, and the charging current I drops from 1.0 A to 0.8 A. Even if charging proceeds, the internal impedance Z is not significantly reduced because of the low temperature environment, but it becomes less than 200 mΩ 30 minutes after the start of charging, and the charging current rises to 1.2 A. The battery temperature rise amount T hardly increased, and was 20 ° C. or lower even at the end of charging.

【0016】(比較例1b)図9に内部インピーダンス
の値により充電電流値Iを変化させずに1.2Aでパル
ス充電した以外は実施例1bと同じ条件で充電した際の
充電特性を示す。電池温度上昇量Tは充電初期から増大
し、充電末期には30℃を越えた。
(Comparative Example 1b) FIG. 9 shows the charging characteristics when charging was performed under the same conditions as in Example 1b except that pulse charging was performed at 1.2 A without changing the charging current value I depending on the internal impedance value. The battery temperature increase amount T increased from the beginning of charging and exceeded 30 ° C. at the end of charging.

【0017】(実施例1c)図10に寿命末期の内部イ
ンピーダンスが高くなった1100mAhのAA型ニッ
ケル・水素電池を5本直列に接続した電池パックを周囲
温度20℃で本発明による充電装置で充電した際の充電
特性を示す。充電開始時の内部インピーダンスが400
mΩ以上あるため充電電流は0.48Aであり、これに
より充電による発熱を抑える。
(Embodiment 1c) FIG. 10 shows a battery pack in which five 1100 mAh AA nickel-metal hydride batteries having high internal impedance at the end of life are connected in series at an ambient temperature of 20 ° C. by the charging device according to the present invention. The charging characteristics at the time of performing are shown. Internal impedance at the start of charging is 400
Since it is mΩ or more, the charging current is 0.48 A, which suppresses heat generation due to charging.

【0018】(比較例1c)図11に実施例1cと同様
の電池を、充電電流を変化させずに1.2Aでパルス充
電した場合の充電特性を示す。内部インピーダンスが高
い電池を大きい充電電流で充電しているため、温度上昇
が大きく、実施例1cより2倍近く温度が上昇してい
る。したがって発熱のため充電効率も悪く、しかも充電
終了時には電池内圧上昇のため、電解液が漏れていた。
(Comparative Example 1c) FIG. 11 shows the charging characteristics when the same battery as in Example 1c was pulse-charged at 1.2 A without changing the charging current. Since the battery having a high internal impedance is charged with a large charging current, the temperature rises significantly, and the temperature rises nearly twice as much as in Example 1c. Therefore, the charging efficiency was poor due to the heat generation, and at the end of the charging, the internal pressure of the battery increased and the electrolyte leaked.

【0019】以上に記載した実施例は、充電に要する時
間は比較例に比べ遜色なく、電池温度の上昇を抑さえな
がら充電ができた。また、本実施例ではインピーダンス
の値により電流値を変化させたが、パルス波形の充電区
間の時間を変化させても同様の効果が得られた。
In the examples described above, the time required for charging was comparable to that of the comparative examples, and charging could be performed while suppressing an increase in battery temperature. Further, in this embodiment, the current value was changed according to the impedance value, but the same effect was obtained even if the time of the charging section of the pulse waveform was changed.

【0020】(実施例2 請求項2に対応)図12は本
発明の実施例の充電制御アルゴリズムを示すフーチャー
トである。図1のフローチャートに以下にa)〜c)に
記載した手段が追加されている。
Embodiment 2 (corresponding to claim 2) FIG. 12 is a flowchart showing a charge control algorithm according to an embodiment of the present invention. The means described in a) to c) below is added to the flowchart of FIG.

【0021】a)充電をスタートすると、R(red)
のLEDを点灯する。
A) When charging is started, R (red)
Turn on the LED.

【0022】b)インピーダンスの値に複数(3つ)の
領域を設定しておき、演算をしたインピーダンス値がど
の領域に入っているのかの判定を行い、その結果をLE
D表示する。本実施例ではインピーダンスが200mΩ
未満の領域にあるときは、Y(yellow)のLED
を3個、200mΩ以上500mΩ未満の領域にあると
きは2個、100mΩ以上の領域にあるときは1個点灯
させた。
B) A plurality of (three) regions are set for the impedance value, it is judged which region the calculated impedance value is in, and the result is LE.
Display D. In this embodiment, the impedance is 200 mΩ
LED in Y (yellow) when the area is below
3 lights, 2 lights in the region of 200 mΩ or more and less than 500 mΩ, and 1 light in the region of 100 mΩ or more.

【0023】c)充電が完了するとG(green)の
LEDを点灯する。以上の手段を追加し、図13に示す
充電装置11の表示部12に上記の情報を表示すること
により、ユーザーは充電が開始されたこと、充電が終了
したことを把握できる。さらに電池は、寿命末期に近ず
くにつれ内部インピーダンスが高くなるため、Y(ye
llow)のLEDの点灯数により電池の寿命時期を把
握できる。充電前に長期放置等で電池の内部インピーダ
ンスが高い場合には、充電初期にY(yellow)の
LEDが1個あるいは2個点灯であったものが充電の進
行に伴って内部インピーダンスが低下したため、Y(y
ellow)のLEDの点灯数が増加するため、寿命末
期のものと区別できた。
C) When charging is completed, the G (green) LED is turned on. By adding the above means and displaying the above information on the display unit 12 of the charging device 11 shown in FIG. 13, the user can know that charging has started and charging has ended. Furthermore, since the internal impedance of the battery increases as it approaches the end of its life, Y (yes
The life time of the battery can be grasped from the number of lit LEDs. If the internal impedance of the battery is high due to being left for a long time before charging, etc., since one or two Y (yellow) LEDs were lit at the beginning of charging, the internal impedance decreased as the charging progressed. Y (y
Since the number of lit LEDs is increased, it can be distinguished from the end of life.

【0024】本実施例ではY(yellow)のLED
の数を3個としたが、インピーダンス値の判定を細分化
することによりさらに多くすることは容易にできる。当
然2個に減少させることも容易である。また、インピー
ダンス値の判定の際に用いるインピーダンス値は上述し
た値に限定するものではない。
In this embodiment, a Y (yellow) LED is used.
Although the number of 3 is three, it can be easily increased by subdividing the determination of the impedance value. Naturally, it is easy to reduce the number to two. Further, the impedance value used when determining the impedance value is not limited to the above value.

【0025】[0025]

【発明の効果】請求項1記載の本発明による充電装置を
用いることで、内部インピーダンスが高い二次電池に対
してできるだけ急速充電しながら電池温度の上昇を抑制
することができた。また、請求項2記載の発明による充
電装置を用いることで電池の寿命時期を、ユーザーが把
握することができる。
By using the charging device according to the present invention as set forth in claim 1, it is possible to suppress the rise in battery temperature while charging the secondary battery having a high internal impedance as quickly as possible. Further, by using the charging device according to the second aspect of the present invention, the user can grasp the life time of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の充電制御アルゴリズムを示
すフローチャート。
FIG. 1 is a flowchart showing a charge control algorithm according to an embodiment of the present invention.

【図2】本発明の充電装置に係るブロック図。FIG. 2 is a block diagram according to the charging device of the present invention.

【図3】本発明の電流波形と電池電圧の測定タイミング
を示した図。
FIG. 3 is a diagram showing a current waveform and a battery voltage measurement timing according to the present invention.

【図4】本発明の充電装置の部分詳細図。FIG. 4 is a partial detailed view of the charging device of the present invention.

【図5】本発明の装置に置けるインピーダンスと充電電
流の関係の一例を示した図
FIG. 5 is a diagram showing an example of the relationship between impedance and charging current that can be placed in the device of the present invention.

【図6】本発明に係わる一実施例の充電特性を示した
図。
FIG. 6 is a diagram showing charging characteristics of an example according to the present invention.

【図7】一比較例の充電特性を示した図。FIG. 7 is a diagram showing charging characteristics of a comparative example.

【図8】本発明に係わる一実施例の充電特性を示した
図。
FIG. 8 is a diagram showing charging characteristics of an example according to the present invention.

【図9】一比較例の充電特性を示した図。FIG. 9 is a diagram showing charging characteristics of a comparative example.

【図10】本発明に係わる一実施例の充電特性を示した
図。
FIG. 10 is a diagram showing charging characteristics of an example according to the present invention.

【図11】一比較例の充電特性を示した図。FIG. 11 is a diagram showing charging characteristics of a comparative example.

【図12】本発明の一実施例の充電制御アルゴリズムを
示すフローチャート。
FIG. 12 is a flowchart showing a charge control algorithm according to an embodiment of the present invention.

【図13】本発明に係わる一実施例の充電装置の外観概
略図を示した図。
FIG. 13 is a diagram showing a schematic external view of a charging device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…直流電源装置、2…スイッチ回路、3…制御回路、
4…マイクロコンピュータ、41…CPU、42…メモ
リ、43…出力ポート、44…A/D変換器、5…二次
電池、6…表示部、7…電池電圧測定部、8…電源、9
…抵抗、10…FET、11…充電装置、12…LED
1 ... DC power supply device, 2 ... switch circuit, 3 ... control circuit,
4 ... Microcomputer, 41 ... CPU, 42 ... Memory, 43 ... Output port, 44 ... A / D converter, 5 ... Secondary battery, 6 ... Display unit, 7 ... Battery voltage measuring unit, 8 ... Power supply, 9
... resistor, 10 ... FET, 11 ... charging device, 12 ... LED

フロントページの続き (56)参考文献 特開 昭64−81628(JP,A) 特開 昭61−262032(JP,A) 特開 昭58−139080(JP,A) 特開 平8−182215(JP,A) 特開 平8−149709(JP,A) 特開 平5−292675(JP,A) 特開 平4−125034(JP,A) 特開 平2−262855(JP,A) 特表 平3−500959(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 7/04 H02J 7/10 Continuation of the front page (56) Reference JP-A-64-81628 (JP, A) JP-A-61-262032 (JP, A) JP-A-58-139080 (JP, A) JP-A-8-182215 (JP , A) JP-A-8-149709 (JP, A) JP-A-5-292675 (JP, A) JP-A-4-125034 (JP, A) JP-A-2-262855 (JP, A) 3-500959 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H02J 7/04 H02J 7/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パルス波形をなす電流により二次電池を充
電するパルス充電手段と、 パルス充電操作中の電流供給区間t1の電池電圧Von、
及び電流遮断区間t2の電池電圧Voffを検出する手段
と、 前記Von、Voff、パルス充電操作中の電流供給時の電
流値Iとにより二次電池の内部インピーダンスZを、Z
=(Von−Voff)/Iから演算する手段と、前記内部インピーダンスZが所定値より大きいときは、
前記電流値Iと前記電流供給区間t1の少なくとも一方
を減少させ、前記内部インピーダンスZが所定値より小
さいときは、 前記電流値Iと前記電流供給区間t1の少
なくとも一方を増加させる手段とを備えたことを特徴と
する二次電池の充電装置。
1. A pulse charging means for charging a secondary battery with a current having a pulse waveform, a battery voltage Von in a current supply section t1 during a pulse charging operation,
And means for detecting the battery voltage Voff in the current cutoff section t2, and Von, Voff, and the current value I at the time of current supply during the pulse charging operation, the internal impedance Z of the secondary battery is expressed by Z
= (Von-Voff) / I, and when the internal impedance Z is larger than a predetermined value,
At least one of the current value I and the current supply section t1
And the internal impedance Z is smaller than a predetermined value.
In the other case, the rechargeable battery charging device is provided with means for increasing at least one of the current value I and the current supply section t1.
【請求項2】充電初期の前記内部インピーダンスZが所2. The internal impedance Z at the initial stage of charging is
定値より大きく、前記電流値Iと前記電流供給区間t1The current value I and the current supply section t1 are larger than a fixed value.
の少なくとも一方を減少させて充電しても、前記内部イEven if at least one of the
ンピーダンスZが低下しないときは、二次電池が寿命末If the impedance Z does not decrease, the secondary battery has reached the end of its life.
期であることを表示する手段を備えたことを特徴とするIt is characterized by having means for displaying that the period is
請求項1記載の二次電池の充電装置。The rechargeable battery charging device according to claim 1.
JP30450694A 1994-12-08 1994-12-08 Rechargeable battery charger Expired - Fee Related JP3508254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30450694A JP3508254B2 (en) 1994-12-08 1994-12-08 Rechargeable battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30450694A JP3508254B2 (en) 1994-12-08 1994-12-08 Rechargeable battery charger

Publications (2)

Publication Number Publication Date
JPH08163788A JPH08163788A (en) 1996-06-21
JP3508254B2 true JP3508254B2 (en) 2004-03-22

Family

ID=17933863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30450694A Expired - Fee Related JP3508254B2 (en) 1994-12-08 1994-12-08 Rechargeable battery charger

Country Status (1)

Country Link
JP (1) JP3508254B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262614A (en) * 2005-03-16 2006-09-28 Sanyo Electric Co Ltd Charger and charging method
JP4782663B2 (en) * 2006-11-29 2011-09-28 パナソニック株式会社 Charging system, charging device, and battery pack
BRPI0809518A2 (en) * 2007-03-26 2016-03-15 Gillette Co adaptive charger device and method
JP5043777B2 (en) * 2007-08-22 2012-10-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method
US20180034283A1 (en) * 2016-07-27 2018-02-01 Lenovo (Singapore) Pte. Ltd. Systems and methods to increase rate of charge of battery based on impedance
US10439418B2 (en) 2016-07-29 2019-10-08 Lenovo (Singapore) Pte. Ltd. Systems and methods to charge a battery at different charge rates and indicate when charging at a faster rate is available
TWI664770B (en) * 2018-05-03 2019-07-01 Pegatron Corporation Battery charge system and battery charge method

Also Published As

Publication number Publication date
JPH08163788A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
US6229285B1 (en) Detector for rapid charging and method
JP2003059544A5 (en)
WO2009119271A1 (en) Charging method for an assembled cell and an assembled cell system
KR940027251A (en) A method of monitoring the charge of sealed nickel storage cells and a charger using the method
US6380717B2 (en) Device and method for controlling charging of secondary battery
JPH077866A (en) Circuit for charging secondary battery
JP3508254B2 (en) Rechargeable battery charger
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP3774995B2 (en) Lithium ion secondary battery charging method and charging device therefor
JP2004015876A (en) Charging voltage setting device for lithium ion battery
JPH11187585A (en) Charger and charging method for lithium ion secondary battery
JP3107407B2 (en) How to charge the battery pack
JPH1051972A (en) Method and apparatus for charging secondary battery
JPH1174001A (en) Charging method for lead-acid battery
JPH1032020A (en) Charge and discharge control method for sealed type lead-acid battery
JP2674236B2 (en) Closed lead-acid battery charging method
JP2903954B2 (en) Rechargeable battery charger
JP3702332B2 (en) Charge control method and charge control device for secondary battery
JP4013289B2 (en) Non-aqueous secondary battery charging method and charging device therefor
JP3346821B2 (en) Charging device
JPH11355968A (en) Charging for storage battery and charger therefor
JP3286357B2 (en) Charger
JP2002112467A (en) Battery charger
JP2946979B2 (en) Rechargeable battery charge control method
JP3555989B2 (en) Rechargeable battery charging method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees