JP3497531B2 - Microporous membrane coating - Google Patents

Microporous membrane coating

Info

Publication number
JP3497531B2
JP3497531B2 JP20507093A JP20507093A JP3497531B2 JP 3497531 B2 JP3497531 B2 JP 3497531B2 JP 20507093 A JP20507093 A JP 20507093A JP 20507093 A JP20507093 A JP 20507093A JP 3497531 B2 JP3497531 B2 JP 3497531B2
Authority
JP
Japan
Prior art keywords
microporous membrane
separator
present
coated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20507093A
Other languages
Japanese (ja)
Other versions
JPH0753748A (en
Inventor
公一 安形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP20507093A priority Critical patent/JP3497531B2/en
Publication of JPH0753748A publication Critical patent/JPH0753748A/en
Application granted granted Critical
Publication of JP3497531B2 publication Critical patent/JP3497531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、コンデンサー用セパレ
ータ、電池用セパレータ等に適した微多孔膜被覆体に関
する。 【0002】 【従来の技術】電池用セパレータには、ポリオレフィン
系樹脂からなるシート状微多孔膜や高分子有機物やアル
カリ金属塩を含む高分子有機物などからなる固体電解質
セパレータ等が用いられている。 【0003】 【発明が解決しようとする問題】従来のポリオレフィン
系樹脂からなるセパレータは、電池組立等に際し高強度
化が要求され、高強度化に対して電気的特性、例えば電
気抵抗等が犠牲になっていた。また、固体電解質セパレ
ータは、渦巻型電池等が組立できるほどの強度は持ち合
わせていない。 【0004】そこで充分な強度を持ち、しかも従来のポ
リオレフィン系樹脂からなるセパレータ等が有する電気
的特性などの優れた特性を維持した微多孔膜を提供する
ことが望まれている。 【0005】 【課題を解決するための手段】本発明者は、微多孔膜に
アルカリ金属塩を含む高分子有機物を被覆した微多孔膜
被覆体によれば、目的の達成が可能であることを見出
し、本発明を完成した。本発明は、アルカリ金属塩を含
む高分子有機物が微多孔膜に浸漬法により被覆されてお
り、被覆された微多孔膜の透気度が1500sec/1
00cc以下、最大孔径が0.01μm〜2.0μm、
気孔率が10%〜80%であることを特徴とする微多孔
膜被覆体である。 【0006】本発明で用いられる微多孔膜を構成する樹
脂は、特に限定されないが、ポリオレフィン系樹脂が好
ましい。該ポリオレフィン系樹脂とは、ポリエチレン、
ポリプロピレン、エチレン−1−ブテン共重合体、エチ
レン−1−ヘキセン共重合体、エチレン−1−オクテン
共重合体などを言う。 【0007】ポリオレフィン系樹脂の中では、ポリエチ
レン樹脂が最も好ましく、ポリプロピレン等が混合され
てもよい。ポリエチレン樹脂は、低密度ポリエチレン、
中密度ポリエチレン、高密度ポリエチレンのいずれでも
よく、特に高密度ポリエチレンが好ましく、またこれら
の混合物でもよい。 【0008】ポリオレフィン系樹脂の分子量は特に限定
されないが、強度の点から粘度平均分子量が20万以
上、加工性の点から粘度平均分子量が500万以下が望
ましく、さらに望ましくは25万以上、300万以下、
最も望ましくは30万以上、200万以下である。本発
明に用いられる微多孔膜は、例えば、上記のポリオレフ
ィン樹脂及び無機微粉体と有機液状体を混合し、溶融混
練後、押出成形し、無機微粉体及び有機液状体を抽出
し、乾燥、延伸することにより得られる。 【0009】該有機液状体としては、フタル酸ジオクチ
ル、フタル酸ジ−n−ブチル等のフタル酸エステル、流
動パラフィン、プロセスオイル等の鉱物油等が挙げら
れ、フタル酸ジオクチルや流動パラフィンが好ましい。
また、該無機微粉体には、微粉珪酸、珪酸カルシウム、
炭酸カルシウム、微粉タルク等が挙げられ、微粉珪酸が
好ましい。 【0010】有機液状体の抽出には、ポリオレフィン樹
脂やフッソ樹脂を劣化させることのない有機液状体の良
溶媒であれば良く、メタノール、エタノール、イソプロ
パノール等のアルコール類、アセトン、メチルエチルケ
トン等のケトン類、1,1,1−トリクロロエタン、ジ
クロロメタン等の炭化水素類等の有機溶媒が挙げられ
る。 【0011】無機微粉体の抽出には、ポリオレフィン樹
脂やフッソ樹脂を劣化させることがなく、無機微粉体を
溶出できるものであればよく、微粉珪酸の場合には、苛
性ソーダが望ましい。延伸は、一軸延伸、必要に応じて
二軸延伸すればよく、延伸の方法は限定されない。二軸
延伸においては、同時二軸延伸、逐次二軸延伸のどちら
でもよい。 【0012】本発明は用いられる高分子有機物として
は、ポリエチレンオキサイド、プロピレンオキサイド、
ポリフッ化ビニリデン(PVdF)等が挙げられ、該高
分子有機物中にリチウムやナトリウムなどのアルカリ金
属塩が含有される。中でも、高分子有機物として、取扱
の点からポリエチレンオキサイド、ポリフッ化ビニリデ
ンが好ましく、特にポリエチレンオキサイドが好まし
い。 【0013】高分子有機物の分子量は特に限定されない
が、被覆の点から粘度平均分子量400万以下が好まし
い。被覆量が多すぎると透気度の上昇を招くため、被覆
量は、本発明の透気度の範囲内で設定される。アルカリ
金属塩濃度は、本発明の微多孔膜被覆体の適用に際し、
適宜決定される。 【0014】本発明の微多孔膜被覆体とは、上記したア
ルカリ金属塩を含む高分子有機物によって少なくとも微
多孔膜の両表面は被覆されているが、微孔が閉塞されて
いないものを言う。このような微多孔膜被覆体を得るた
めには、例えばポリエチレンオキサイドを塩化メチレン
などの有機溶媒に溶解し、この溶液にさらにプロピレン
カーボネイトとリチウム塩を加えて溶解したものに微多
孔膜を浸漬した後、真空乾燥する方法等が挙げられる。 【0015】被覆する方法は、本発明の特徴とする透気
度、気孔率、孔径が損なわれなければ公知の方法でかま
わないが、中でも浸漬法が好ましい。このようにして得
られた微多孔膜被覆体は、アルカリ金属塩を含む高分子
有機物で被覆されているが、上記したプロピレンカーボ
ネイト等の溶媒等が含まれていても問題ない。本発明の
微多孔膜被覆体の透気度は、1500sec/100c
c以下、好ましくは1000sec/100cc、さら
に好ましくは500sec/100cc以下、最も好ま
しくは300sec/100cc以下であり、透気度が
1500sec/100ccを越えると、電気的特性に
劣る。ここでいう透気度とは、JIS−P 8117に
準拠して得られる値であり、値が大きい程、気体の透過
性に劣る。 【0016】最大孔径は、0.01〜2.0μmであ
り、好ましくは0.05〜1.0μm、さらに好ましく
は、0.05〜0.5μmである。最大孔径が0.01
μm未満では、電解液の含浸性に劣り、2.0μmを越
えると内部短絡の問題が心配される。電気的特性の観点
から有機電解液が微多孔膜被覆体に含浸される必要があ
るため、気孔率は10%〜80%、好ましくは20%〜
80%、さらに好ましくは30%〜80%である。 【0017】気孔率が10%未満では、電気的特性が劣
り、80%を越えると微多孔膜被覆体の機械的強度が低
くなる。本発明の微多孔膜被覆体をセパレータとして用
いる場合、膜厚は限定されるものではないが、電池の容
量向上の観点からすると、10〜50μm、好ましくは
15〜40μm、さらに好ましくは20〜35μmであ
る。膜厚が10μm以下では、電池の短絡不良が増加す
る心配があり、50μm以上では電池容量が不足する心
配がある。 【0018】また、セパレータとして用いる場合、セパ
レータの長手方向(一般的には、機械方向)の弾性率は
電池組立性の点から2000kg/cm2 以上、好まし
くは3000kg/cm2 以上、さらに好ましくは35
00kg/cm2 以上であることが望ましい。この他に
有機電解液電池用セパレータとして、望まれる機能とし
てシャットダウン機能がある。この機能は、電池が外部
短絡等によって電池内部温度が上昇した時、適当な温度
になるとセパレータがメルトして、セパレータの孔が塞
がれることによって、正極と負極間の導通がほとんどな
くなり、電池自体のさらなる温度上昇が防止できる機能
を言う。本願では、インピーダンスが104 Ωに達した
時の温度をシャットダウン温度、インピーダンスが10
4 Ω以上を保持している温度範囲をシャットダウン温度
領域と定義している。このシャットダウン温度領域が広
い程安全なセパレータと言える。 【0019】本発明の微多孔膜被覆体のシャットダウン
温度及びシャットダウン温度領域は、以下の範囲を満た
すことが望ましい。シャットダウン温度は、150℃以
下、好ましくは145℃以下、さらに好ましくは140
℃以下である。また、シャットダウン温度領域は、20
℃以上、好ましくは30℃以上、さらに好ましくは40
℃以上である。 【0020】 【実施例】以下、本発明について、実施例を挙げてさら
に詳細に説明するが、本発明は実施例に特に限定される
ものではない。本実施例における測定方法及び評価方法
は下記の通りである。 (1)膜厚 最小目盛り1μmのダイヤルゲージを用いた。 (2)気孔率 次式より算出した。 【0021】気孔率=空孔容積÷膜全容積×100 空孔容積=膜全容積−膜重量÷樹脂密度 (3)弾性率 ASTM−D−882に準拠し、インストロン型引張試
験機にて測定した。 (4)最大孔径 ASTM−E−128−61に準拠し、エタノール中で
のバブルポイントより算出した。 (5)ポリエチレン樹脂の粘度平均分子量 溶剤としてデカリンを使用し、測定温度135℃におけ
る固有粘度{η}を測定し、下式より算出した。 【0022】{η}=6.2×10-4Mv0.7 (6)ポリエチレンオキサイドの粘度平均分子量 溶剤として水を使用し、測定温度35℃における固有粘
度{η}を測定し、下式より算出した。 {η}=6.4×10-5Mv0.82 (7)電気抵抗 図−1に示す装置において、25℃、1kHzで安藤電
気(株)社製AG−4311型LCRメータにて測定し
た。 【0023】なお、本測定には、電解液としてプロピレ
ンカーボネイトとジメトキシエタンの等容量溶液に過塩
素酸リチウム1mol/1を溶解した。電極は、白金黒
電極を用い、極板面積0.785cm2 とした。 (8)シャットダウン温度及びシャットダウン温度領域 図2に示す測定装置において、図2の(A),(B),
(C)をオーブン中に入れて、25℃〜195℃まで2
℃/minの昇温速度で加熱しつつ、連続的にインピー
ダンスを測定する。 【0024】シャットダウン温度は、インピーダンスが
104 Ωに達した温度とし、シャットダウン温度領域と
は、インピーダンスが104 Ω以上を保持している温度
範囲とした。なお、本測定には、電解液として、プロピ
レンカーボネイトにテトラフルオロホウ酸リチウム1m
ol/dm3 を溶解したものを用いた。また、ニッケル
箔電極を用いて、電極面積1.5cm2 、1kHzでイ
ンピーダンスの測定を行った。 【0025】測定は、安藤電気(株)社製AG−431
1型LCRメータを用いた。 (9)透気度 JIS−P−8117に準拠して測定した。 【0026】 【実施例1】粘度平均分子量48万の高密度ポリエチレ
ン20重量%、粘度平均分子量21万の高密度ポリエチ
レン30重量%、フタル酸ジオクチル38重量%、微粉
珪酸12重量%をヘンシェルミキサーで混合し、該混合
物をφ35mm二軸押出機に650mm幅Tダイを取り
付けた製膜装置に供給して成形物を得た。 【0027】該成形物を1,1,1−トリクロロエタン
に浸漬した後乾燥し、ついで苛性ソーダに浸漬、水洗後
乾燥して、フタル酸ジオクチル及び微粉珪酸を抽出除去
して、厚さ80μmの原膜を得た。さらに、この原膜
を、2枚張り合わせてロール一軸延伸機において、温度
125℃で、機械方向に4.8倍、続いて幅方向にテン
ターで2.0倍延伸して微多孔膜を得た。 【0028】粘度平均分子量30万のポリエチレンオキ
サイド1gを150ccの塩化メチレンに溶解したもの
に、プロピレンカーボネイト100ccを加え、さらに
テトラフルオロホウ酸リチウム0.5gを溶解した。こ
の溶液に該微多孔膜を3分間浸漬したのち、60℃雰囲
気下で、5時間真空乾燥した。以上のようにして得られ
た微多孔膜被覆体の特性を表1に示した。 【0029】 【比較例1】実施例1の被覆前の微多孔膜の特性を表1
に示した。 【0030】 【比較例2】実施例1の原膜を用い、2枚張り合わせて
ロール一軸延伸機において、温度125℃で、機械方向
に4.8倍、続いて幅方向にテンターで1.8倍延伸し
て微多孔膜を得た。該微多孔膜の特性を表1に示した。 【0031】 【表1】 【0032】 【発明の効果】本発明の微多孔膜被覆体は、機械的強度
が高く、しかも電気的特性などの優れた特性も維持され
たバランスの良いものであるため、セパレータとして非
常に効果的なものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microporous membrane covering suitable for a separator for a capacitor, a separator for a battery and the like. As a battery separator, a sheet-like microporous membrane made of a polyolefin resin, a solid electrolyte separator made of a polymer organic substance or a polymer organic substance containing an alkali metal salt, or the like is used. [0003] A conventional separator made of a polyolefin-based resin is required to have a high strength when assembling a battery or the like, and sacrifices electrical characteristics, for example, electric resistance, for the high strength. Had become. Further, the solid electrolyte separator does not have such strength as to be able to assemble a spiral-wound battery or the like. [0004] Therefore, it is desired to provide a microporous membrane having sufficient strength and maintaining excellent properties such as the electrical properties of a conventional separator made of a polyolefin resin. The inventor of the present invention has found that a microporous membrane-coated body in which a microporous membrane is coated with a high molecular organic material containing an alkali metal salt can achieve the object. Heading, the present invention has been completed. In the present invention, a high molecular organic substance containing an alkali metal salt is coated on a microporous membrane by an immersion method, and the coated microporous membrane has an air permeability of 1500 sec / 1.
00 cc or less, the maximum pore size is 0.01 μm to 2.0 μm,
A microporous membrane covering having a porosity of 10% to 80%. The resin constituting the microporous membrane used in the present invention is not particularly limited, but a polyolefin resin is preferable. The polyolefin resin is polyethylene,
It refers to polypropylene, ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer and the like. [0007] Among the polyolefin resins, polyethylene resins are most preferred, and polypropylene and the like may be mixed. Polyethylene resin is low density polyethylene,
Either medium-density polyethylene or high-density polyethylene may be used, and high-density polyethylene is particularly preferable, or a mixture thereof. Although the molecular weight of the polyolefin resin is not particularly limited, the viscosity average molecular weight is preferably 200,000 or more from the viewpoint of strength, and the viscosity average molecular weight is preferably 5,000,000 or less from the viewpoint of processability, more preferably 250,000 or more, and 3,000,000 or more. Less than,
Most preferably, it is 300,000 or more and 2,000,000 or less. The microporous membrane used in the present invention is, for example, a mixture of the above-mentioned polyolefin resin and inorganic fine powder and an organic liquid, melt kneading, extrusion molding, extraction of the inorganic fine powder and the organic liquid, drying and stretching. It is obtained by doing. Examples of the organic liquid include phthalic acid esters such as dioctyl phthalate and di-n-butyl phthalate, liquid paraffin, and mineral oils such as process oils. Dioctyl phthalate and liquid paraffin are preferred.
Further, the inorganic fine powder includes finely divided silica, calcium silicate,
Examples thereof include calcium carbonate and fine talc, and fine silica is preferable. In order to extract the organic liquid, any solvent may be used as long as it is a good solvent for the organic liquid without deteriorating the polyolefin resin or the fluorine resin. Alcohols such as methanol, ethanol and isopropanol, and ketones such as acetone and methyl ethyl ketone. And organic solvents such as hydrocarbons such as 1,1,1-trichloroethane and dichloromethane. In order to extract the inorganic fine powder, any material can be used as long as the inorganic fine powder can be eluted without deteriorating the polyolefin resin or the fluorine resin. In the case of fine silica, caustic soda is desirable. The stretching may be uniaxial stretching or, if necessary, biaxial stretching, and the stretching method is not limited. In biaxial stretching, either simultaneous biaxial stretching or sequential biaxial stretching may be used. In the present invention, the high molecular organic substances used include polyethylene oxide, propylene oxide,
Polyvinylidene fluoride (PVdF); and the high molecular weight organic material contains an alkali metal salt such as lithium or sodium. Among them, polyethylene oxide and polyvinylidene fluoride are preferable as handling organic materials from the viewpoint of handling, and polyethylene oxide is particularly preferable. The molecular weight of the high molecular weight organic substance is not particularly limited, but the viscosity average molecular weight is preferably 4,000,000 or less from the viewpoint of coating. If the coating amount is too large, the air permeability increases, so the coating amount is set within the range of the air permeability of the present invention. Alkali metal salt concentration, when applying the microporous membrane coating of the present invention,
It is determined as appropriate. The microporous membrane-coated body of the present invention refers to a microporous membrane coated with the above-mentioned high-molecular organic material containing an alkali metal salt, at least on both surfaces of the microporous membrane, but without closing the micropores. In order to obtain such a microporous membrane-coated body, for example, polyethylene oxide was dissolved in an organic solvent such as methylene chloride, and propylene carbonate and a lithium salt were further added to the solution and the microporous membrane was immersed in the solution. Thereafter, a method of vacuum drying and the like can be mentioned. The method of coating may be any known method as long as the air permeability, porosity and pore size characteristic of the present invention are not impaired, but the dipping method is particularly preferred. The thus-obtained microporous membrane-coated body is coated with a high-molecular-weight organic material containing an alkali metal salt. However, there is no problem even if the above-mentioned solvent such as propylene carbonate is contained. The air permeability of the microporous membrane coating of the present invention is 1500 sec / 100 c
c or less, preferably 1000 sec / 100 cc, more preferably 500 sec / 100 cc or less, and most preferably 300 sec / 100 cc or less. If the air permeability exceeds 1500 sec / 100 cc, the electrical properties are poor. The air permeability here is a value obtained in accordance with JIS-P 8117. The larger the value, the lower the gas permeability. The maximum pore size is 0.01 to 2.0 μm, preferably 0.05 to 1.0 μm, and more preferably 0.05 to 0.5 μm. Maximum pore size is 0.01
mu m Not Mitsurude has poor impregnation of the electrolytic solution, the problem of internal short circuit is concerned exceeds 2.0 .mu.m. Since the organic electrolyte needs to be impregnated into the microporous membrane coating from the viewpoint of electrical properties, the porosity is 10% to 80%, preferably 20% to
80%, more preferably 30% to 80%. If the porosity is less than 10%, the electrical properties are poor, and if it exceeds 80%, the mechanical strength of the microporous membrane coating becomes low. When the microporous membrane-coated body of the present invention is used as a separator, the film thickness is not limited, but from the viewpoint of improving the capacity of the battery, 10 to 50 μm, preferably 15 to 40 μm, and more preferably 20 to 35 μm. It is. When the film thickness is 10 μm or less, short-circuit failure of the battery may increase, and when the film thickness is 50 μm or more, the battery capacity may be insufficient. When used as a separator, the modulus of elasticity in the longitudinal direction (generally, the machine direction) of the separator is 2,000 kg / cm 2 or more, preferably 3,000 kg / cm 2 or more, and more preferably, from the viewpoint of battery assemblability. 35
Desirably, it is not less than 00 kg / cm 2 . In addition, a desired function of the separator for an organic electrolyte battery is a shutdown function. This function is used when the internal temperature of the battery rises due to external short circuit, etc., and when the temperature reaches an appropriate temperature, the separator melts and the pores of the separator are closed, so that conduction between the positive electrode and the negative electrode is almost eliminated, It refers to a function that can prevent a further rise in temperature. In this application, the temperature when the impedance reaches 10 4 Ω is referred to as the shutdown temperature,
The temperature range that holds 4 Ω or more is defined as the shutdown temperature range. The wider the shutdown temperature range, the safer the separator. The shutdown temperature and the shutdown temperature range of the microporous membrane coating of the present invention preferably satisfy the following ranges. The shutdown temperature is 150 ° C. or lower, preferably 145 ° C. or lower, more preferably 140 ° C.
It is below ° C. The shutdown temperature range is 20
° C or higher, preferably 30 ° C or higher, more preferably 40 ° C or higher.
° C or higher. EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not particularly limited to the examples. The measuring method and the evaluation method in this example are as follows. (1) A dial gauge having a minimum thickness scale of 1 μm was used. (2) Porosity The porosity was calculated from the following equation. Porosity = pore volume ÷ membrane total volume × 100 pore volume = membrane total volume−membrane weight ÷ resin density (3) Modulus of elasticity According to ASTM-D-882, an Instron type tensile tester is used. It was measured. (4) The maximum pore size was calculated from the bubble point in ethanol according to ASTM-E-128-61. (5) The intrinsic viscosity {η} at a measurement temperature of 135 ° C. was measured using decalin as a solvent having a viscosity average molecular weight of the polyethylene resin, and calculated by the following equation. {Η} = 6.2 × 10 -4 Mv 0.7 (6) The intrinsic viscosity {η} at a measurement temperature of 35 ° C. is measured using water as a solvent having a viscosity average molecular weight of polyethylene oxide, and is calculated from the following equation. did. {Η} = 6.4 × 10 −5 Mv 0.82 (7) Electric resistance Measured with an apparatus shown in FIG. 1 at 25 ° C. and 1 kHz with an AG-4311 type LCR meter manufactured by Ando Electric Co., Ltd. In this measurement, 1 mol / 1 of lithium perchlorate was dissolved in an equal volume solution of propylene carbonate and dimethoxyethane as an electrolytic solution. The electrode was a platinum black electrode with an electrode plate area of 0.785 cm 2 . (8) Shutdown Temperature and Shutdown Temperature Region In the measuring device shown in FIG. 2, (A), (B),
(C) is put in an oven, and 25 ° C. to 195 ° C. 2
The impedance is continuously measured while heating at a heating rate of ° C./min. The shutdown temperature was a temperature at which the impedance reached 10 4 Ω, and the shutdown temperature region was a temperature range in which the impedance was maintained at 10 4 Ω or more. In this measurement, 1 m of lithium tetrafluoroborate was added to propylene carbonate as the electrolytic solution.
ol / dm 3 was used. Further, the impedance was measured at an electrode area of 1.5 cm 2 and 1 kHz using a nickel foil electrode. The measurement was performed using AG-431 manufactured by Ando Electric Co., Ltd.
A type 1 LCR meter was used. (9) Air permeability Measured according to JIS-P-8117. Example 1 20% by weight of high-density polyethylene having a viscosity-average molecular weight of 480,000, 30% by weight of high-density polyethylene having a viscosity-average molecular weight of 210,000, 38% by weight of dioctyl phthalate, and 12% by weight of finely divided silica are mixed with a Henschel mixer. The mixture was mixed, and the mixture was supplied to a film forming apparatus equipped with a 650 mm wide T die in a 35 mm twin screw extruder to obtain a molded product. The molded article is immersed in 1,1,1-trichloroethane, dried, then immersed in caustic soda, washed with water and dried to extract and remove dioctyl phthalate and finely divided silica, thereby obtaining an 80 μm thick raw membrane. Got. Furthermore, two sheets of this raw film were laminated and stretched 4.8 times in the machine direction at a temperature of 125 ° C. and then 2.0 times in the width direction with a tenter at a temperature of 125 ° C. to obtain a microporous film. . To 1 g of polyethylene oxide having a viscosity average molecular weight of 300,000 dissolved in 150 cc of methylene chloride, 100 cc of propylene carbonate was added, and 0.5 g of lithium tetrafluoroborate was further dissolved. After the microporous membrane was immersed in this solution for 3 minutes, it was dried in a vacuum at 60 ° C. for 5 hours. Table 1 shows the characteristics of the microporous membrane coated body obtained as described above. Comparative Example 1 Table 1 shows the characteristics of the microporous membrane before coating in Example 1.
It was shown to. COMPARATIVE EXAMPLE 2 Using the raw film of Example 1, two sheets were laminated and rolled in a uniaxial stretching machine at a temperature of 125 ° C., 4.8 times in the machine direction, and then 1.8 in the width direction with a tenter. The film was stretched twice to obtain a microporous film. Table 1 shows the characteristics of the microporous membrane. [Table 1] The microporous membrane-coated body of the present invention has a high mechanical strength and a well-balanced property in which excellent properties such as electrical properties are maintained, so that it is very effective as a separator. It is a typical thing.

【図面の簡単な説明】 【図1】本発明の電気抵抗測定における組立の概略図。 【図2】本発明のシャットダウン温度及びシャットダウ
ン温度領域測定のためのインピーダンス測定装置の概略
図。 【符号の説明】 1 電極 2 テフロンパッキン 3 微多孔膜あるいは微多孔膜被覆体 4 外形2cm,内径1cm,厚さ1mmのテ
フロンパッキン 5 電極 6A,6B 厚さ10μmのニッケル箔製電極 7A,7B ガラス板 8 電解液が含浸された微多孔膜あるいは微多
孔膜被覆体 9 ケース 10 熱電対 11 マスキング用テフロンテープ 12 記録装置 13 インピーダンス測定装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an assembly for measuring electric resistance according to the present invention. FIG. 2 is a schematic diagram of an impedance measuring apparatus for measuring a shutdown temperature and a shutdown temperature region according to the present invention. [Description of Signs] 1 Electrode 2 Teflon packing 3 Microporous membrane or microporous membrane coating 4 Teflon packing 5 with outer diameter 2 cm, inner diameter 1 cm, thickness 1 mm Electrodes 6A, 6B Nickel foil electrodes 7A, 7B 10 μm thick Glass Plate 8 Microporous membrane or microporous membrane coating impregnated with electrolyte 9 Case 10 Thermocouple 11 Teflon tape for masking 12 Recording device 13 Impedance measurement device

Claims (1)

(57)【特許請求の範囲】 【請求項1】 アルカリ金属塩を含む高分子有機物が微
多孔膜に浸漬法により被覆されており、被覆された微多
孔膜の透気度が1500sec/100cc以下、最大
孔径が0.01μm〜2.0μm、気孔率が10%〜8
0%であることを特徴とする微多孔膜被覆体。
(57) [Claim 1] A high molecular organic material containing an alkali metal salt is coated on a microporous membrane by an immersion method, and the air permeability of the coated microporous membrane is 1500 sec / 100 cc or less. Having a maximum pore size of 0.01 μm to 2.0 μm and a porosity of 10% to 8
0%, characterized in that it is coated with a microporous membrane.
JP20507093A 1993-08-19 1993-08-19 Microporous membrane coating Expired - Fee Related JP3497531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20507093A JP3497531B2 (en) 1993-08-19 1993-08-19 Microporous membrane coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20507093A JP3497531B2 (en) 1993-08-19 1993-08-19 Microporous membrane coating

Publications (2)

Publication Number Publication Date
JPH0753748A JPH0753748A (en) 1995-02-28
JP3497531B2 true JP3497531B2 (en) 2004-02-16

Family

ID=16500935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20507093A Expired - Fee Related JP3497531B2 (en) 1993-08-19 1993-08-19 Microporous membrane coating

Country Status (1)

Country Link
JP (1) JP3497531B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322923B1 (en) * 1998-01-30 2001-11-27 Celgard Inc. Separator for gel electrolyte battery
JP2001102089A (en) * 1999-09-29 2001-04-13 Tdk Corp Solid electrolyte, electrolyte chemical device, lithium secondary cell and electricity double-layer capacitor
US6432586B1 (en) 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
JP4712251B2 (en) * 2000-09-22 2011-06-29 帝人株式会社 Double-sided simultaneous coating method
JP5156158B2 (en) * 2001-02-22 2013-03-06 東レバッテリーセパレータフィルム株式会社 Composite membrane and manufacturing method thereof
JP4490055B2 (en) * 2003-06-25 2010-06-23 株式会社巴川製紙所 Separator for lithium ion secondary battery or polymer lithium battery
JP2007157571A (en) * 2005-12-07 2007-06-21 Nitto Denko Corp Porous film for electrolyte, electrolyte provided therefrom, and manufacturing method of electrode/electrolyte element using it
FR2954595B1 (en) 2009-12-21 2012-03-30 Bollore SEPARATOR FILM, ITS MANUFACTURING METHOD, SUPERCAPSET, BATTERY AND CAPACITOR WITH FIM
WO2014079861A1 (en) * 2012-11-21 2014-05-30 Solvay Sa Separator coated with polymer and conductive salt and electrochemical device using the same

Also Published As

Publication number Publication date
JPH0753748A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
US7618743B2 (en) Microporous polyolefin film
JP3258737B2 (en) Polyethylene microporous diaphragm
JP4753446B2 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP3497569B2 (en) Polyethylene microporous membrane for non-aqueous battery separator
KR101103163B1 (en) Polyolefin microporous membrane
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP3497531B2 (en) Microporous membrane coating
WO1997044839A1 (en) Porous film and separator for batteries comprising porous film
JP4964565B2 (en) Polyethylene microporous membrane
JP2009269941A (en) Microporous polyolefin membrane
JP5235324B2 (en) Polyolefin microporous membrane
JP4303355B2 (en) Polyvinylidene fluoride resin, porous membrane comprising the same, and battery using the porous membrane
JP5592745B2 (en) Polyolefin microporous membrane
JP3236359B2 (en) Polyolefin microporous membrane
JP3486785B2 (en) Battery separator and method of manufacturing the same
JP2642206B2 (en) Explosion-proof secondary battery
JP2003231772A (en) Microporous film made of polyolefin
JP3121047B2 (en) Homogeneous polyethylene microporous membrane and method for producing the same
JPH06223802A (en) Cylindrical electric part separator
JP3642597B2 (en) Separator used for battery
JPH0760084A (en) Polyolefin microporous membrane and production thereof
JP3333287B2 (en) Non-aqueous solvent battery separator
JP2009138159A (en) Microporous membrane
JPH0536394A (en) Alkaline battery separator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees