JP3503022B2 - Compass - Google Patents

Compass

Info

Publication number
JP3503022B2
JP3503022B2 JP36477098A JP36477098A JP3503022B2 JP 3503022 B2 JP3503022 B2 JP 3503022B2 JP 36477098 A JP36477098 A JP 36477098A JP 36477098 A JP36477098 A JP 36477098A JP 3503022 B2 JP3503022 B2 JP 3503022B2
Authority
JP
Japan
Prior art keywords
output
azimuth
gps
angular velocity
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36477098A
Other languages
Japanese (ja)
Other versions
JP2000186937A (en
Inventor
有孝 大野
雅夫 小林
祐子 宇野
竜治 臼井
和範 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP36477098A priority Critical patent/JP3503022B2/en
Publication of JP2000186937A publication Critical patent/JP2000186937A/en
Application granted granted Critical
Publication of JP3503022B2 publication Critical patent/JP3503022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は移動体に搭載し
て、その移動方向(方位角)を計測する方位計に関し、
特にジャイロスコープ出力の角速度を積分して方位角を
求め、その方位角をGPS受信機より出力される方位角
で較正するようにしたハイブッド型の方位計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth meter which is mounted on a moving body and measures its moving direction (azimuth angle),
In particular, the present invention relates to a hybrid type azimuth meter which integrates the angular velocity of the output of a gyroscope to obtain an azimuth and calibrates the azimuth with the azimuth output from a GPS receiver.

【0002】[0002]

【従来の技術】 従来の方位計1 GPS受信機により時々刻々(通常は1秒ごと)得られ
る位置データから前回位置データとの差分を求めて方位
を求める。この方位計は絶対方位(真北に対する方位
角)が得られるメリットがある。
2. Description of the Related Art A conventional azimuth meter 1 A azimuth is obtained by obtaining a difference from previous position data from position data obtained every moment (usually every second) by a GPS receiver. This compass has the merit of being able to obtain the absolute azimuth (azimuth angle to true north).

【0003】 従来の方位計2 ジャイロスコープ(以下ジャイロと言う)を用いて回転
角速度ωまたは回転角度θを計測する。この方位計はリ
アルタイムで角度変位が得られるメリットがある。
Conventional azimuth meter 2 A rotational angular velocity ω or a rotational angle θ is measured using a gyroscope (hereinafter referred to as a gyro). This compass has the merit of being able to obtain angular displacement in real time.

【0004】[0004]

【発明が解決しようとする課題】 従来の方位計1
(GPS)は、前記のとおり1秒前の位置情報と現在の
位置情報の差分から角度を算出するため、移動速度が低
速の場合または旋回中の場合、位置の差分が小さくなる
ため方位角誤差が大きくなる。原理的に速度がゼロの場
合は方位角を計測できない。
[Problem to be Solved by the Invention] Conventional azimuth meter 1
As described above, the (GPS) calculates the angle from the difference between the position information one second before and the current position information. Therefore, when the moving speed is low or when the vehicle is turning, the difference in position becomes small, and thus the azimuth angle error. Grows larger. In principle, the azimuth cannot be measured when the velocity is zero.

【0005】 角度の出力のために1秒要するため、
リアルタイムの方位測定に限度がある。 またGPS
電波の受信状態が悪い場合には、測定誤差が大きくな
り、遂には測定不能となる問題があった。 従来の方
位計2(ジャイロ方式)は、その原理から相対方位しか
得られない。また、ジャイロの角速度出力にゼロ点ドリ
フトが存在するため積分誤差が時間と共に増大する問題
があった。
Since it takes 1 second to output the angle,
There are limits to real-time bearing measurement. Also GPS
When the reception condition of the radio wave is poor, there is a problem that the measurement error becomes large and the measurement becomes impossible at last. The conventional azimuth meter 2 (gyro system) can obtain only a relative azimuth due to its principle. In addition, since there is a zero point drift in the gyro angular velocity output, there is a problem that the integration error increases with time.

【0006】[0006]

【課題を解決するための手段】以上の問題点解決のた
め、GPS信号とジャイロ信号を組み合わせて両者の利
点を融合するようにしたのが本願発明の趣旨である。即
ち、本願発明の大きな骨子は以下の通りである。 移
動体が高速かつ直線移動時にジャイロ方位をGPS方位
に合わせ、ジャイロ方位をGPSが出力する絶対方位に
整合させる。
In order to solve the above problems, the purpose of the present invention is to combine GPS signals and gyro signals so as to combine the advantages of both. That is, the main points of the present invention are as follows. The gyro azimuth is aligned with the GPS azimuth when the moving body moves at high speed and in a straight line, and the gyro azimuth is matched with the absolute azimuth output by the GPS.

【0007】 移動体低速移動時、または旋回時はジ
ャイロ方位(少なくとも一回上記がなされていればジ
ャイロ方位は絶対方位となっている)を出力する。
移動体が停止時は原理的に方位は動かないのでジャイロ
のゼロ点ドリフトの影響を除去するためにジャイロの後
段に不感帯手段を設け、微少な角速度に対して反応しな
いものとする。
A gyro azimuth is output when the mobile body moves at a low speed or turns (when the above operation is performed at least once, the gyro azimuth is an absolute azimuth).
Since the azimuth does not move in principle when the moving body is stopped, dead zone means is provided after the gyro in order to eliminate the influence of the zero point drift of the gyro, so that it does not react to a minute angular velocity.

【0008】不感帯の大きさは移動体の現実に計測対象
となる回転角速度より十分小さいレベルに設定する。こ
の点から静止時は角速度はゼロだから不感帯レベルを大
きくして不感帯手段の出力をゼロにし、移動時は不感帯
レベルを小さくする(移動時は微少な角速度が加わる可
能性があるため)。
The size of the dead zone is set to a level that is sufficiently smaller than the rotational angular velocity of the moving body that is actually measured. From this point of view, since the angular velocity is zero when stationary, the dead zone level is increased to zero the output of the dead zone means, and the dead zone level is reduced during movement (because a slight angular velocity may be added during movement).

【0009】あるいは、静止時には強制的に角度が変化
しないように数値を固定してしまう。 前記ジャイロ
のゼロ点ドリフトは一般的に温度の影響で生じる。温度
が大きく変化するような場合は温度センサの出力に対し
て不感帯のレベルを変化させることも可能である。
Alternatively, the numerical value is fixed so that the angle is not forcibly changed when stationary. The zero point drift of the gyro is generally caused by temperature. When the temperature changes greatly, it is possible to change the dead zone level with respect to the output of the temperature sensor.

【0010】 ジャイロ方位角はゼロ点ドリフト及び
回転時のスケールファクタ誤差(例えば90°回転した
のに90.1°と出力する)の影響で時間とともに方位
誤差が累積する。GPSとジャイロ信号の整合行為はジ
ャイロ信号をGPSが出力する絶対方位に合わせること
であるから方位誤差の累積を防止する効果がある。GP
S方位に対するジャイロ方位の整合が一定時間以上なさ
れない場合はこの累積誤差が大きくなり計測値の信頼性
が低下することに対してユーザに警告信号を出力する。
In the gyro azimuth, the azimuth error accumulates with time due to the influence of the zero point drift and the scale factor error at the time of rotation (for example, it is output as 90.1 ° even when rotated by 90 °). Since the matching action between the GPS and the gyro signal is to match the gyro signal with the absolute azimuth output from the GPS, it has an effect of preventing the accumulation of azimuth errors. GP
If the gyro azimuth is not aligned with the S azimuth for a certain period of time or longer, a warning signal is output to the user when the accumulated error becomes large and the reliability of the measured value is lowered.

【0011】 GPS方位にジャイロ方位を合わせる
際に両者の差分が大きい場合は急速に方位の整合を完了
させ、小さい場合はゆっくり整合させる。特に差分が一
定値以上の場合は直接差分を零とする。起動直後は原理
的に差分が大きいためこのような処置が必要である。一
回整合がとれれば、ジャイロ誤差の累積による差分を零
とすれば良いので急速に差分を零とすることは不要で、
急速に差分を零とする行為が頻繁に行われると方位の出
力がなめらかに変化せず、運用し難いものとなる。
When the gyro azimuth is adjusted to the GPS azimuth, if the difference between the two is large, the azimuth matching is completed quickly, and if the difference is small, the gyro azimuth matching is performed slowly. In particular, when the difference is a certain value or more, the direct difference is set to zero. Immediately after the start-up, such a measure is necessary because the difference is large in principle. Once matching is achieved, the difference due to the accumulation of gyro errors can be set to zero, so it is not necessary to rapidly set the difference to zero,
If the action to quickly set the difference to zero is frequently performed, the output of the direction does not change smoothly, which makes it difficult to operate.

【0012】[0012]

【発明の実施の形態】(1)この発明の方位計は図1に
示すように、ジャイロ1と、GPS受信機2と、処理回
路3により構成される。ジャイロ1は、移動体の角速度
ωを計測するもので、光ファイバジャイロ(FOG),
振動ジャイロがよく知られている。昨今ではシリコン微
細加工を用いて作製されたジャイロが提案されている。
GPS受信機2は、GPS電波を受信して、移動体の真
北に対する方位角(GPS方位角と言う)θ1及びGP
S電波受信状態の良/不良を示すGPS受信状態信号S
を出力する。
BEST MODE FOR CARRYING OUT THE INVENTION (1) As shown in FIG. 1, an azimuth meter of the present invention comprises a gyro 1, a GPS receiver 2, and a processing circuit 3. The gyro 1 measures the angular velocity ω of a moving body, and uses an optical fiber gyro (FOG),
Vibration gyros are well known. Recently, a gyro manufactured using silicon microfabrication has been proposed.
The GPS receiver 2 receives GPS radio waves and outputs an azimuth angle (referred to as GPS azimuth angle) θ1 and GP to the true north of the moving body.
S GPS reception status signal S indicating good / bad radio wave reception status
Is output.

【0013】処理回路3は、ジャイロ1より入力される
角速度ωを積分して方位角(ジャイロ方位角と言う)θ
2を求め、GPS受信状態信号Sが良好を示すときは、
ジャイロ方位角θ2をGPS方位角θ1により較正し、
そして得られた方位角θ2′≒θ1を測定値として出力
し、GPS受信状態信号Sが不良を示すときは、GPS
電波受信状態が良好なときに較正されたジャイロ方位角
θ2′を測定値として出力する。
The processing circuit 3 integrates the angular velocity ω input from the gyro 1 to obtain an azimuth angle (referred to as a gyro azimuth angle) θ.
2 is obtained, and when the GPS reception state signal S shows good,
Gyro azimuth θ2 is calibrated by GPS azimuth θ1,
Then, the obtained azimuth angle θ2′≈θ1 is output as a measured value, and when the GPS reception status signal S indicates a defect, the GPS
The gyro azimuth angle θ2 ′ calibrated is output as a measured value when the radio wave reception state is good.

【0014】処理回路3は、角速度ωより帰還信号Fを
減算する第1減算手段4と、その第1減算手段4の出力
を積分する積分手段5と、その積分手段出力のジャイロ
方位角θ2よりGPS方位角θ1を減算する第2減算手
段6と、その減算手段6の出力を増幅して、その増幅し
た信号を帰還信号Fとして第1減算手段4に与え、積分
手段5の出力θ2をGPS方位角θ1に一致させる帰還
増幅手段7と、前記の各手段の動作を制御する制御手段
8とを具備している。
The processing circuit 3 comprises a first subtracting means 4 for subtracting the feedback signal F from the angular velocity ω, an integrating means 5 for integrating the output of the first subtracting means 4, and a gyro azimuth angle θ2 of the output of the integrating means. The second subtracting means 6 for subtracting the GPS azimuth angle θ1 and the output of the subtracting means 6 are amplified, the amplified signal is given to the first subtracting means 4 as the feedback signal F, and the output θ2 of the integrating means 5 is obtained by the GPS. a feedback amplifying means 7 match the azimuth .theta.1, that have and control means 8 for controlling the operation of each unit of the.

【0015】なお、積分手段5の入力側または出力側
(図1の例では入力側)に増幅手段5aを必要に応じ設
けてもよい。 (2)処理回路3の帰還増幅手段7の入力側または出力
側(図1では入力側)にスッイッチ手段9を設けて、制
御手段8が所定の期間においてのみスイッチ手段9をオ
ンに制御するようにしてもよい。
If necessary, the amplifying means 5a may be provided on the input side or the output side of the integrating means 5 (the input side in the example of FIG. 1). (2) A switching means 9 is provided on the input side or output side (input side in FIG. 1) of the feedback amplification means 7 of the processing circuit 3 so that the control means 8 controls the switch means 9 to be turned on only during a predetermined period. but it may also be in.

【0016】(3)(2)項の第1の例は、制御手段8
がGPS電波受信状態が良好で、かつ移動体の速度を示
す信号Vがしきい値Vth以上であることを比較手段8a
で識別し、このとき移動体の1秒ごとの位置の変化は比
較的大きく、GPS方位角θ1の誤差は小さいのでスイ
ッチ手段9をオンに制御し、GPS電波受信状態が不良
のとき、または移動体の速度信号Vがしきい値Vth以下
であるとき、GPS方位角θ1の誤差が大きいのでスイ
ッチ手段9をオフに制御し、GPS方位角θ1によって
ジャイロ方位角θ2を較正する動作をストップし、それ
以前に少なくとも1度は較正されたジャイロ方位角θ
2′を外部に出力する。速度信号VとしてGPS受信機
2より出力される速度信号または移動体の速度センサの
出力、例えば車輪の回転数に対応した信号を用いること
ができる。
The first example of (3) and (2) is the control means 8
Means that the GPS signal reception condition is good, and that the signal V indicating the speed of the moving body is equal to or higher than the threshold value Vth.
At this time, the change of the position of the moving body per second is relatively large, and the error of the GPS azimuth angle θ1 is small. Therefore, the switch means 9 is controlled to be ON, and when the GPS radio wave reception state is poor, When the speed signal V of the body is less than or equal to the threshold value Vth, the error of the GPS azimuth angle θ1 is large, so the switch means 9 is controlled to be off, and the operation of calibrating the gyro azimuth angle θ2 by the GPS azimuth angle θ1 is stopped. Gyro azimuth θ calibrated at least 1 degree before that
You output the 2 'to the outside. As the speed signal V, a speed signal output from the GPS receiver 2 or an output of the speed sensor of the moving body, for example, a signal corresponding to the rotation speed of the wheel can be used.

【0017】(4)(2)項の第2の例は、制御手段8
がGPS電波受信状態が良好で、かつ移動体の角速度ω
が比較角速度ωr(例えば2°/秒)以下であることを
比較手段8bで識別し、このとき移動体はほぼ直進して
いるので、一般に1秒ごとの位置の変化が比較的大き
く、GPS方位角θ1の誤差は小さいので、スイッチ手
段9をオンに制御し、GPS電波受信状態が不良のと
き、または移動体の角速度ωが比較角速度ωr以上であ
るとき、移動体は旋回中で、1秒ごとの位置の変化が小
さいため、GPS方位角θ1の誤差が大きいので、スイ
ッチ手段9をオフに制御する。
The second example of the items (4) and (2) is the control means 8
Is in a good condition to receive GPS radio waves, and the angular velocity ω of the moving body is
Is compared with the comparison angular velocity ωr (for example, 2 ° / sec) or less by the comparison means 8b. At this time, since the moving body is almost straight ahead, the position change per second is relatively large, and the GPS direction Since the error of the angle θ1 is small, the switch means 9 is controlled to be turned on, and when the GPS radio wave reception state is poor, or when the angular velocity ω of the moving body is equal to or higher than the comparative angular velocity ωr, the moving body is turning and is in 1 second. since the change in the position of each is small, the error in the GPS azimuth θ1 is larger, that control the switch off means 9.

【0018】(5)上述において制御手段8は、スイッ
チ手段9をオンにして(その時刻をtaとする)からオ
フにする(その時刻をtbとする)までの時間Δt=t
b−taをタイマ8cで計測して、その計測値がしきい
値Δtr(例えば3秒)以下の場合は、GPS電波受信状
態が不良であるか、移動体の速度Vが小さいか、または
角速度が大きく、GPS方位角θ1の信頼性が低く、或
いは誤差が大きくなっており、θ1による較正には問題
があるので、積分手段5の出力θ2′を、スイッチ手段
9をオンにする直前の値θ2′(ta-0)に戻すように
積分手段5を制御する(請求項1、2)。
(5) In the above description, the control means 8 sets the time Δt = t from the time when the switch means 9 is turned on (the time is ta) to the time it is turned off (the time is tb).
When b-ta is measured by the timer 8c and the measured value is less than or equal to the threshold value Δtr (for example, 3 seconds), the GPS radio wave reception state is poor, the velocity V of the moving body is low, or the angular velocity is Is large, the reliability of the GPS azimuth angle θ1 is low, or the error is large, and there is a problem in calibration by θ1, so the output θ2 ′ of the integrating means 5 is set to a value immediately before the switch means 9 is turned on. The integrating means 5 is controlled so as to return to θ2 ′ (ta −0 ) (claims 1 and 2 ).

【0019】(6)図1に示すように、処理回路3の角
速度ωの入力側に不感帯手段10を設けるのが望まし
い。不感帯手段10は、ジャイロスコープ1より入力さ
れる角速度ωをしきい値と比較し、しきい値以上の場合
は角速度ωをそのまま出力し、しきい値以下の場合は出
力をゼロとするように動作する(請求項)。このよう
な不感帯手段10を設けると、積分手段5において時間
と共に増大する積分誤差を軽減することができる。
(6) As shown in FIG. 1, it is desirable to provide the dead zone means 10 on the input side of the angular velocity ω of the processing circuit 3. The dead zone means 10 compares the angular velocity ω input from the gyroscope 1 with a threshold value, and outputs the angular velocity ω as it is when it is equal to or more than the threshold value, and outputs it as zero when it is less than the threshold value. It operates (claim 3 ). By providing such a dead zone means 10, it is possible to reduce the integration error that increases with time in the integration means 5.

【0020】(7)制御手段8が、移動体の速度を示す
信号Vをしきい値Vthと比較し、しきい値Vth以下のと
きはGPS方位角θ1の誤差が大きく、これによる較正
は好ましくないので、積分手段5を制御してその出力θ
2′を変化しないようにフリーズさせるようにすること
もできる(請求項)。 (8)制御手段8が、移動体の停止を示す信号(例えば
ブレーキ信号)を外部より入力して、積分手段5を制御
してその出力を変化しないようにフリーズさせるように
してもよい(請求項)。
(7) The control means 8 compares the signal V indicating the speed of the moving body with the threshold value Vth. When the signal V is less than the threshold value Vth, the error of the GPS azimuth angle θ1 is large, and the calibration by this is preferable. Since it does not exist, the integrating means 5 is controlled to output its output θ.
It is also possible to freeze 2'so that it does not change (claim 4 ). (8) The control means 8 may input a signal (for example, a brake signal) indicating the stop of the moving body from the outside to control the integrating means 5 to freeze the output so as not to change (claim) Item 5 ).

【0021】(9)制御手段8が、移動体の速度を示す
信号Vを比較手段8dで基準値Vrと比較し、図2Aに
示すように、速度がゼロに近い基準値Vr 以下であると
き、つまり移動体が停止時には角度の変化はないので、
不感帯手段10のしきい値ωth2を、移動体の速度が基
準値Vr 以上であるときのしきい値ωth1より大きくな
るように制御して、不感帯手段10の出力を確実にゼロ
にして積分誤差を小さくするようにしてもよい(請求項
)。
(9) When the control means 8 compares the signal V indicating the speed of the moving body with the reference value Vr by the comparison means 8d, and the speed is below the reference value Vr close to zero as shown in FIG. 2A. In other words, since the angle does not change when the moving body is stopped,
The threshold value ωth2 of the dead zone means 10 is controlled to be larger than the threshold value ωth1 when the speed of the moving body is equal to or higher than the reference value V r , and the output of the dead zone means 10 is surely set to zero to integrate the error. May be reduced (claims
6 ).

【0022】(10)他の方法として図2Bに示すよう
に、制御手段8が、移動体の速度Vに応じて不感帯手段
10のしきい値(ωth)が小さくなるように制御するこ
ともできる(請求項)。 (11)ジャイロスコープ1の温度を検出する温度セン
サを設け、制御手段8は、図3Aに示すように温度セン
サの出力が所定温度範囲T1〜T2の外側にあるときの
不感帯手段10のしきい値ωth′を、所定温度範囲T1
〜T2内にあるときのしきい値ωthより大きくなるよう
に制御するのが望ましい(請求項)。即ち、所定温度
範囲内では一般にジャイロの精度はよいが、所定温度範
囲外では精度が低下し、ゼロ点ドリフトなども増大する
恐れがあるのでしきい値ωth′を大きく設定する。
(10) As another method, as shown in FIG. 2B, the control means 8 can be controlled so that the threshold value (ωth) of the dead zone means 10 becomes smaller according to the speed V of the moving body. (Claim 7 ). (11) A temperature sensor for detecting the temperature of the gyroscope 1 is provided, and the control means 8 controls the threshold of the dead zone means 10 when the output of the temperature sensor is outside the predetermined temperature range T1 to T2 as shown in FIG. 3A. The value ωth 'is set to the predetermined temperature range T1.
It is desirable to control so as to be larger than the threshold value ωth when the value is within T2 (claim 8 ). That is, the accuracy of the gyro is generally good within the predetermined temperature range, but the accuracy may be lowered outside the predetermined temperature range, and zero point drift may increase, so the threshold value ωth ′ is set to a large value.

【0023】(12)他の方法として、ジャイロスコー
プの温度を検出する温度センサを設け、制御手段8は、
図3Bに示すように温度センサの出力に応じて不感帯手
段10のしきい値ωthが大きくなるように制御するよう
にしてもよい(請求項)。 (13)制御手段8が、スイッチ手段9をオンからオフ
に制御してからの経過時間Δt offをタイマ8cで計測
して、その計測値が許容時間Δt maxを越えた場合に、
その間、方位計はGPS方位角θ1による較正を行って
いないので、ジャイロ方位角θ2′の積分誤差が増大し
ているので、方位角出力に信頼性が無いことを示すアラ
ーム信号ALMを出力するようにしてもよい(請求項
)。
(12) As another method, a temperature sensor for detecting the temperature of the gyroscope is provided, and the control means 8 is
As shown in FIG. 3B, the threshold value ωth of the dead zone means 10 may be controlled to increase according to the output of the temperature sensor (claim 9 ). (13) When the control means 8 measures the elapsed time Δt off after controlling the switch means 9 from on to off with the timer 8c and the measured value exceeds the allowable time Δt max,
During that time, since the azimuth meter is not calibrated by the GPS azimuth angle θ1, the integration error of the gyro azimuth angle θ2 ′ is increasing. Therefore, the alarm signal ALM indicating that the azimuth angle output is not reliable is output. (Claim 1
0 ).

【0024】(14)上述の(7)または(8)におい
て、移動体速度がゼロの場合は、積分手段5の方位出力
はフリーズされ、その間の累積誤差はないので、上述の
経過時間Δt offとして移動体速度Vがゼロの期間を除
いて計測し、その計測値が許容時間Δt maxを越えた場
合に、アラーム信号ALMを出力するようにしてもよい
(請求項11)。
(14) In the above (7) or (8), when the moving body velocity is zero, the azimuth output of the integrating means 5 is frozen and there is no accumulated error during that time, so the above-mentioned elapsed time Δt off. Alternatively, the mobile body speed V may be measured excluding the period of zero, and the alarm signal ALM may be output when the measured value exceeds the allowable time Δt max (claim 11 ).

【0025】(15)GPS方位角θ1にジャイロ方位
角θ2を合わせる際に、両者の差が大きい場合は急速に
方位の整合を完了させ、小さい場合はゆっくり整合させ
るのが望ましい。そこで、制御手段8は、図4に示すよ
うに第2減算手段6の出力Δθ=θ2−θ1の大きさに
応じて、帰還増幅手段7の利得が変化するように制御す
る(請求項12)。
(15) When adjusting the gyro azimuth angle θ2 to the GPS azimuth angle θ1, it is desirable to complete the azimuth alignment rapidly when the difference between the two is large, and to slowly align when the difference is small. Therefore, the control means 8 controls so that the gain of the feedback amplification means 7 changes in accordance with the magnitude of the output Δθ = θ2-θ1 of the second subtraction means 6 as shown in FIG. 4 (claim 12 ). .

【0026】(16)方位計を起動した直後は原理的に
上記のΔθはかなり大きく、負帰還制御によって差分を
ゼロにするのに時間が掛かるので、強制的に直にゼロに
するのが望ましい。そこで、制御手段8は比較手段(図
示せず)で第2減算手段6の出力Δθ=θ2−θ1の大
きさを基準値Δθr と比較し、基準値を越えた場合、直
ちに積分手段の出力θ2がGPS方位θ1に一致するよ
うに積分手段5を制御することもできる(請求項
)。
(16) In principle, immediately after the azimuth meter is started, the above-mentioned Δθ is considerably large, and it takes time to make the difference zero by the negative feedback control, so it is desirable to forcibly make it zero directly. . Therefore, the control means 8 compares the magnitude of the output Δθ = θ2−θ1 of the second subtraction means 6 with the reference value Δθr by the comparison means (not shown), and when it exceeds the reference value, the output θ2 of the integration means immediately. There can also be controlled integration means 5 so as to match the GPS orientation .theta.1 (claim 1
3 ).

【0027】(17)処理回路3の積分手段5の入力側
または出力側に増幅手段5aを設けて、制御手段8が増
幅手段5aの利得を第2減算手段の出力Δθ=θ2−θ
1の大きさに応じて変化するように制御することによっ
て、上述の(15)項と同様の効果を得ることができる
(請求項14)。 (18)請求項及びを実施した方位計で計測した方
位角の真方位(誤差が無視できるほど小さく、特別の方
位計で計測した測定基準となる方位角)からのずれ(誤
差)角の時間による変化特性を図5Aにで示す。図5
Aには比較のため従来のGPSのみによる方位計で測定
した特性と、従来のFOGのみによる方位計で測定し
た特性とを示してある。この発明の特性では、移動
体が静止時及び旋回時のGPS方位角θ1の誤差や、F
OG方位角の時間とともに増大する積分誤差の影響はか
なり低減されている。図5B及びCに基準となる高精度
測定器で計測した移動体の速度と、GPS電波の受信状
態の変化を示してある。図5のA,B及びCは共通の時
間軸をもち、互いに対応している。
(17) The amplifying means 5a is provided on the input side or the output side of the integrating means 5 of the processing circuit 3, and the control means 8 outputs the gain of the amplifying means 5a to the output of the second subtracting means Δθ = θ2-θ.
By controlling so as to change according to the magnitude of 1, it is possible to obtain the same effect as the above item (15) (Claim 14 ). (18) Deviation (error) angle of the azimuth angle measured by the azimuth meter according to claims 1 and 2 from the true azimuth angle (the azimuth angle that is a measurement standard measured by a special azimuth meter and is small enough to be ignored). FIG. 5A shows the change characteristics with respect to time. Figure 5
For comparison, a characteristic measured by a conventional azimuth meter using only GPS and a characteristic measured by a conventional azimuth meter using only FOG are shown for comparison. According to the characteristics of the present invention, the error of the GPS azimuth angle θ1 when the moving body is stationary and turning, and F
The effect of integration error, which increases with time on the OG azimuth, is significantly reduced. FIGS. 5B and 5C show changes in the speed of the moving body measured by a high-precision measuring device serving as a reference and the reception state of GPS radio waves. A, B and C in FIG. 5 have a common time axis and correspond to each other.

【0028】[0028]

【発明の効果】 この発明ではジャイロ方位角θ2を
GPS電波受信状態が良好で、移動体の速度がしきい以
上であるか、または角速度が所定値以下の場合、つまり
直進に近く、ある程度速度を維持している場合の精度の
よいGPS方位角θ1で較正し、そうでない場合は、G
PS方位角θ1の誤差が大きいのでそれによる較正を止
め、ジャイロ方位θ2′(少なくとも1度はGPS方位
角θ1で較正されている)を測定出力としている。従っ
て、低速の場合や旋回中はジャイロ方位角θ2′を用い
るので、従来のGPSのみを用いる方位計と比較し、測
定誤差は大幅に低減される。
According to the present invention, when the gyro azimuth θ2 is in a good condition for receiving GPS radio waves and the velocity of the moving body is equal to or higher than the threshold or the angular velocity is equal to or lower than a predetermined value, that is, the velocity is close to a straight line and the velocity is kept to some extent. Calibrate with accurate GPS azimuth θ1 if maintained, otherwise G
Since the error of the PS azimuth angle θ1 is large, the calibration due to it is stopped, and the gyro azimuth θ2 ′ (at least 1 degree is calibrated with the GPS azimuth angle θ1) is used as the measurement output. Therefore, since the gyro azimuth angle θ2 ′ is used at low speed or during turning, the measurement error is greatly reduced as compared with the conventional azimuth meter using only GPS.

【0029】 GPS方位角θ1で較正されたジャイ
ロ方位角θ2′を測定出力とするので、GPSのみを用
いる方位計と異なり、リアルタイムの測定が可能であ
る。 この発明では、GPS電波の受信状態が不良の
場合には、GPS方位角θ1による較正を行わず、少な
くとも1度は較正されたジャイロ方位角θ2′を出力す
るので、GPS電波の受信状態が悪くても測定誤差が大
幅に増大したり、測定が不能になることはない。
Since the gyro azimuth angle θ2 ′ calibrated with the GPS azimuth angle θ1 is used as the measurement output, real-time measurement is possible unlike the azimuth meter using only GPS. According to the present invention, when the GPS radio wave reception state is poor, the GPS azimuth angle θ1 is not calibrated and the gyro azimuth angle θ2 ′ that has been calibrated is output at least once, so the GPS radio wave reception state is poor. However, the measurement error does not significantly increase or the measurement is not disabled.

【0030】 この発明では、ジャイロ方位角θ2を
GPS方位角θ1で較正しているので、従来のジャイロ
のみを用いる方位計のような相対方位でなく、絶対方位
(真北に対する方位)を得ることができる。またGPS
方位角θ1で較正しているので積分誤差が時間と共に増
大する恐れはない。
In the present invention, since the gyro azimuth θ2 is calibrated with the GPS azimuth θ1, it is possible to obtain an absolute azimuth (an azimuth with respect to true north) instead of the relative azimuth as in the azimuth meter using only the conventional gyro. You can Also GPS
Since the calibration is performed with the azimuth angle θ1, there is no fear that the integration error increases with time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】不感帯手段のしきい値の移動速度による相違を
示す図。
FIG. 2 is a diagram showing a difference in threshold value of dead zone means depending on a moving speed.

【図3】不感帯手段のしきい値のジャイロ温度による相
違を示す図。
FIG. 3 is a diagram showing a difference in threshold value of dead zone means due to gyro temperature.

【図4】帰還増幅手段の利得の第2減算手段出力の方位
角偏差による変化を示す図。
FIG. 4 is a diagram showing a change in the gain of the feedback amplification means according to the azimuth deviation of the output of the second subtraction means.

【図5】Aはこの発明の方位計の真方位からのずれの時
間による変化を従来の方位計と比較して示した波形図、
B及びCは移動体の速度及びGPS電波受信状態の時間
による変化を示す波形図。
FIG. 5A is a waveform diagram showing a change with time of a deviation from a true azimuth of the azimuth meter of the present invention in comparison with a conventional azimuth meter,
3B and 3C are waveform charts showing changes in the speed of the moving body and the GPS radio wave reception state with time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 臼井 竜治 東京都渋谷区道玄坂1丁目21番2号 日 本航空電子工業株式会社内 (72)発明者 吉岡 和範 東京都渋谷区道玄坂1丁目21番2号 日 本航空電子工業株式会社内 (56)参考文献 特開 平10−221098(JP,A) 特開 平9−126795(JP,A) 特開 平5−288559(JP,A) 特開 平7−77428(JP,A) 特開 平7−253328(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01C 21/00 - 21/36 G01C 19/00 - 19/72 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuji Usui 1-221 Dogenzaka, Shibuya-ku, Tokyo Inside Nihon Aviation Electronics Industry, Ltd. (72) Kazunori Yoshioka 1-21-2 Dogenzaka, Shibuya-ku, Tokyo No. Japan Aviation Electronics Industry Co., Ltd. (56) Reference JP 10-221098 (JP, A) JP 9-126795 (JP, A) JP 5-288559 (JP, A) JP 7-77428 (JP, A) JP-A-7-253328 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01C 21/00-21/36 G01C 19/00-19 / 72

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 移動体の角速度ωを計測するジャイロス
コープと、 GPS電波を受信して、前記移動体の真北に対する方位
角(GPS方位角と言う)θ1及びGPS電波受信状態
の良/不良を示すGPS受信状態信号(S)を出力する
GPS受信機と、 前記ジャイロスコープより入力される前記角速度ωを積
分して方位角(ジャイロ方位角と言う)θ2を求め、前
記GPS受信状態信号が良好を示すときは、前記ジャイ
ロ方位角θ2を前記GPS方位角θ1により較正し、そ
して得られた方位角θ2′≒θ1を測定値として出力
し、前記GPS受信状態信号が不良を示すときは、GP
S電波受信状態が良好なときに較正された前記ジャイロ
方位角θ2′を測定値として出力する処理回路と、によ
り構成され、前記移動体に搭載される方位計であって、 前記処理回路が、前記角速度ωより帰還信号を減算する
第1減算手段と、 その第1減算手段の出力を積分する積分手段と、 その積分手段出力のジャイロ方位角θ2より、前記GP
S方位角θ1を減算する第2減算手段と、 その第2減算手段の出力を増幅して、その増幅した信号
を前記帰還信号として前記第1減算手段に与え、前記積
分手段の出力θ2を前記GPS方位角θ1に一致させる
帰還増幅手段と、 前記各手段の動作を制御する制御手段と 前記処理回路の前記帰還増幅手段の入力側または出力側
にスッイッチ手段とを具備し、 前記制御手段は、前記GPS電波受信状態が良好で、か
つ前記移動体の速度を示す信号が基準速度以上であるこ
とを識別して前記スイッチ手段をオンに制御し、前記G
PS電波受信状態が不良のとき、または前記移動体の速
度が基準速度以下であるとき、前記スイッチ手段をオフ
に制御すると共に、前記スイッチ手段をオンにした時刻
taからオフにする時刻tbまでの時間Δt=tb−t
aをタイ マで計測して、その計測値がしきい値以下の場
合は、前記積分手段の出力θ2′を、前記スイッチ手段
をオンにする直前の値θ2′(ta -0 )に戻すように積
分手段を制御 することを特徴とする方位計。
1. A gyroscope for measuring an angular velocity ω of a mobile body, and an azimuth angle (referred to as a GPS azimuth angle) θ1 of the mobile body with respect to true north by receiving GPS radio waves and good / bad reception of GPS radio waves. And a GPS receiver that outputs a GPS reception state signal (S) indicating the above, and the angular velocity ω input from the gyroscope is integrated to obtain an azimuth angle (referred to as a gyro azimuth angle) θ2. When it indicates good, the gyro azimuth θ2 is calibrated by the GPS azimuth θ1, and the obtained azimuth θ2′≈θ1 is output as a measurement value. When the GPS reception state signal indicates a defect, GP
A processing circuit configured to output the gyro azimuth angle θ2 ′ calibrated when the S radio wave reception state is good, as a measurement value, and an azimuth meter mounted on the mobile body, wherein the processing circuit includes: The first subtracting means for subtracting the feedback signal from the angular velocity ω, the integrating means for integrating the output of the first subtracting means, and the gyro azimuth θ2 of the output of the integrating means,
Second subtracting means for subtracting the S azimuth angle θ1 and an output of the second subtracting means are amplified, and the amplified signal is given to the first subtracting means as the feedback signal, and an output θ2 of the integrating means is output as described above. a feedback amplifying means for matching the GPS azimuth .theta.1, and control means for controlling the operation of each unit, the input side or the output side of the feedback amplification means of said processing circuit
And a switch means, and the control means is in a good reception state of the GPS radio wave.
If the signal indicating the speed of the moving body is higher than the reference speed,
And the switch means is turned on and the G
When the PS radio wave reception status is poor, or the speed of the moving body
When the degree is below the reference speed, the switch means is turned off.
And the time when the switch means is turned on.
Time Δt = tb−t from ta to time tb when turning off
by measuring the a in the timer, the following field the measured value threshold
If the output θ2 'of the integrating means is the switch means,
Product to return to the value θ2 '(ta -0 ) immediately before turning on
An azimuth meter characterized by controlling the minute means .
【請求項2】 移動体の角速度ωを計測するジャイロス
コープと、 GPS電波を受信して、前記移動体の真北に対する方位
角(GPS方位角と言う)θ1及びGPS電波受信状態
の良/不良を示すGPS受信状態信号(S)を出力する
GPS受信機と、 前記ジャイロスコープより入力される前記角速度ωを積
分して方位角(ジャイロ方位角と言う)θ2を求め、前
記GPS受信状態信号が良好を示すときは、前記ジャイ
ロ方位角θ2を前記GPS方位角θ1により較正し、そ
して得られた方位角θ2′≒θ1を測定値として出力
し、前記GPS受信状態信号が不良を示すときは、GP
S電波受信状態が良好なときに較正された前記ジャイロ
方位角θ2′を測定値として出力する処理回路と、によ
り構成され、前記移動体に搭載される方位計であって、 前記処理回路が、前記角速度ωより帰還信号を減算する
第1減算手段と、 その第1減算手段の出力を積分する積分手段と、 その積分手段出力のジャイロ方位角θ2より、前記GP
S方位角θ1を減算する第2減算手段と、 その第2減算手段の出力を増幅して、その増幅した信号
を前記帰還信号として前記第1減算手段に与え、前記積
分手段の出力θ2を前記GPS方位角θ1に一致させる
帰還増幅手段と、 前記各手段の動作を制御する制御手段と、 前記処理回路の前記帰還増幅手段の入力側または出力側
にスッイッチ手段とを具備し、 前記制御手段は、前記GPS電波受信状態が良好で、か
つ前記移動体の角速度ωが基準角速度以下であることを
識別して前記スイッチ手段をオンに制御し、前記GPS
電波受信状態が不良のとき、または前記移動体の角速度
が基準角速度以上であるとき、前記スイッチ手段をオフ
に制御すると共に、前記スイッチ手段をオンにした時刻
taからオフにする時刻tbまでの時間Δt=tb−t
aをタイ マで計測して、その計測値がしきい値以下の場
合は、前記積分手段の出力θ2′を、前記スイッチ手段
をオンにする直前の値θ2′(ta -0 )に戻すように積
分手段を 制御することを特徴とする方位計。
2. A gyro for measuring an angular velocity ω of a moving body.
The direction of the moving body with respect to true north by receiving a GPS radio wave from the co-op.
Angle (referred to as GPS azimuth) θ1 and GPS radio wave reception status
Outputs GPS reception status signal (S) indicating good / bad of
The product of the GPS receiver and the angular velocity ω input from the gyroscope
Divide the azimuth angle (called gyro azimuth angle) θ2
Note: When the GPS reception status signal indicates good,
(2) The azimuth angle θ2 is calibrated by the GPS azimuth angle θ1, and
Output the azimuth angle θ2 '≒ θ1 obtained by
If the GPS reception status signal indicates a defect, then GP
The gyro calibrated when the S radio wave reception condition is good
And a processing circuit for outputting the azimuth angle θ2 ′ as a measurement value.
Comprising the following, the processing circuit subtracts a feedback signal from the angular velocity ω.
From the first subtracting means, the integrating means for integrating the output of the first subtracting means, and the gyro azimuth angle θ2 of the output of the integrating means, the GP is calculated.
Second subtraction means for subtracting the S azimuth angle θ1 and the output of the second subtraction means are amplified to obtain the amplified signal.
Is given to the first subtraction means as the feedback signal, and the product
The output θ2 of the dividing means is made to coincide with the GPS azimuth θ1.
Feedback amplification means, control means for controlling the operation of each of the means, and input side or output side of the feedback amplification means of the processing circuit.
And a switch means, and the control means is in a good reception state of the GPS radio wave.
That the angular velocity ω of the moving body is less than or equal to the reference angular velocity.
It identifies and controls the switch means to turn on, and the GPS
When the radio wave reception is poor, or the angular velocity of the moving body
Is above the reference angular velocity, the switch means is turned off.
And the time when the switch means is turned on.
Time Δt = tb−t from ta to time tb when turning off
by measuring the a in the timer, the following field the measured value threshold
If the output θ2 'of the integrating means is the switch means,
Product to return to the value θ2 '(ta -0 ) immediately before turning on
An azimuth meter characterized by controlling the minute means .
【請求項3】 請求項1または2において、前記ジャイ
ロスコープより入力される前記角速度ωをしきい値と比
較し、しきい値以上の場合は角速度ωをそのまま出力
し、しきい値以下の場合は出力をゼロとする不感帯手段
を前記処理回路の角速度入力側に設けたことを特徴とす
る方位計。
3. The angular velocity ω input from the gyroscope according to claim 1 or 2, is compared with a threshold value. When the angular velocity ω is greater than or equal to the threshold value, the angular velocity ω is output as is, and when the angular velocity ω is less than or equal to the threshold value. Is an azimuth meter characterized in that dead zone means for setting the output to zero is provided on the angular velocity input side of the processing circuit.
【請求項4】 請求項1または2において、前記制御手
段は、前記移動体の速度を示す信号をしきい値と比較
し、しきい値以下のとき前記積分手段を制御してその出
力θ2′を変化しないようにフリーズさせることを特徴
とする方位計。
4. The control means according to claim 1 or 2, wherein the control means compares a signal indicating the speed of the moving body with a threshold value, and controls the integrating means to control the output θ2 'when the signal is equal to or less than the threshold value. An azimuth meter characterized by freezing so that it does not change.
【請求項5】 請求項1または2において、前記制御手
段は、前記移動体の停止を示す信号を外部より入力し
て、前記積分手段を制御してその出力を変化しないよう
にフリーズさせることを特徴とする方位計。
5. The control means according to claim 1, wherein the control means externally inputs a signal indicating the stop of the moving body to control the integrating means to freeze the output so as not to change. A characteristic compass.
【請求項6】 請求項において、前記制御手段は、前
記移動体の速度を示す信号Vを基準値Vrと比較し、速
度信号Vが基準値Vr以下であるときの前記不感帯手段
のしきい値ωth2を、速度信号Vが基準値Vr以上であ
るときのしきい値ωth1より大きくなるように制御する
ことを特徴とする方位計。
6. The threshold of the dead zone means according to claim 3 , wherein the control means compares a signal V indicating the speed of the moving body with a reference value Vr and the speed signal V is equal to or less than the reference value Vr. A compass characterized in that the value ωth2 is controlled to be larger than a threshold value ωth1 when the speed signal V is equal to or higher than a reference value Vr.
【請求項7】 請求項において、前記制御手段は、前
記移動体の速度に応じて前記不感帯手段のしきい値(ω
th)が小さくなるように制御することを特徴とする方位
計。
7. The control means according to claim 3 , wherein the threshold value (ω) of the dead zone means is set according to the speed of the moving body.
th) is controlled so as to be small.
【請求項8】 請求項において、前記ジャイロスコー
プの温度を検出する温度センサを設け、 前記制御手段は、前記温度センサの出力が所定範囲外に
あるときの前記不感帯手段のしきい値ωth′を、所定範
囲内にあるときのしきい値ωthより大きくなるように制
御することを特徴とする方位計。
8. The temperature sensor for detecting the temperature of the gyroscope according to claim 3 , wherein the control means has a threshold value ωth ′ of the dead zone means when the output of the temperature sensor is out of a predetermined range. Is controlled so as to be larger than a threshold value ωth when it is within a predetermined range.
【請求項9】 請求項において、前記ジャイロスコー
プの温度を検出する温度センサを設け、 前記制御手段は、前記温度センサの出力に応じて前記不
感帯手段のしきい値が大きくなるように制御することを
特徴とする方位計。
9. A temperature sensor for detecting a temperature of the gyroscope according to claim 3 , wherein the control unit controls the dead zone unit to have a large threshold value in accordance with an output of the temperature sensor. An azimuth meter characterized by that.
【請求項10】 請求項1または2において、前記制御
手段は、前記スイッチ手段をオンからオフに制御してか
らの経過時間をタイマで計測して、その計測値が許容時
間を越えた場合に、方位角出力に信頼性が無いことを示
すアラーム信号を出力することを特徴とする方位計。
10. The control unit according to claim 1 , wherein the control unit measures the elapsed time after controlling the switch unit from ON to OFF with a timer, and when the measured value exceeds an allowable time. An azimuth meter that outputs an alarm signal indicating that the azimuth output is not reliable.
【請求項11】 請求項またはにおいて、前記制御
手段は、前記スイッチ手段をオンからオフに制御してか
らの経過時間(ただし移動体速度がゼロの期間を除く)
をタイマで計測して、その計測値が許容時間を越えた場
合に、方位角出力に信頼性が無いことを示すアラーム信
号を出力することを特徴とする方位計。
11. The elapsed time after control of the switch means from on to off according to claim 4 or 5 , except for a period when the moving body speed is zero.
Is measured by a timer, and when the measured value exceeds an allowable time, an azimuth meter that outputs an alarm signal indicating that the azimuth output is not reliable is output.
【請求項12】 請求項1または2において、前記制御
手段は、前記第2減算手段の出力Δθ=θ2−θ1の大
きさに応じて、前記帰還増幅手段の利得が変化するよう
に制御することを特徴とする方位計。
12. The method of claim 1 or 2, wherein said control means, in response to the magnitude of the output Δθ = θ2-θ1 of the second subtracting means, controlling so that the gain of the feedback amplifier means is changed An azimuth meter characterized by.
【請求項13】 請求項1または2において、前記制御
手段は、前記第2減算手段の出力Δθ=θ2−θ1の大
きさを基準値Δθr と比較し、基準値を越えた場合、前
記積分手段の出力θ2が直ちに前記GPS方位θ1に一
致するように、前記積分手段を制御することを特徴とす
る方位計。
13. The control means according to claim 1 or 2 , wherein the control means compares the magnitude of the output Δθ = θ2-θ1 of the second subtraction means with a reference value Δθr, and when the reference value is exceeded, the integrating means. The azimuth meter is characterized in that the integrating means is controlled so that the output .theta.2 of .theta.
【請求項14】 請求項1または2において、前記処理
回路の前記積分手段の入力側または出力側に増幅手段を
設けて、前記制御手段が前記増幅手段の利得を、前記第
2減算手段の出力Δθ=θ2−θ1の大きさに応じて変
化するように制御することを特徴とする方位計。
14. The amplifying means according to claim 1 or 2 , wherein the amplifying means is provided on the input side or the output side of the integrating means of the processing circuit, and the control means outputs the gain of the amplifying means to the output of the second subtracting means. An azimuth meter characterized by being controlled so as to change in accordance with the magnitude of Δθ = θ2-θ1.
JP36477098A 1998-12-22 1998-12-22 Compass Expired - Fee Related JP3503022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36477098A JP3503022B2 (en) 1998-12-22 1998-12-22 Compass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36477098A JP3503022B2 (en) 1998-12-22 1998-12-22 Compass

Publications (2)

Publication Number Publication Date
JP2000186937A JP2000186937A (en) 2000-07-04
JP3503022B2 true JP3503022B2 (en) 2004-03-02

Family

ID=18482625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36477098A Expired - Fee Related JP3503022B2 (en) 1998-12-22 1998-12-22 Compass

Country Status (1)

Country Link
JP (1) JP3503022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835104A4 (en) * 2018-08-09 2021-10-20 Panasonic Intellectual Property Management Co., Ltd. Display system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031536A (en) * 2000-07-17 2002-01-31 Xanavi Informatics Corp Forward direction detection apparatus and method using gps position information and storage medium
JP4597855B2 (en) * 2005-12-26 2010-12-15 横河電子機器株式会社 Direction measuring device and direction measuring method
JP5533525B2 (en) * 2010-10-04 2014-06-25 セイコーエプソン株式会社 Angular velocity detection device and electronic device
JP6217504B2 (en) * 2014-04-18 2017-10-25 井関農機株式会社 Work information recording device
JP7418318B2 (en) 2020-12-08 2024-01-19 本田技研工業株式会社 Sensor bias estimation device and bias estimation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288559A (en) * 1992-04-06 1993-11-02 Tokimec Inc Gyroscope device
JP2921355B2 (en) * 1993-09-09 1999-07-19 日産自動車株式会社 Car navigation system
JPH07253328A (en) * 1994-03-16 1995-10-03 Nissan Motor Co Ltd On-vehicle navigator
JP3380404B2 (en) * 1995-08-28 2003-02-24 日本政策投資銀行 Movement detection device
JPH10221098A (en) * 1997-02-03 1998-08-21 Tokimec Inc Position measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835104A4 (en) * 2018-08-09 2021-10-20 Panasonic Intellectual Property Management Co., Ltd. Display system

Also Published As

Publication number Publication date
JP2000186937A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP2580832B2 (en) Mobile mounted antenna controller
US6651003B2 (en) Method of automatic continuous calibration for an electric compass
JP3533745B2 (en) Mobile positioning device
US7756639B2 (en) System and method for augmenting a satellite-based navigation solution
JPH0518771A (en) Gps navigation device
JPH0518768A (en) Gps navigation device
JP3877011B2 (en) Position detection apparatus for automobiles having a satellite receiver
JP2000502803A (en) Zero motion detection system for improved vehicle navigation system
JP2000506604A (en) Improved vehicle navigation system and method
JP3075889B2 (en) Navigation device
EP0742424A2 (en) Automotive navigation system
JP3503022B2 (en) Compass
JPH10307032A (en) Navigator
JP2000502801A (en) Improved vehicle navigation system and method using multi-axis accelerometer
US6345229B1 (en) Method of and device for determining a position of a vehicle
EP1531441A2 (en) Off-board navigation system and method for calibrating error using the same
JP4597423B2 (en) Position correction device
JP2002213979A (en) Gps receiver with dr function capable of correcting measurement position and azimuth
WO1999034231A2 (en) System for accurately determining missile vertical velocity and altitude
JPH0429079A (en) Position measuring system for on-vehicle gps receiver
JP3455329B2 (en) Car navigation system
JP2797681B2 (en) Position detection device
JPH09280877A (en) On-vehicle navigation device
CN116558512A (en) GNSS and vehicle-mounted sensor fusion positioning method and system based on factor graph
JP3505494B2 (en) Moving body direction estimation device and position estimation device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031126

R150 Certificate of patent or registration of utility model

Ref document number: 3503022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees