JP3495309B2 - Thermal infrared imaging device - Google Patents

Thermal infrared imaging device

Info

Publication number
JP3495309B2
JP3495309B2 JP2000074487A JP2000074487A JP3495309B2 JP 3495309 B2 JP3495309 B2 JP 3495309B2 JP 2000074487 A JP2000074487 A JP 2000074487A JP 2000074487 A JP2000074487 A JP 2000074487A JP 3495309 B2 JP3495309 B2 JP 3495309B2
Authority
JP
Japan
Prior art keywords
heat
semiconductor substrate
elements
thin film
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000074487A
Other languages
Japanese (ja)
Other versions
JP2001264158A (en
Inventor
長人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000074487A priority Critical patent/JP3495309B2/en
Publication of JP2001264158A publication Critical patent/JP2001264158A/en
Application granted granted Critical
Publication of JP3495309B2 publication Critical patent/JP3495309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱型赤外線撮像素子
に関し、特に半導体基板上に配列された感熱素子を用い
て赤外線撮像を行う熱型赤外線撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal infrared imaging device, and more particularly to a thermal infrared imaging device for performing infrared imaging using a heat sensitive device arranged on a semiconductor substrate.

【0002】[0002]

【従来の技術】従来より、赤外線検出器としては、ボロ
メータに代表されるような熱型のものが知られている。
ボロメータは温度係数の大きな部材からなる一種の抵抗
素子であり、温度計測、リモートセンシングなどの分野
で広く使用されている。最近では、その小型化・軽量化
の目的から、半導体基板上に感熱素子を配列してなる熱
型赤外線撮像素子が着目されている。
2. Description of the Related Art Conventionally, as an infrared detector, a thermal type detector represented by a bolometer has been known.
A bolometer is a kind of resistance element composed of a member having a large temperature coefficient, and is widely used in fields such as temperature measurement and remote sensing. Recently, for the purpose of miniaturization and weight reduction, attention has been paid to a thermal infrared image pickup device in which heat sensitive elements are arranged on a semiconductor substrate.

【0003】この熱型赤外線撮像素子では、入射(撮
像)する赤外線による温度変化は、半導体基板上に配列
された複数の感熱素子によって検知され、そして各感熱
素子の抵抗変化に対応する信号が撮像信号として取り出
される。この場合、熱型赤外線検出器の感度を良くする
ために、感熱素子は温度変化による抵抗変化率の大きい
物質からなる薄膜とし、さらにその感熱素子は低熱伝導
率の支持脚で半導体基板に接続される。この感熱素子に
バイアス電流を印加することにより、感熱素子の抵抗値
の変化は電圧変化として検出されそれが増幅して出力さ
れる。
In this thermal infrared imaging device, a temperature change due to incident (imaging) infrared rays is detected by a plurality of thermosensitive elements arranged on a semiconductor substrate, and a signal corresponding to a resistance change of each thermosensitive element is imaged. It is taken out as a signal. In this case, in order to improve the sensitivity of the thermal infrared detector, the heat-sensitive element is a thin film made of a substance having a large rate of resistance change due to temperature change, and the heat-sensitive element is connected to the semiconductor substrate by a supporting leg having a low heat conductivity. It By applying a bias current to the heat sensitive element, a change in the resistance value of the heat sensitive element is detected as a voltage change, which is amplified and output.

【0004】[0004]

【発明が解決しようとする課題】前述のような感熱素子
を半導体基板上に多数配置して各感熱素子の温度変化を
検出することにより赤外線画像を検知することができる
が、感熱素子の温度変化を利用しているため、半導体基
板、および半導体基板周辺の温度変化によっても感熱素
子の信号出力は変化してしまう。特に感熱素子の抵抗変
化を読み出すためのバイアス電流による発熱によって半
導体基板に温度上昇が起こり、半導体基板中央と周辺で
は約10℃の温度差が生じる。感熱素子を50μmピッ
チで配置し、温度抵抗係数を数%/K、支持脚の熱コン
ダクタンスを約5×10−8W/Kとすると、バイアス
電流および各感熱素子の抵抗値のバラツキによって生じ
る各感熱素子の出力信号の差は数Vになり、入射する赤
外線によって生じる各感熱素子の温度変化による出力信
号は数mV以下である。これに加えて、前述した様に半
導体基板中央と周辺で温度差が大きいと、赤外線検知器
として安定して動作する範囲が基板中央だけになる等の
問題が生じる。
An infrared image can be detected by arranging a large number of heat-sensitive elements as described above on a semiconductor substrate and detecting the temperature change of each heat-sensitive element, but the temperature change of the heat-sensitive element can be detected. Therefore, the signal output of the thermosensitive element also changes depending on the temperature change of the semiconductor substrate and the periphery of the semiconductor substrate. In particular, the temperature rise occurs in the semiconductor substrate due to heat generation by the bias current for reading the resistance change of the heat sensitive element, and a temperature difference of about 10 ° C. occurs between the center and the periphery of the semiconductor substrate. When the heat-sensitive elements are arranged at a pitch of 50 μm, the temperature resistance coefficient is several% / K, and the thermal conductance of the supporting leg is about 5 × 10 −8 W / K, the bias current and the resistance values of the heat-sensitive elements cause variations. The difference between the output signals of the heat sensitive elements is several V, and the output signal due to the temperature change of each heat sensitive element caused by the incident infrared rays is several mV or less. In addition to this, if the temperature difference between the center and the periphery of the semiconductor substrate is large as described above, there arises a problem that the infrared detector operates stably only in the center of the substrate.

【0005】本発明は上述の事情に鑑みてなされたもの
であり、感光部における半導体基板の温度を、感光部中
央付近と感光部の周辺とで均一化することができる熱型
赤外線撮像素子を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a thermal infrared imaging device capable of equalizing the temperature of the semiconductor substrate in the photosensitive portion in the vicinity of the center of the photosensitive portion and the periphery of the photosensitive portion. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
め、本発明は、半導体基板と、該半導体基板上に2次元
配列された複数の感熱素子を含む感光部とから構成され
た熱型赤外線撮像素子において、第1の配線部材を介し
て前記半導体基板に接続される前記感光部の複数の感熱
素子の周辺に、前記第1の配線部材よりも高熱伝導率の
第2の配線部材を介して前記半導体基板に接続される、
前記感熱素子よりも高抵抗の疑似感熱素子を複数配列し
てなることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a thermal type composed of a semiconductor substrate and a photosensitive portion including a plurality of heat-sensitive elements two-dimensionally arranged on the semiconductor substrate. In the infrared imaging device, a second wiring member having a higher thermal conductivity than that of the first wiring member is provided around a plurality of heat-sensitive elements of the photosensitive section connected to the semiconductor substrate via the first wiring member. Connected to the semiconductor substrate via
It is characterized in that a plurality of pseudo heat sensitive elements having a resistance higher than that of the heat sensitive elements are arranged.

【0007】この熱型赤外線撮像素子においては、感光
部を構成する複数の感熱素子の周辺に複数の疑似感熱素
子が配列されているので、それら疑似感熱素子に流れる
電流による自己発熱により、感光部の周囲温度を高める
ことができる。このため、感光部における半導体基板の
温度を、感光部中央付近と感光部の周辺とで均一化する
ことが可能となる。特に、疑似感熱素子については、そ
の抵抗値を高くして発熱量を増加させ、感光部の感熱素
子の配線部材よりも高熱伝導率(低熱抵抗)の部材で半
導体基板に接続しているので、疑似感熱素子から半導体
基板に効率よく熱を伝達することができ、例えば数行お
よび数列の比較的僅かな数の疑似感熱素子を設けるだけ
で温度の均一化を図ることが可能となる。
In this thermal infrared imaging device, since a plurality of pseudo-thermosensitive elements are arranged around the plurality of thermosensitive elements constituting the photosensitive section, the photosensitive section is self-heated by the current flowing through the pseudo-thermosensitive elements. The ambient temperature can be increased. For this reason, it becomes possible to make the temperature of the semiconductor substrate in the photosensitive portion uniform in the vicinity of the center of the photosensitive portion and in the periphery of the photosensitive portion. In particular, with regard to the pseudo-thermosensitive element, the resistance value is increased to increase the amount of heat generation, and since it is connected to the semiconductor substrate by a member having a higher thermal conductivity (low thermal resistance) than the wiring member of the photosensitive element in the photosensitive section, Heat can be efficiently transferred from the pseudo heat sensitive element to the semiconductor substrate, and the temperature can be made uniform only by providing a relatively small number of pseudo heat sensitive elements in several rows and several columns.

【0008】また、複数の疑似感熱素子は感光部を構成
する複数の感熱素子と同じ行線および列線にそれぞれ接
続しておくことが好ましい。これにより、通常の行線駆
動回路によって、感光部の感熱素子と疑似感熱素子とを
行線単位で一緒に駆動することができるので、疑似感熱
素子を駆動するための専用の回路を用意する必要が無く
なり、小型化を図ることが可能となる。
Further, it is preferable that the plurality of pseudo heat-sensitive elements are connected to the same row lines and column lines as the plurality of heat-sensitive elements constituting the photosensitive section. As a result, it is possible to drive the heat-sensitive element and the pseudo-heat sensitive element of the photosensitive section together in units of row lines by a normal row-line drive circuit, so it is necessary to prepare a dedicated circuit for driving the pseudo-heat-sensitive element. Is eliminated, and downsizing can be achieved.

【0009】また、前記複数の疑似感熱素子は、前記感
光部の周辺にその四辺を取り囲むように2次元配列する
ことにより、より温度の均一化効果を高めることが可能
となる。
Further, by arranging the plurality of pseudo-thermosensitive elements two-dimensionally around the photosensitive portion so as to surround the four sides thereof, it is possible to further enhance the temperature equalizing effect.

【0010】また、疑似感熱素子については信号を検出
する必要はないので、疑似感熱素子間の配列ピッチは、
感光部の感熱素子間の配列ピッチよりも狭く設定するこ
とが好ましい。これにより、疑似感熱素子の配列による
素子サイズの増大を最小限に抑えることができる。
Since it is not necessary to detect a signal for the pseudo thermosensitive elements, the arrangement pitch between the pseudo thermosensitive elements is
It is preferable to set it to be narrower than the arrangement pitch between the heat-sensitive elements of the photosensitive section. As a result, it is possible to minimize the increase in the element size due to the arrangement of the pseudo thermosensitive elements.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図1には、本発明の一実施形態に係
る熱型赤外線撮像素子の基本構造が示されている。この
熱型赤外線撮像素子は半導体基板11上に配列された薄
膜感熱素子を用いて赤外線撮像を行うためのものであ
り、図示のように、半導体基板11上には、感光エリア
12が配置されている。この感光エリア12は赤外線検
知を行うためのものであり、行および列のマトリクス状
に2次元配列された多数の薄膜感熱素子から構成されて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic structure of a thermal infrared imaging device according to an embodiment of the present invention. This thermal infrared imaging element is for performing infrared imaging using thin film thermosensitive elements arranged on the semiconductor substrate 11, and as shown in the figure, the photosensitive area 12 is arranged on the semiconductor substrate 11. There is. The photosensitive area 12 is for detecting infrared rays and is composed of a large number of thin film thermosensitive elements which are two-dimensionally arranged in a matrix of rows and columns.

【0012】感光エリア12の各薄膜感熱素子は、垂直
走査回路14および水平走査回路15によって駆動され
る行線(垂直走査線)および列線(水平走査線)にそれ
ぞれ接続されている。
Each thin film thermosensitive element in the photosensitive area 12 is connected to a row line (vertical scanning line) and a column line (horizontal scanning line) driven by the vertical scanning circuit 14 and the horizontal scanning circuit 15, respectively.

【0013】さらに、感光エリア12の周辺には、その
感光エリア12の四辺を取り囲むようにダミー薄膜感熱
素子配列13が設けられている。このダミー薄膜感熱素
子配列13は感光エリア12全体の温度を均一化するた
めに設けられた疑似感熱素子であり、数行および数列程
度のダミー薄膜感熱素子群から構成されている。
Further, a dummy thin film thermosensitive element array 13 is provided around the photosensitive area 12 so as to surround the four sides of the photosensitive area 12. The dummy thin film thermosensitive element array 13 is a pseudo thermosensitive element provided for equalizing the temperature of the entire photosensitive area 12, and is composed of a group of dummy thin film thermosensitive elements of several rows and several columns.

【0014】これらダミー薄膜感熱素子群は感光エリア
12を構成する複数の感熱素子と同じ垂直走査線および
水平走査線にそれぞれ接続されており、感光エリア12
を構成する複数の感熱素子と行単位で同時に駆動され
る。
These dummy thin film thermosensitive element groups are connected to the same vertical scanning lines and horizontal scanning lines as the plurality of thermosensitive elements constituting the photosensitive area 12, respectively.
Are simultaneously driven row by row with a plurality of heat-sensitive elements constituting the.

【0015】感光エリア12の薄膜感熱素子は低熱伝導
率(高熱抵抗)の部材で半導体基板11に接続されてい
るのに対し、ダミー薄膜感熱素子についてはその抵抗値
を感光エリア12の薄膜感熱素子よりも高くして発熱量
を増加させていると共に、十分な温度バイアス効果が得
られるように高熱伝導率(低熱抵抗)の部材で半導体基
板11に接続されている。このように、ダミー薄膜感熱
素子については、発熱量(抵抗値)を高くし、感光エリ
ア12の薄膜感熱素子のそれよりも熱伝導率の高い部材
で半導体基板11に接続する事により、より少ないダミ
ー薄膜感熱素子で効率よく熱を半導体基板11に伝導す
ることが可能となる。
While the thin film thermosensitive element in the photosensitive area 12 is connected to the semiconductor substrate 11 by a member having a low thermal conductivity (high thermal resistance), the resistance value of the dummy thin film thermosensitive element is the resistance value of the thin film thermosensitive element in the photosensitive area 12. It is connected to the semiconductor substrate 11 with a member having a high thermal conductivity (low thermal resistance) so as to obtain a sufficient temperature bias effect while increasing the heat generation amount by increasing the temperature. As described above, the dummy thin film thermosensitive element has a smaller heat generation amount (resistance value), and is connected to the semiconductor substrate 11 with a member having a higher thermal conductivity than that of the thin film thermosensitive element in the photosensitive area 12 to reduce the heat generation amount. The dummy thin film thermosensitive element can efficiently conduct heat to the semiconductor substrate 11.

【0016】赤外線検出時(撮像時)には、感光エリア
12の薄膜感熱素子が垂直走査回路14および水平走査
回路15によって順次選択されて各々の素子の温度に応
じた信号が撮像信号として出力アンプ16から読み出さ
れる。この撮像時には、ダミー薄膜感熱素子配列13の
各ダミー薄膜感熱素子も同時に駆動され、ダミー薄膜感
熱素子に電流が流れることによって発生する熱がダミー
薄膜感熱素子からその直下の半導体基板11に伝達され
る。
At the time of detecting infrared rays (at the time of image pickup), the thin film thermosensitive elements in the photosensitive area 12 are sequentially selected by the vertical scanning circuit 14 and the horizontal scanning circuit 15, and a signal corresponding to the temperature of each element is output as an image pickup signal. 16 is read. During this imaging, each dummy thin film thermosensitive element of the dummy thin film thermosensitive element array 13 is also driven at the same time, and the heat generated by the current flowing through the dummy thin film thermosensitive element is transferred from the dummy thin film thermosensitive element to the semiconductor substrate 11 immediately thereunder. .

【0017】図2には、定常駆動時における感光エリア
12下の半導体基板11の温度分布の様子が示されてい
る。図2の横軸は感光エリア12の中央部からの距離L
を示し、また縦軸は温度を示している。図2の実線はダ
ミー薄膜感熱素子配列13が設けられていない場合の温
度分布であり、点線はダミー薄膜感熱素子配列13を設
けた場合の温度分布である。
FIG. 2 shows the temperature distribution of the semiconductor substrate 11 below the photosensitive area 12 during steady driving. The horizontal axis in FIG. 2 is the distance L from the center of the photosensitive area 12.
And the vertical axis represents the temperature. The solid line in FIG. 2 shows the temperature distribution when the dummy thin film thermosensitive element array 13 is not provided, and the dotted line shows the temperature distribution when the dummy thin film thermosensitive element array 13 is provided.

【0018】図2の実線で示されているように、ダミー
薄膜感熱素子配列13が存在しない場合には、感光エリ
ア12における半導体基板11の温度は感光エリア12
中央付近でもっとも高くなり、感光エリア12の周辺部
ほど低くなる。これに対し、本実施形態のようにダミー
薄膜感熱素子配列13を感光エリア12の周辺に設けた
場合には、図2の点線で示すように、駆動時にダミー薄
膜感熱素子に流れる電流による自己発熱により、感光エ
リア12の周囲温度を高めることができるので、これに
より感光エリア12における半導体基板11の温度を感
光エリア12中央付近と感光エリア12の周辺とで均一
化することが可能となる。
As shown by the solid line in FIG. 2, when the dummy thin film thermosensitive element array 13 is not present, the temperature of the semiconductor substrate 11 in the photosensitive area 12 is the same as that in the photosensitive area 12.
It is highest near the center and lower toward the periphery of the photosensitive area 12. On the other hand, when the dummy thin film thermosensitive element array 13 is provided around the photosensitive area 12 as in the present embodiment, as shown by the dotted line in FIG. 2, self-heating due to the current flowing through the dummy thin film thermosensitive element during driving. As a result, the ambient temperature of the photosensitive area 12 can be increased, so that the temperature of the semiconductor substrate 11 in the photosensitive area 12 can be made uniform in the vicinity of the center of the photosensitive area 12 and the periphery of the photosensitive area 12.

【0019】従って、数行および数列のダミー薄膜感熱
素子配列13を設けるだけで、感光エリア12中央部と
温度バイアスが均一の感光素子の数を左右上下4方向に
それぞれΔNだけ増加させることが可能となり、全感熱
素子数に対する熱検出に利用可能な有効素子数の占める
割合を大幅に高めることができる。具体的には、たとえ
ば256×256の感熱素子を形成した場合には、通常
はそのうちの220×220程度の素子しか実際の熱検
出に利用できないが、ダミー薄膜感熱素子配列13を設
けることにより、256×256の感熱素子のうちの2
53×253程度の素子を実際の熱検出に利用すること
が可能となる。
Therefore, by only providing the dummy thin film thermosensitive element array 13 of several rows and several columns, it is possible to increase the number of photosensitive elements having a uniform temperature bias with the central portion of the photosensitive area 12 by ΔN in each of the left, right, up, and down 4 directions. Therefore, the ratio of the number of effective elements that can be used for heat detection to the total number of heat-sensitive elements can be significantly increased. Specifically, for example, when a 256 × 256 thermosensitive element is formed, only about 220 × 220 of those elements can be used for actual heat detection, but by providing the dummy thin film thermosensitive element array 13, 2 out of 256 x 256 thermal elements
It is possible to use an element of about 53 × 253 for actual heat detection.

【0020】次に、図3を参照して、図1の熱型赤外線
撮像素子の回路構成を説明する。図3には、ダミー薄膜
感熱素子を感光エリア12の周辺に1行1列ずつ配置し
た場合が例示されている。図3中、111は垂直走査
線、112は水平走査線、113は垂直走査線選択用の
垂直MOSトランジスタ、114は水平走査線選択用の
水平MOSトランジスタである。各垂直MOSトランジ
スタ113は電源VDDと対応する垂直走査線111と
の間に接続されており、また各水平MOSトランジスタ
114は、信号出力線と対応する水平走査線112との
間に接続されている。また、115はサンプルホールド
容量、201はダミー薄膜感熱素子、202は感光エリ
ア12を構成する薄膜感熱素子を示している。
Next, with reference to FIG. 3, a circuit configuration of the thermal type infrared imaging device of FIG. 1 will be described. FIG. 3 exemplifies a case where dummy thin film thermosensitive elements are arranged around the photosensitive area 12 in rows and columns. In FIG. 3, 111 is a vertical scanning line, 112 is a horizontal scanning line, 113 is a vertical MOS transistor for vertical scanning line selection, and 114 is a horizontal MOS transistor for horizontal scanning line selection. Each vertical MOS transistor 113 is connected between the power supply VDD and the corresponding vertical scanning line 111, and each horizontal MOS transistor 114 is connected between the signal output line and the corresponding horizontal scanning line 112. . Further, 115 is a sample hold capacitor, 201 is a dummy thin film thermosensitive element, and 202 is a thin film thermosensitive element constituting the photosensitive area 12.

【0021】薄膜感熱素子202は金属酸化膜やセラミ
ックス等の抵抗値の温度変化率が大きい材料から形成さ
れている。よってこれらの薄膜感熱素子202を垂直走
査回路14によって行単位で順次駆動し、このときのサ
ンプルホールド容量115の蓄積電圧の差を列毎に選択
しながら読み出すことにより、撮像する物体(目標)の
温度変化に対応する撮像信号を得ることができる。
The thin film heat sensitive element 202 is made of a material such as a metal oxide film or ceramics having a large rate of change in resistance with temperature. Therefore, these thin film thermosensitive elements 202 are sequentially driven row by row by the vertical scanning circuit 14, and the difference in the accumulated voltage of the sample and hold capacitors 115 at this time is selected and read out for each column to read the object (target) to be imaged. An image pickup signal corresponding to the temperature change can be obtained.

【0022】ここで問題となるのは、撮像時に各々の薄
膜感熱素子202に流れる電流による温度変化である。
この自己発熱による温度変化の様子を図4に示す。
The problem here is the temperature change due to the current flowing in each thin film thermosensitive element 202 during image pickup.
FIG. 4 shows how the temperature changes due to this self-heating.

【0023】図4は、1つの薄膜感熱素子202(1セ
ル)当たりの温度変化の様子を示している。各垂直走査
線111はたとえば1/60秒の周期で垂直走査回路1
4から定期的に発生される垂直駆動パルスによって選択
される。選択された垂直走査線111は、垂直MOSト
ランジスタ113を介して電源VDDに接続される。こ
れにより、その選択された垂直走査線111に接続され
ている各薄膜感熱素子202には電源VDDが印加さ
れ、薄膜感熱素子202に電流が流れる。この時、薄膜
感熱素子202に流れる電流により、薄膜感熱素子20
2の温度は急激に上昇し、駆動終了後、徐々に低下す
る。この自己発熱による温度上昇は本来の信号分による
温度変化量の数百倍の大きさである。本来の信号分によ
る温度変化は自己発熱による温度変化に重畳された形で
現れることになる。
FIG. 4 shows how the temperature changes per thin-film thermosensitive element 202 (one cell). Each vertical scanning line 111 has a period of, for example, 1/60 second, and the vertical scanning circuit 1
4 is selected by a vertical drive pulse periodically generated. The selected vertical scanning line 111 is connected to the power supply VDD via the vertical MOS transistor 113. As a result, the power supply VDD is applied to each thin film thermosensitive element 202 connected to the selected vertical scanning line 111, and a current flows through the thin film thermosensitive element 202. At this time, due to the current flowing through the thin film heat sensitive element 202, the thin film heat sensitive element 20
The temperature of 2 rapidly rises, and gradually decreases after the end of driving. The temperature rise due to this self-heating is several hundred times larger than the amount of temperature change due to the original signal component. The temperature change due to the original signal component appears in a form superimposed on the temperature change due to self-heating.

【0024】このような駆動を繰り返し行うことによ
り、感光エリア12下の半導体基板11の温度が上昇し
はじめ、一定時間駆動すると図2の実線のような温度分
布に収束するのである。
By repeating such driving, the temperature of the semiconductor substrate 11 under the photosensitive area 12 starts to rise, and when driven for a certain period of time, the temperature distribution converges as shown by the solid line in FIG.

【0025】本実施形態では、薄膜感熱素子202の駆
動時には、ダミー薄膜感熱素子201も一緒に駆動され
る。このため、ダミー薄膜感熱素子201もそこに流れ
る電流によって温度上昇し、その熱が感光エリア12周
辺の半導体基板11上に伝達される。よって、感光エリ
ア12周辺の半導体基板11のバイアス温度を高めるこ
とができ、感光エリア12における半導体基板11のバ
イアス温度を感光エリア12中央付近と感光エリア12
の周辺とで均一化することが可能となる。
In the present embodiment, when the thin film thermosensitive element 202 is driven, the dummy thin film thermosensitive element 201 is also driven. Therefore, the temperature of the dummy thin film thermosensitive element 201 also rises due to the current flowing therethrough, and the heat is transferred to the semiconductor substrate 11 around the photosensitive area 12. Therefore, the bias temperature of the semiconductor substrate 11 around the photosensitive area 12 can be increased, and the bias temperature of the semiconductor substrate 11 in the photosensitive area 12 can be set to the vicinity of the center of the photosensitive area 12 and the photosensitive area 12.
It becomes possible to make it uniform with the surrounding area.

【0026】なお、ダミー薄膜感熱素子201はあくま
で温度の均一化を図るためのものであるため、信号の読
み出しには利用されない。
Since the dummy thin film thermosensitive element 201 is only for the purpose of equalizing the temperature, it is not used for signal reading.

【0027】次に、図5および図6を参照して、各セル
の配線構造について説明する。図5は各セル周辺の配線
パターンを示しており、また図6はその断面構造を示し
ている。
Next, the wiring structure of each cell will be described with reference to FIGS. FIG. 5 shows a wiring pattern around each cell, and FIG. 6 shows its sectional structure.

【0028】ダミー薄膜感熱素子201および薄膜感熱
素子202のどちらもその配線レイアウトは同じであ
り、薄膜感熱素子が形成されるベース部300は、半導
体基板11との間に中空部が設けられるように、その支
持脚である配線部材301および302によって半導体
基板11上に支持されている。
Both the dummy thin film thermosensitive element 201 and the thin film thermosensitive element 202 have the same wiring layout, and the base portion 300 on which the thin film thermosensitive element is formed has a hollow portion provided between it and the semiconductor substrate 11. , And is supported on the semiconductor substrate 11 by the wiring members 301 and 302 which are the supporting legs.

【0029】ベース部300上の薄膜感熱素子の一端
は、半導体基板11上に形成された配線層からなる垂直
走査線111に配線部材301を介して接続され、また
ベース部300上の薄膜感熱素子の他端は、半導体基板
11上に形成された配線層からなる水平走査線112に
配線部材302を介して接続される。
One end of the thin film thermosensitive element on the base portion 300 is connected to the vertical scanning line 111 formed of the wiring layer formed on the semiconductor substrate 11 via the wiring member 301, and the thin film thermosensitive element on the base portion 300 is connected. The other end of is connected to the horizontal scanning line 112 formed of a wiring layer formed on the semiconductor substrate 11 via the wiring member 302.

【0030】この場合、薄膜感熱素子202が形成され
るベース部300の配線部材301および302には、
それぞれ低熱伝導率(高熱抵抗)の部材が用いられ、ま
たダミー薄膜感熱素子201が形成されるベース部30
0の配線部材301および302には、それぞれ高熱伝
導率(低熱抵抗)の部材が用いられている。
In this case, the wiring members 301 and 302 of the base portion 300 on which the thin film thermosensitive element 202 is formed are
A member having a low thermal conductivity (high thermal resistance) is used for each, and a base portion 30 on which the dummy thin film thermosensitive element 201 is formed
For the wiring members 301 and 302 of 0, members having high thermal conductivity (low thermal resistance) are used.

【0031】これにより、薄膜感熱素子202は高熱抵
抗で半導体基板11に接続され、ダミー薄膜感熱素子2
01は低熱抵抗で半導体基板11に接続されることにな
る。よって、薄膜感熱素子202については、選択時に
流れる電流によって上昇された温度を次の選択時までに
元の状態に戻すことができ、またダミー薄膜感熱素子2
01についてはその駆動時に発生する熱を効率よく半導
体基板11に伝達することができる。
As a result, the thin film thermosensitive element 202 is connected to the semiconductor substrate 11 with high thermal resistance, and the dummy thin film thermosensitive element 2 is connected.
01 has a low thermal resistance and is connected to the semiconductor substrate 11. Therefore, in the thin-film thermosensitive element 202, the temperature increased by the current flowing at the time of selection can be returned to the original state by the next selection, and the dummy thin-film thermosensitive element 2
With respect to 01, the heat generated at the time of driving can be efficiently transferred to the semiconductor substrate 11.

【0032】なお、薄膜感熱素子202を配列するピッ
チは通常は50μm程度であるが、ダミー薄膜感熱素子
201の部分は信号を検出する必要は無いのでピッチを
狭くすることが可能である。また、ダミー薄膜感熱素子
201の部分においては、光入射窓も基本的には不要と
なるので、それによる微細化効果も得られる。よって、
ダミー薄膜感熱素子201の追加によって引き起こされ
る感光エリアサイズ全体の大きさの増大は必要最小限に
抑えることができる。
The pitch for arranging the thin film thermosensitive elements 202 is usually about 50 μm, but since it is not necessary to detect a signal in the dummy thin film thermosensitive element 201, the pitch can be narrowed. In addition, in the portion of the dummy thin film thermosensitive element 201, the light incident window is basically unnecessary, so that the miniaturization effect can be obtained. Therefore,
An increase in the size of the entire photosensitive area size caused by the addition of the dummy thin film thermosensitive element 201 can be suppressed to a necessary minimum.

【0033】また、本実施形態では、ダミー薄膜感熱素
子201を薄膜感熱素子202と同じ行線に接続して薄
膜感熱素子202と一緒に駆動されるように構成した
が、ダミー薄膜感熱素子201に電流を流すための専用
の駆動回路を設けることも可能である。
Further, in this embodiment, the dummy thin film thermosensitive element 201 is connected to the same row line as the thin film thermosensitive element 202 so as to be driven together with the thin film thermosensitive element 202. It is also possible to provide a dedicated drive circuit for passing a current.

【0034】また、本実施形態においては、感熱素子の
発熱によって半導体基板の中央の温度が高くなり、周辺
が低いという状況を考慮して、感光エリア12の周辺に
配置したダミー薄膜感熱素子201の抵抗値を高くして
発熱量を増加させ、高熱伝導率で半導体基板11に接続
したが、実際には出力アンプ16、垂直MOSトランジ
スタ113等の周辺回路素子も発熱するので、それら周
辺回路素子付近のダミー薄膜感熱素子201について
は、半導体基板11に接続する支持脚の熱伝導率、ダミ
ー薄膜感熱素子の発熱量(抵抗値)を調整し、他の部分
のダミー薄膜感熱素子201よりも低熱伝導率で半導体
基板に接続することが好ましい。
Further, in the present embodiment, in consideration of the situation that the temperature of the center of the semiconductor substrate becomes high and the periphery thereof becomes low due to the heat generation of the heat sensitive element, the dummy thin film heat sensitive elements 201 arranged in the periphery of the photosensitive area 12 are considered. Although the resistance value is increased to increase the amount of heat generation and the semiconductor substrate 11 is connected with high thermal conductivity, the peripheral circuit elements such as the output amplifier 16 and the vertical MOS transistor 113 also actually generate heat. For the dummy thin film thermosensitive element 201, the thermal conductivity of the support leg connected to the semiconductor substrate 11 and the heat generation amount (resistance value) of the dummy thin film thermosensitive element are adjusted so that the thermal conductivity of the dummy thin film thermosensitive element 201 is lower than that of the other portions. It is preferable to connect to the semiconductor substrate at a rate.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
感光部を構成する複数の感熱素子の周辺に複数の疑似感
熱素子を配列したことにより、赤外線を検知する感光部
のバイアス温度を均一化することが可能となる。特に、
疑似感熱素子については、感光部の感熱素子の配線部材
よりも高熱伝導率(低熱抵抗)の部材で半導体基板に接
続する事により、比較的僅かな数の疑似感熱素子を設け
るだけで温度の均一化を図ることが可能となる。
As described above, according to the present invention,
By arranging the plurality of pseudo heat-sensitive elements around the plurality of heat-sensitive elements forming the photosensitive section, it is possible to make the bias temperature of the photosensitive section that detects infrared rays uniform. In particular,
Regarding the pseudo-thermosensitive element, by connecting it to the semiconductor substrate with a member having a higher thermal conductivity (low thermal resistance) than the wiring member of the thermosensitive element in the photosensitive section, it is possible to obtain a uniform temperature by providing a relatively small number of pseudo-thermosensitive elements. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る熱型赤外線撮像素子
の構造を示す平面図。
FIG. 1 is a plan view showing a structure of a thermal infrared imaging device according to an embodiment of the present invention.

【図2】同実施形態の熱型赤外線撮像素子における感光
部の温度分布を示す図。
FIG. 2 is a diagram showing a temperature distribution of a photosensitive section in the thermal infrared imaging element of the embodiment.

【図3】同実施形態の熱型赤外線撮像素子の回路構成を
示す図。
FIG. 3 is a diagram showing a circuit configuration of a thermal infrared imaging device of the same embodiment.

【図4】同実施形態の熱型赤外線撮像素子における感熱
素子の温度変化の様子を示す図。
FIG. 4 is a diagram showing how the temperature of a heat-sensitive element in the thermal-type infrared imaging element of the embodiment changes.

【図5】同実施形態の熱型赤外線撮像素子で用いられる
各セルの配線構造を示す図。
FIG. 5 is a view showing a wiring structure of each cell used in the thermal infrared imaging element of the embodiment.

【図6】同実施形態の熱型赤外線撮像素子で用いられる
各セルの断面構造を示す図。
FIG. 6 is a view showing a cross-sectional structure of each cell used in the thermal infrared imaging element of the same embodiment.

【符号の説明】[Explanation of symbols]

11…半導体基板 12…感光エリア 13…ダミー感熱素子列 14…垂直走査回路 15…水平走査回路 111…垂直走査線(行線) 112…水平走査線(列線) 113…垂直MOSトランジスタ 114…水平MOSトランジスタ 301,302…配線部材 11 ... Semiconductor substrate 12 ... Photosensitive area 13 ... Dummy thermosensitive element array 14 ... Vertical scanning circuit 15 ... Horizontal scanning circuit 111 ... Vertical scanning line (row line) 112 ... Horizontal scanning line (column line) 113 ... Vertical MOS transistor 114 ... Horizontal MOS transistor 301, 302 ... Wiring member

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 1/00 - 1/60 G01J 5/00 - 5/62 H04N 5/33 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01J 1/00-1/60 G01J 5/00-5/62 H04N 5/33 JISST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板と、該半導体基板上に2次元
配列された複数の感熱素子を含む感光部とから構成され
た熱型赤外線撮像素子において、 第1の配線部材を介して前記半導体基板に接続される前
記感光部の複数の感熱素子の周辺に、前記第1の配線部
材よりも高熱伝導率の第2の配線部材を介して前記半導
体基板に接続される、前記感熱素子よりも高抵抗の疑似
感熱素子を複数配列してなることを特徴とする熱型赤外
線撮像素子。
1. A thermal infrared imaging device comprising a semiconductor substrate and a photosensitive section including a plurality of thermosensitive elements two-dimensionally arranged on the semiconductor substrate, wherein the semiconductor substrate is provided via a first wiring member. Higher than the heat-sensitive element, which is connected to the semiconductor substrate through a second wiring member having a higher thermal conductivity than the first wiring member around the plurality of heat-sensitive elements of the photosensitive section connected to A thermal infrared image pickup device comprising a plurality of pseudo resistance thermosensitive elements arranged in a line.
【請求項2】 前記複数の疑似感熱素子は、前記感光部
を構成する前記複数の感熱素子と同じ行線および列線に
それぞれ接続されており、 行線単位で前記疑似感熱素子と前記感光部の感熱素子と
が一緒に駆動されることを特徴とする請求項1記載の熱
型赤外線撮像素子。
2. The plurality of pseudo-thermosensitive elements are connected to the same row lines and column lines as the plurality of thermosensitive elements constituting the photosensitive section, and the pseudo-thermosensitive elements and the photosensitive section are arranged in units of row lines. 2. The thermal infrared image pickup device according to claim 1, wherein the heat sensitive device is driven together.
【請求項3】 前記複数の疑似感熱素子は、前記感光部
の周辺にその四辺を取り囲むように2次元配列されてい
ることを特徴とする請求項1記載の熱型赤外線撮像素
子。
3. The thermal infrared imaging device according to claim 1, wherein the plurality of pseudo-thermosensitive elements are two-dimensionally arranged around the photosensitive portion so as to surround four sides thereof.
【請求項4】 前記複数の疑似感熱素子間の配列ピッチ
は、前記感光部を構成する前記複数の感熱素子間の配列
ピッチよりも狭く設定されていることを特徴とする請求
項1記載の熱型赤外線撮像素子。
4. The heat generation device according to claim 1, wherein the arrangement pitch between the plurality of pseudo heat-sensitive elements is set to be narrower than the arrangement pitch between the plurality of heat-sensitive elements forming the photosensitive section. Infrared imaging device.
【請求項5】 半導体基板と、該半導体基板上に2次元
配列され駆動時に発熱する複数の感熱素子とを具備する
熱型赤外線撮像素子において、前記複数の感熱素子は、 感光部を形成し撮像信号の読み出しに利用される感熱素
子群と、 前記感光部の外周を取り囲むように配列され前記撮像信
号の読み出しに利用されない擬似感熱素子群とからな
り、 さらに、前記複数の感熱素子を 駆動するための駆動手段
を具備することを特徴とする熱型赤外線撮像素子。
5. A thermal infrared imaging device, comprising : a semiconductor substrate; and a plurality of heat-sensitive elements which are two-dimensionally arranged on the semiconductor substrate and generate heat when driven , wherein the plurality of heat-sensitive elements are photosensitive parts. Which is used to read image signals
A sub-group and the image pickup signal arranged so as to surround the outer periphery of the photosensitive section.
And the pseudo-thermosensitive elements that are not used for reading
In addition, the thermal-type infrared imaging device further comprises a driving unit for driving the plurality of heat-sensitive elements.
JP2000074487A 2000-03-16 2000-03-16 Thermal infrared imaging device Expired - Fee Related JP3495309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074487A JP3495309B2 (en) 2000-03-16 2000-03-16 Thermal infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074487A JP3495309B2 (en) 2000-03-16 2000-03-16 Thermal infrared imaging device

Publications (2)

Publication Number Publication Date
JP2001264158A JP2001264158A (en) 2001-09-26
JP3495309B2 true JP3495309B2 (en) 2004-02-09

Family

ID=18592532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074487A Expired - Fee Related JP3495309B2 (en) 2000-03-16 2000-03-16 Thermal infrared imaging device

Country Status (1)

Country Link
JP (1) JP3495309B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079946A (en) * 2007-09-26 2009-04-16 Seiko Npc Corp Thermopile type infrared sensor
JP5443793B2 (en) * 2009-03-13 2014-03-19 株式会社東芝 Infrared solid-state image sensor
JP5158148B2 (en) * 2010-08-13 2013-03-06 カシオ計算機株式会社 Imaging device
JP5455844B2 (en) 2010-08-24 2014-03-26 株式会社東芝 Uncooled infrared image sensor
JP7142470B2 (en) * 2018-06-07 2022-09-27 浜松ホトニクス株式会社 photodetector
JP7142471B2 (en) * 2018-06-07 2022-09-27 浜松ホトニクス株式会社 photodetector
US20220196481A1 (en) * 2019-03-27 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor and infrared sensor device equipped with same

Also Published As

Publication number Publication date
JP2001264158A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP3866069B2 (en) Infrared solid-state imaging device
JP5396617B2 (en) Infrared array sensor
JP5335006B2 (en) Infrared solid-state image sensor
KR101932784B1 (en) Infrared image sensor and signal read method
JPH08105794A (en) Bolometer type infrared ray detection element, its driving method and integration circuit for detection
JP3285083B2 (en) Two-dimensional array type infrared detecting element and manufacturing method thereof
US8344321B2 (en) Infrared imaging device
WO1999031471A1 (en) Infrared solid state image sensing device
US20020166968A1 (en) Apparatus and method of measuring bolometric resistance changes in an uncooled and thermally unstabilized focal plane array over a wide temperature range
JP3655232B2 (en) Infrared sensor
KR101949524B1 (en) Device for detection of electromagnetic radiation with low sensitivity to spatial noise
JP3149919B2 (en) Solid-state imaging device and readout circuit using the same
JP3495309B2 (en) Thermal infrared imaging device
US11985442B2 (en) Bias circuit with improved noise performance
JP2004530893A (en) Method and apparatus for reading composite microbolometer array
CN111829670A (en) Uncooled infrared focal plane array reading circuit
JPH10227689A (en) Infrared detector and infrared focal plane array
JP2008022315A (en) Thermal infrared detection circuit
CN210513428U (en) Fast and stable uncooled infrared focal plane reading circuit
US6534758B2 (en) Electromagnetic wave detector using quantum wells and subtractive detectors
JP4153861B2 (en) Infrared sensor
US6541299B2 (en) Semiconductor device having thin film resistors made of bolometer materials
US7560694B2 (en) Method and system for increasing signal-to-noise ratio in microbolometer arrays
JP3974902B2 (en) Thermal infrared detector
CN110487420B (en) Fast and stable uncooled infrared focal plane reading circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees