JP3495267B2 - Refrigeration equipment for gas liquefaction and re-vaporization - Google Patents

Refrigeration equipment for gas liquefaction and re-vaporization

Info

Publication number
JP3495267B2
JP3495267B2 JP32404998A JP32404998A JP3495267B2 JP 3495267 B2 JP3495267 B2 JP 3495267B2 JP 32404998 A JP32404998 A JP 32404998A JP 32404998 A JP32404998 A JP 32404998A JP 3495267 B2 JP3495267 B2 JP 3495267B2
Authority
JP
Japan
Prior art keywords
gas
refrigerant
temperature
liquefied gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32404998A
Other languages
Japanese (ja)
Other versions
JP2000146432A (en
Inventor
泰士 山本
好司 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32404998A priority Critical patent/JP3495267B2/en
Publication of JP2000146432A publication Critical patent/JP2000146432A/en
Application granted granted Critical
Publication of JP3495267B2 publication Critical patent/JP3495267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス液化・再気化
用冷凍装置に関し、高純度の例えば塩素などのガスを製
造する際に用いられるもので、二酸化炭素などの不純物
を含む塩素ガスを液化する冷凍機と該液化塩素を再び気
化させるための気化装置とを備えたガス液化・再気化用
冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas liquefaction / revaporization refrigerating apparatus, which is used for producing a high-purity gas such as chlorine, and liquefies a chlorine gas containing impurities such as carbon dioxide. The present invention relates to a gas liquefaction / revaporization refrigeration apparatus including a refrigerating machine and a vaporization apparatus for vaporizing the liquefied chlorine again.

【0002】[0002]

【従来の技術】図4は塩素ガスの製造工程の一例を示す
説明図である。電解槽から発生した塩素ガスは高温(8
0〜95℃)で不純物を含んでおり、常温まで冷却する
とともに不純物を取り除く必要がある。そのため、図4
に示すように、電解槽41から発生した塩素ガスをクー
ラ42、ドライヤ43、塩素ガス・ブロワースクラバ4
4の順に通した後、常温で気化している塩素ガスをガス
液化・再気化用冷凍装置45へ供給し、塩素ガスに含ま
れる水蒸気,二酸化炭素,水素などの不純物を取り除く
ようにしている。そしてこの不純物が除去された塩素ガ
スは、ガス液化・再気化用冷凍装置45から本例ではス
トレージ・タンク46に送出され、一旦貯留される。
2. Description of the Related Art FIG. 4 is an explanatory view showing an example of a chlorine gas manufacturing process. Chlorine gas generated from the electrolyzer is at high temperature (8
It contains impurities at 0 to 95 ° C., and it is necessary to remove the impurities while cooling to room temperature. Therefore, FIG.
As shown in, the chlorine gas generated from the electrolytic cell 41 is cooled by a cooler 42, a dryer 43, and a chlorine gas blower scrubber 4.
After passing through the order of 4, chlorine gas vaporized at room temperature is supplied to the gas liquefaction / revaporization refrigeration unit 45 to remove impurities such as water vapor, carbon dioxide and hydrogen contained in the chlorine gas. Then, the chlorine gas from which the impurities are removed is sent from the gas liquefaction / revaporization refrigeration unit 45 to the storage tank 46 in this example, and is temporarily stored.

【0003】このような塩素ガス製造工程において、二
酸化炭素,水素などの不純物を除去して純度の高い塩素
ガスを得るために設けられる前記ガス液化・再気化用冷
凍装置として、従来、特公平3−23826号公報に
「凝縮装置」という名称で記載されたものが提案されて
いる。この従来のガス液化・再気化用冷凍装置は、図3
に示すように、冷媒循環流路を形成し、不純物を含む塩
素ガスを液化する冷凍機(前記公報では冷凍装置と称さ
れている)と、この液化された塩素を冷凍機の冷媒(例
えばR22)を利用することで該冷媒と熱交換して加熱
し、次いでこの加熱された液体塩素を気化するようにし
た気化装置とを備えている。
In the chlorine gas production process, as a refrigerating apparatus for gas liquefaction / revaporization, which is provided to remove impurities such as carbon dioxide and hydrogen to obtain highly pure chlorine gas, a conventional Japanese Patent Publication No. What was described by the name "condensing device" in the 23826 publication is proposed. This conventional gas liquefaction / revaporization refrigeration system is shown in FIG.
As shown in FIG. 3, a refrigerator (which is referred to as a refrigerating apparatus in the above publication) that forms a refrigerant circulation flow path and liquefies chlorine gas containing impurities, and this liquefied chlorine is used as a refrigerant for the refrigerator (for example, R22). ) Is used to heat and exchange heat with the refrigerant, and then the heated liquid chlorine is vaporized.

【0004】すなわち、冷凍機は、油冷式の圧縮機5
1、油分離回収器52、凝縮器53、受液器54、膨張
弁55、蒸発器(塩素液化器)56及び液分離器57を
有し、これらにより冷媒循環流路を形成している。前記
凝縮器53には熱交換用の冷却水を流通させるための配
管が施されており、また、蒸発器56の内部の熱交換器
内に外部からの不純物を含む塩素ガスが送り込まれるよ
うになっている。
That is, the refrigerator is an oil-cooled compressor 5
1, an oil separation / recovery device 52, a condenser 53, a liquid receiver 54, an expansion valve 55, an evaporator (chlorine liquefaction device) 56, and a liquid separator 57, which form a refrigerant circulation flow path. The condenser 53 is provided with a pipe for circulating cooling water for heat exchange, and the chlorine gas containing impurities is fed into the heat exchanger inside the evaporator 56 from the outside. Has become.

【0005】一方、液体塩素の気化装置は、液体塩素受
槽58、液ポンプ59、液化ガス加熱用熱交換器(液体
塩素加熱器)60及び気化器61により構成されてい
る。前記液体塩素受槽58には蒸発器56の出口側が接
続されて該蒸発器56から液体塩素が送り込まれるよう
になっている。また、液化ガス加熱用熱交換器60は冷
媒循環流路における前記受液器54と前記膨張弁55と
の間に設けられており、気化器61には熱交換器60か
らの液体塩素を気化させるためのスチーム加熱用の配管
が施されている。
On the other hand, the liquid chlorine vaporizer comprises a liquid chlorine receiving tank 58, a liquid pump 59, a liquefied gas heating heat exchanger (liquid chlorine heater) 60 and a vaporizer 61. An outlet side of an evaporator 56 is connected to the liquid chlorine receiving tank 58 so that liquid chlorine can be sent from the evaporator 56. The heat exchanger 60 for heating the liquefied gas is provided between the liquid receiver 54 and the expansion valve 55 in the refrigerant circulation flow path, and the vaporizer 61 vaporizes the liquid chlorine from the heat exchanger 60. Piping for steam heating is provided to allow it.

【0006】このように構成されたガス液化・再気化用
冷凍装置において、不純物を含有する塩素ガスは蒸発器
56に送り込まれて該蒸発器56内を流れる冷媒によっ
て冷却され、液化されて液体塩素となり、該液体塩素は
液体塩素受槽58に貯留される。そして前記液化の際
に、二酸化炭素,水素などの不純物は凝縮温度の違いで
凝縮せずイナートガスとして排出される。次いで、液体
塩素は、液ポンプ59によって液化ガス加熱用熱交換器
60に送り込まれ、冷凍機の受液器54からの冷媒と熱
交換する。このとき該冷媒は高圧で液体塩素よりも温度
が高くなっているため、液体塩素は加熱される。一方、
該冷媒は過冷却されることになる。そして、液化ガス加
熱用熱交換器60で加熱された液体塩素は、気化器61
に送り込まれて該気化器61内を流れるスチームで加熱
され、気化して塩素ガスとなる。
In the gas liquefying / revaporizing refrigerating apparatus thus constructed, the chlorine gas containing impurities is sent to the evaporator 56, cooled by the refrigerant flowing in the evaporator 56, and liquefied to be liquid chlorine. Thus, the liquid chlorine is stored in the liquid chlorine receiving tank 58. During the liquefaction, impurities such as carbon dioxide and hydrogen are not condensed due to the difference in condensation temperature and are discharged as an inert gas. Next, the liquid chlorine is sent to the liquefied gas heating heat exchanger 60 by the liquid pump 59 and exchanges heat with the refrigerant from the liquid receiver 54 of the refrigerator. At this time, since the refrigerant has a high pressure and a temperature higher than that of liquid chlorine, the liquid chlorine is heated. on the other hand,
The refrigerant will be supercooled. Then, the liquid chlorine heated by the heat exchanger 60 for heating the liquefied gas is transferred to the vaporizer 61.
Is heated by steam flowing in the vaporizer 61 and vaporized into chlorine gas.

【0007】一方、蒸発器56での熱交換で加熱された
冷媒は、液分離器57、圧縮機51及び油分離回収器5
2を経て凝縮器53に送り込まれ、ここで冷却水との間
で熱交換を行って冷却され、高圧の液体となり、受液器
54に貯留される。この受液器54からの高圧の冷媒液
は、前記の液化ガス加熱用熱交換器60での液体塩素と
の熱交換で過冷却される。しかる後、冷媒液は膨張弁5
5にて膨張して低圧低温となり蒸発器56に供給され
る。この蒸発器56に供給された冷媒液は不純物を含有
する高温の塩素ガスとの間で熱交換を行って該塩素ガス
から熱を吸収し気化して冷媒ガスとなり、この冷媒ガス
が液分離器57を経て圧縮機51へ戻ることになる。
On the other hand, the refrigerant heated by the heat exchange in the evaporator 56 is the liquid separator 57, the compressor 51 and the oil separation and recovery unit 5.
It is sent to the condenser 53 via 2 and is cooled by exchanging heat with the cooling water here, becomes a high-pressure liquid, and is stored in the liquid receiver 54. The high-pressure refrigerant liquid from the liquid receiver 54 is supercooled by heat exchange with the liquid chlorine in the liquefied gas heating heat exchanger 60. After that, the refrigerant liquid is expanded by the expansion valve 5
It expands at 5, becomes low temperature and low temperature, and is supplied to the evaporator 56. The refrigerant liquid supplied to the evaporator 56 exchanges heat with high-temperature chlorine gas containing impurities, absorbs heat from the chlorine gas and is vaporized to become a refrigerant gas. This refrigerant gas is the liquid separator. It returns to the compressor 51 via 57.

【0008】[0008]

【発明が解決しようとする課題】しかし前述した従来の
ガス液化・再気化用冷凍装置では、冷媒を利用して液体
塩素を加熱する液化ガス加熱用熱交換器の出側の液体塩
素の温度は圧縮機からの冷媒ガスの温度及び量並びに液
体塩素量に依存にしており、液体塩素の温度制御手段が
講じられていないものであるから、下流工程として例え
ば塩素ガスタンクへの塩素ガスの貯留を行うような場
合、前記液化ガス加熱用熱交換器出口の液体塩素の温度
が所定値より低いときには貯留すべき所要の塩素ガス量
が得られず、一方、前記所定値より高いときには塩素ガ
ス量が供給過剰となり、ガス供給先である下流工程の操
業が不安定であるという問題点があった。
However, in the conventional gas liquefaction / revaporization refrigeration system described above, the temperature of the liquid chlorine on the outlet side of the heat exchanger for heating the liquefied gas using the refrigerant is Since it depends on the temperature and amount of the refrigerant gas from the compressor and the amount of liquid chlorine, and the means for controlling the temperature of the liquid chlorine is not taken, for example, chlorine gas is stored in a chlorine gas tank as a downstream process. In such a case, when the temperature of the liquid chlorine at the outlet of the heat exchanger for heating the liquefied gas is lower than a predetermined value, the required amount of chlorine gas to be stored cannot be obtained, while when it is higher than the predetermined value, the amount of chlorine gas is supplied. There was a problem that the operation was excessive in the downstream process, which is a gas supply destination, and was unstable.

【0009】本発明は、前記問題点を解消するためにな
されたものであって、高純度のガス、例えば塩素ガスの
製造の際の精製に用いられるガス液化・再気化用冷凍装
置において、不純物が除去された液化ガスの温度を設定
された一定値に制御することができ、これによりガス供
給先である下流工程での操業の安定化を図ることができ
るようにしたガス液化・再気化用冷凍装置を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and is an impurity in a gas liquefaction / revaporization refrigeration apparatus used for refining in the production of high-purity gas, for example, chlorine gas. It is possible to control the temperature of the liquefied gas from which gas has been removed to a set constant value, thereby stabilizing the operation in the downstream process where the gas is supplied. An object is to provide a refrigerating device.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、本願請求項1の発明は、少なくとも圧縮機、凝縮
器、膨張弁、蒸発器を含む冷媒循環流路を形成し、不純
物を含み気化しているガスを前記蒸発器にて冷媒と熱交
換させて液化して前記不純物を除去する冷凍機と、冷媒
と前記液化されたガスとの熱交換を行い該液化ガスを加
熱する液化ガス加熱用熱交換器を有し、前記蒸発器にて
液化されたガスを加熱し再び気化させるための気化装置
とを備えたガス液化・再気化用冷凍装置において、冷媒
と前記液化ガス加熱用熱交換器からの液化ガスとの熱交
換を行い該液化ガスを加熱する第2の液化ガス加熱用熱
交換器と、前記圧縮機の出側の冷媒循環流路の部分から
分岐して前記第2の液化ガス加熱用熱交換器を経て前記
凝縮器に至る冷媒流路と、前記圧縮機から吐出された冷
媒のうち前記凝縮器に流れる量と前記第2の液化ガス加
熱用熱交換器に流れる量とを調節する流量調節手段と、
前記第2の液化ガス加熱用熱交換器から流出する液化ガ
スの温度を検出する温度検出手段と、この温度検出手段
からの温度信号を受けて、前記液化ガス温度が設定され
た一定値になるように前記流量調節手段を制御する温度
調節計とを備えたものである。
In order to achieve the above-mentioned object, the invention of claim 1 of the present application forms a refrigerant circulation flow path including at least a compressor, a condenser, an expansion valve, and an evaporator to remove impurities. A liquefier that heats the liquefied gas by exchanging heat between the refrigerant and the liquefied gas by liquefying the vaporized gas by exchanging heat with the refrigerant in the evaporator to liquefy and remove the impurities. In a gas liquefaction / revaporization refrigeration apparatus having a gas heating heat exchanger and a vaporizer for heating and liquefying the gas liquefied in the evaporator, a refrigerant and the liquefied gas for heating A second liquefied gas heating heat exchanger that heats the liquefied gas by exchanging heat with the liquefied gas from the heat exchanger; and a branch of the refrigerant circulation flow path on the outlet side of the compressor, Refrigerant reaching the condenser through the liquefied gas heating heat exchanger 2 A flow rate adjusting means for adjusting the road, and the amount flowing to the amount and the second liquefied gas heat exchanger for heating flowing through the condenser of the refrigerant discharged from the compressor,
The temperature detection means for detecting the temperature of the liquefied gas flowing out of the second heat exchanger for heating the liquefied gas, and the temperature signal from the temperature detection means, the temperature of the liquefied gas becomes a set constant value. And a temperature controller for controlling the flow rate adjusting means.

【0011】請求項2の発明は、請求項1記載のガス液
化・再気化用冷凍装置において、さらに、前記圧縮機か
ら吐出され、前記流量調節手段に流入する冷媒ガスの温
度を設定された一定値になるように制御する吐出冷媒ガ
ス温度制御手段を備えたものである。
According to a second aspect of the present invention, in the gas liquefaction / revaporization refrigeration apparatus according to the first aspect, the temperature of the refrigerant gas discharged from the compressor and flowing into the flow rate adjusting means is set to a constant value. It is provided with a discharge refrigerant gas temperature control means for controlling the temperature to be a value.

【0012】本発明によるガス液化・再気化用冷凍装置
では、第2の液化ガス加熱用熱交換器を設け、該熱交換
器には、冷媒循環流路における膨張弁の入側に設けられ
た液化ガス加熱用熱交換器(以下、第1の液化ガス加熱
用熱交換器という)にて加熱された液化ガスが導かれる
ようにしている。また、圧縮機から凝縮器に至る冷媒循
環流路の途中に流量調節手段を設け、この流量調節手段
の部分より冷媒循環流路から分岐して前記第2の液化ガ
ス加熱用熱交換器を経て凝縮器に至り該凝縮器入口で冷
媒循環流路に合流する冷媒流路を設けている。さらに、
第2の液化ガス加熱用熱交換器にて高温の冷媒ガスとの
間で熱交換された液化ガスの温度を検出する温度検出手
段を設けるとともに、この温度検出手段からの温度信号
を受けて、第2の液化ガス加熱用熱交換器による熱交換
された液化ガスの温度を設定された一定値に保つべく前
記流量調節手段を制御する温度調節計を設けている。こ
の温度調節計からの指令信号によって前記流量調節手段
は、圧縮機から吐出された高圧高温の冷媒ガスのうち凝
縮器に流れる冷媒ガス量と第2の液化ガス加熱用熱交換
器に流れる冷媒ガス量とを調節するものである。
In the gas liquefying / revaporizing refrigerating apparatus according to the present invention, a second liquefied gas heating heat exchanger is provided, and the heat exchanger is provided on the inlet side of the expansion valve in the refrigerant circulation passage. The liquefied gas heated by the liquefied gas heating heat exchanger (hereinafter referred to as the first liquefied gas heating heat exchanger) is introduced. Further, a flow rate adjusting means is provided in the middle of the refrigerant circulation flow path from the compressor to the condenser, and the flow rate adjusting means branches from the refrigerant circulation flow path to the second liquefied gas heating heat exchanger. A refrigerant passage is provided which reaches the condenser and joins the refrigerant circulation passage at the inlet of the condenser. further,
The second liquefied gas heating heat exchanger is provided with temperature detecting means for detecting the temperature of the liquefied gas heat-exchanged with the high-temperature refrigerant gas, and receives a temperature signal from the temperature detecting means, A temperature controller for controlling the flow rate adjusting means is provided to maintain the temperature of the liquefied gas heat-exchanged by the second heat exchanger for heating the liquefied gas at a set constant value. In response to a command signal from the temperature controller, the flow rate control means controls the flow rate of the high-pressure high-temperature refrigerant gas discharged from the compressor to flow into the condenser and the second liquefied gas heating heat exchanger. It regulates the quantity.

【0013】そして、蒸発器にて液化され、不純物を除
去された液化ガスは、第1の液化ガス加熱用熱交換器に
て冷媒液との熱交換で加熱される。次いで、第1の液化
ガス加熱用熱交換器からの加熱された液化ガスは、冷媒
流路に設けられた第2の液化ガス加熱用熱交換器へ導か
れ、該熱交換器にて冷媒ガスとの熱交換を行う。そし
て、温度検出手段で検出された液化ガス温度検出値が予
め設定された一定値を下回ると、温度調節計が流量調節
手段を調節制御して第2の液化ガス加熱用熱交換器に流
れる高温の冷媒ガス量を増加させる一方、直接に凝縮器
へ流れる冷媒ガス量を減少させる。その結果、第2の液
化ガス加熱用熱交換器から流れ出る液化ガスの温度は上
昇して設定された一定値に制御される。
The liquefied gas liquefied in the evaporator and having impurities removed is heated by heat exchange with the refrigerant liquid in the first liquefied gas heating heat exchanger. Next, the heated liquefied gas from the first liquefied gas heating heat exchanger is guided to the second liquefied gas heating heat exchanger provided in the refrigerant flow path, and the refrigerant gas is heated in the heat exchanger. Heat exchange with. Then, when the liquefied gas temperature detection value detected by the temperature detecting means falls below a preset constant value, the temperature controller regulates the flow rate adjusting means to control the high temperature flowing to the second liquefied gas heating heat exchanger. While increasing the amount of the refrigerant gas, the amount of the refrigerant gas flowing directly to the condenser is decreased. As a result, the temperature of the liquefied gas flowing out from the second liquefied gas heating heat exchanger rises and is controlled to a set constant value.

【0014】逆に、温度検出手段で検出された液化ガス
温度検出値が予め設定された一定値を上回ると、温度調
節計が流量調節手段を調節制御して第2の液化ガス加熱
用熱交換器に流れる冷媒ガス量を減少させる一方、直接
に凝縮器へ流れる冷媒ガス量を増加させる。その結果、
第2の液化ガス加熱用熱交換器から流れ出る液化ガスの
温度は下がって設定された一定値に制御される。このよ
うにして温度一定に制御された液化ガスが第2の液化ガ
ス加熱用熱交換器から例えばフラッシュ弁へ導かれて気
化され、所定温度・圧力のガスが下流工程へ供給される
ことになる。
On the contrary, when the liquefied gas temperature detected value detected by the temperature detecting means exceeds a preset constant value, the temperature controller adjusts the flow rate adjusting means to control the second liquefied gas heating heat exchange. While reducing the amount of refrigerant gas flowing to the condenser, it directly increases the amount of refrigerant gas flowing to the condenser. as a result,
The temperature of the liquefied gas flowing out of the second heat exchanger for heating the liquefied gas is lowered and controlled to a constant value set. In this way, the liquefied gas whose temperature is controlled to be constant is guided from the second liquefied gas heating heat exchanger to, for example, a flash valve to be vaporized, and a gas having a predetermined temperature and pressure is supplied to a downstream process. .

【0015】請求項2の発明によるガス液化・再気化用
冷凍装置では、さらに吐出冷媒ガス温度制御手段を備
え、圧縮機から吐出され、流量調節手段に流入する冷媒
ガスの温度を設定された一定値になるようにしたもので
あるから、冷媒ガス温度が変動するものに比べて流量調
節手段の作動範囲が小さくて済み、該流量調節手段を用
いる前記液化ガス温度制御をより安定して行うことがで
きる。
In the refrigerating apparatus for gas liquefaction / revaporization according to the second aspect of the present invention, further, a discharge refrigerant gas temperature control means is provided, and the temperature of the refrigerant gas discharged from the compressor and flowing into the flow rate adjusting means is set to a fixed value. Since the value is set to a value, the operating range of the flow rate adjusting means can be smaller than that in which the refrigerant gas temperature fluctuates, and the liquefied gas temperature control using the flow rate adjusting means can be performed more stably. You can

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本発明の一実施形態
によるガス液化・再気化用冷凍装置の構成を示す図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a gas liquefaction / revaporization refrigeration apparatus according to an embodiment of the present invention.

【0017】図1に示すように、本発明によるガス液化
・再気化用冷凍装置は、冷媒(例えばR22)が循環す
る冷媒循環流路を形成し、不純物を含む塩素ガスを液化
する冷凍機と、この冷凍機で液化された塩素を該冷凍機
の冷媒を利用することで該冷媒と熱交換して加熱し、加
熱された液体塩素を気化するようにした気化装置とを備
えている。そして、冷凍機は、油冷式の圧縮機1、油分
離回収器2、三方弁3、凝縮器4、受液器5、膨張弁6
及び蒸発器(塩素液化器)7により構成されている。
As shown in FIG. 1, the gas liquefaction / revaporization refrigerating apparatus according to the present invention forms a refrigerant circulation passage through which a refrigerant (for example, R22) circulates, and a refrigerator for liquefying chlorine gas containing impurities. And a vaporizer configured to heat the chlorine liquefied in the refrigerator by exchanging heat with the refrigerant by using the refrigerant of the refrigerator to vaporize the heated liquid chlorine. The refrigerator includes an oil-cooled compressor 1, an oil separation / recovery device 2, a three-way valve 3, a condenser 4, a liquid receiver 5, and an expansion valve 6.
And an evaporator (chlorine liquefier) 7.

【0018】前記油分離回収器2は、圧縮機1から油を
伴って吐出された圧縮冷媒ガスから冷媒ガスと油を分離
し、クリーンな圧縮冷媒ガスを冷媒循環流路に送り出す
ものであり、この油分離回収器2で分離された油は、油
冷却器2aにて冷却されて、圧縮機1内のガス圧縮空間
に送り出されて繰り返し循環されるようになっている。
また、凝縮器4には熱交換用の冷却水を流通させるため
の配管が施されている。また、蒸発器7の内部の熱交換
器内に外部からの不純物を含む塩素ガスが送り込まれる
ようになっている。
The oil separation / recovery device 2 separates the refrigerant gas and the oil from the compressed refrigerant gas discharged from the compressor 1 along with the oil, and sends out a clean compressed refrigerant gas to the refrigerant circulation passage. The oil separated by the oil separation / recovery device 2 is cooled by the oil cooler 2a, is sent to the gas compression space in the compressor 1, and is repeatedly circulated.
Further, the condenser 4 is provided with piping for circulating cooling water for heat exchange. Further, chlorine gas containing impurities from the outside is fed into the heat exchanger inside the evaporator 7.

【0019】気化装置は、液体塩素受槽8、液ポンプ
9、第1の液化ガス加熱用熱交換器10、第2の液化ガ
ス加熱用熱交換器11及びフラッシュ弁12により構成
されている。この気化装置の液体塩素受槽8には蒸発器
7の出口側が接続されて液体塩素が送り込まれるように
なっている。また、第1の液化ガス加熱用熱交換器10
は冷媒循環流路における受液器5と膨張弁6との間に設
けられている。
The vaporizer comprises a liquid chlorine receiving tank 8, a liquid pump 9, a first liquefied gas heating heat exchanger 10, a second liquefied gas heating heat exchanger 11 and a flash valve 12. The liquid chlorine receiving tank 8 of this vaporizer is connected to the outlet side of the evaporator 7 so that liquid chlorine can be fed. Further, the first liquefied gas heating heat exchanger 10
Is provided between the liquid receiver 5 and the expansion valve 6 in the refrigerant circulation flow path.

【0020】このガス液化・再気化用冷凍装置は、さら
に、前記三方弁3の部分より冷媒循環流路から分岐して
前記第2の液化ガス加熱用熱交換器11を経て凝縮器4
に至り該凝縮器4入口で冷媒循環流路に合流する冷媒流
路と、第2の液化ガス加熱用熱交換器11の出側位置に
配設され、該熱交換器11から流出する液体塩素の温度
を検出する温度検出手段としての温度検出器13と、こ
の温度検出器13からの温度信号を受けて、第2の液化
ガス加熱用熱交換器11による熱交換された液体塩素の
温度を設定された一定値に保つべく三方弁3内の出側の
2路の開度を制御する温度調節計14とを備えている。
前記冷凍機の三方弁3は、圧縮機1から吐出された高圧
高温の冷媒ガスのうち直接に凝縮器4へ流れる冷媒ガス
量と第2の液化ガス加熱用熱交換器11に流れる冷媒ガ
ス量とを調節する流量調節手段を構成している。
This gas liquefying / revaporizing refrigerating apparatus is further branched from the refrigerant circulation passage from the portion of the three-way valve 3 and passes through the second liquefied gas heating heat exchanger 11 to the condenser 4
And the liquid chlorine flowing out of the heat exchanger 11 disposed at the outlet side of the second liquefied gas heating heat exchanger 11 and the refrigerant passage that joins the refrigerant circulation passage at the inlet of the condenser 4. The temperature of the liquid chlorine that has been heat-exchanged by the second liquefied gas heating heat exchanger 11 by receiving the temperature signal from the temperature detector 13 as a temperature detecting means for detecting the temperature of The temperature controller 14 controls the opening degree of the two outlet paths in the three-way valve 3 so as to maintain the set constant value.
The three-way valve 3 of the refrigerator has a refrigerant gas amount flowing directly to the condenser 4 and a refrigerant gas amount flowing to the second liquefied gas heating heat exchanger 11 out of the high-pressure and high-temperature refrigerant gas discharged from the compressor 1. And a flow rate adjusting means for adjusting and.

【0021】このように構成されたガス液化・再気化用
冷凍装置の動作を説明する。まず、冷媒循環流路を流れ
る冷媒について説明すると、冷媒は蒸発器7にて不純物
を含む塩素ガス(例えば温度40℃)との間で熱交換を
行って該塩素ガスから熱を吸収し気化されて冷媒ガスと
なる。この低温低圧の冷媒ガスは圧縮機1で圧縮され
る。圧縮機1からの高温高圧の冷媒ガスは、油分離回収
器2を経て三方弁3へ送り込まれる。そして、圧縮機1
からの冷媒ガスのうちの一部は、開度が後述のように制
御される三方弁3を通って冷媒流路を流れて第2の液化
ガス加熱用熱交換器11に流れ、ここで後述する第1の
液化ガス加熱用熱交換器10からの液体塩素との間で熱
交換を行って冷却され、しかる後に凝縮器4に流入す
る。一方、それ以外の冷媒ガスは、三方弁3を通って冷
媒循環流路を流れて凝縮器4に流入する。凝縮器4に流
入したこれらの冷媒ガスは、該凝縮器4で冷却水との間
で熱交換を行って冷却され、冷媒液となる。
The operation of the gas liquefaction / revaporization refrigerating apparatus thus configured will be described. First, the refrigerant flowing through the refrigerant circulation passage will be explained. The refrigerant exchanges heat with chlorine gas containing impurities (for example, a temperature of 40 ° C.) in the evaporator 7, absorbs heat from the chlorine gas and is vaporized. Becomes refrigerant gas. This low-temperature low-pressure refrigerant gas is compressed by the compressor 1. The high-temperature and high-pressure refrigerant gas from the compressor 1 is sent to the three-way valve 3 via the oil separation / recovery device 2. And the compressor 1
A part of the refrigerant gas from the refrigerant flows through the three-way valve 3 whose opening is controlled as described below, flows through the refrigerant flow path to the second liquefied gas heating heat exchanger 11, and will be described later. It is cooled by exchanging heat with the liquid chlorine from the first heat exchanger 10 for heating the liquefied gas, and then flows into the condenser 4. On the other hand, the other refrigerant gas flows through the three-way valve 3 through the refrigerant circulation flow path and flows into the condenser 4. These refrigerant gases flowing into the condenser 4 exchange heat with cooling water in the condenser 4 to be cooled and become refrigerant liquid.

【0022】凝縮器4の冷媒液は受液器5に溜まる。こ
の受液器5からの冷媒液は、第1の液化ガス加熱用熱交
換器10に流れ、ここで後述する低温の液体塩素との間
で熱交換を行って過冷却され、次いで膨張弁6にて膨張
し減圧された後に蒸発器7に流入する。蒸発器7に流入
した冷媒はここで気化されて冷媒ガスとなり、この冷媒
ガスが圧縮機1に戻ることになる。
The refrigerant liquid in the condenser 4 collects in the liquid receiver 5. The refrigerant liquid from the liquid receiver 5 flows into the first liquefied gas heating heat exchanger 10, where it is heat-exchanged with low-temperature liquid chlorine described later to be supercooled, and then the expansion valve 6 After being expanded and depressurized in, it flows into the evaporator 7. The refrigerant flowing into the evaporator 7 is vaporized here to become a refrigerant gas, and this refrigerant gas returns to the compressor 1.

【0023】次に、塩素ガスの精製について説明する。
不純物を含有する塩素ガスは蒸発器7に送り込まれて該
蒸発器7内を流れる冷媒によって冷却され、液化されて
液体塩素となり、該液体塩素は液体塩素受槽8に貯留さ
れる。液体塩素は例えば大気圧,温度マイナス22℃の
状態で貯留される。そして、蒸発器7での液化の際に、
二酸化炭素,水素などの不純物は凝縮温度の違いで凝縮
せずイナートガスとして排出される。次いで液ポンプ9
により、液体塩素は、例えば圧力11.3kgf/cm2 G,
温度マイナス22℃にて第1の液化ガス加熱用熱交換器
10に送り込まれる。該熱交換器10に送り込まれた液
体塩素は、ここで冷凍機の受液器5からの冷媒液との間
で熱交換を行って、冷媒液から熱を吸収して加熱され
る。
Next, the purification of chlorine gas will be described.
Chlorine gas containing impurities is sent to the evaporator 7, cooled by the refrigerant flowing in the evaporator 7, and liquefied to become liquid chlorine, which is stored in the liquid chlorine receiving tank 8. Liquid chlorine is stored, for example, at atmospheric pressure and a temperature of minus 22 ° C. Then, during liquefaction in the evaporator 7,
Impurities such as carbon dioxide and hydrogen are not condensed due to the difference in condensation temperature and are discharged as inert gas. Next liquid pump 9
Liquid chlorine, for example, pressure 11.3 kgf / cm 2 G,
It is sent to the first liquefied gas heating heat exchanger 10 at a temperature of minus 22 ° C. The liquid chlorine sent to the heat exchanger 10 exchanges heat with the refrigerant liquid from the liquid receiver 5 of the refrigerator, and absorbs heat from the refrigerant liquid to be heated.

【0024】そして、第1の液化ガス加熱用熱交換器1
0で加熱された液体塩素は、冷媒流路の第2の液化ガス
加熱用熱交換器11に流れ、ここで三方弁3を通って流
入する圧縮機1からの高温冷媒ガスとの間で熱交換を行
って、所定温度になるように加熱されることになる。
The first liquefied gas heating heat exchanger 1
The liquid chlorine heated at 0 flows to the second liquefied gas heating heat exchanger 11 in the refrigerant flow path, and heats between it and the high temperature refrigerant gas from the compressor 1 flowing in through the three-way valve 3. It will be exchanged and heated to a predetermined temperature.

【0025】すなわち、温度検出器13で検出された液
体塩素の温度検出値が予め設定された一定値(例えば4
2.6℃)を下回ると、温度検出器13の温度信号を受
けた温度調節計14からの指令信号によって三方弁3の
冷媒流路側の開度を拡げて第2の液化ガス加熱用熱交換
器11に流れる冷媒ガス量を増加させる一方、三方弁3
の冷媒循環流路側の開度を狭めて直接に凝縮器4へ流れ
る冷媒ガス量を減少させる。その結果、第2の液化ガス
加熱用熱交換器11から流れ出る液体塩素の温度は上昇
して設定された一定値に制御される。逆に、温度検出器
13で検出された液体塩素の温度検出値が予め設定され
た一定値を上回ると、温度調節計14からの指令信号に
よって三方弁3の冷媒流路側の開度を狭めて第2の液化
ガス加熱用熱交換器11に流れる冷媒ガス量を減少させ
る一方、三方弁3の冷媒循環流路側の開度を拡げて直接
に凝縮器4に流れる冷媒ガス量を増加させる。その結
果、第2の液化ガス加熱用熱交換器から流れ出る液体塩
素の温度は下がって設定された一定値に制御される。
That is, the temperature detection value of liquid chlorine detected by the temperature detector 13 is a preset constant value (for example, 4
Temperature below 2.6 ° C.), the opening degree of the three-way valve 3 on the refrigerant flow path side is expanded by the command signal from the temperature controller 14 that has received the temperature signal from the temperature detector 13, and the second liquefied gas heating heat exchange is performed. While increasing the amount of refrigerant gas flowing to the vessel 11, the three-way valve 3
The amount of the refrigerant gas flowing directly to the condenser 4 is reduced by narrowing the opening of the refrigerant circulation flow path side. As a result, the temperature of the liquid chlorine flowing out from the second heat exchanger 11 for heating the liquefied gas is increased and controlled to a set constant value. On the contrary, when the temperature detection value of liquid chlorine detected by the temperature detector 13 exceeds a preset constant value, the opening degree of the three-way valve 3 on the refrigerant flow path side is narrowed by a command signal from the temperature controller 14. While reducing the amount of the refrigerant gas flowing to the second liquefied gas heating heat exchanger 11, the opening of the three-way valve 3 on the refrigerant circulation passage side is expanded to directly increase the amount of the refrigerant gas flowing to the condenser 4. As a result, the temperature of the liquid chlorine flowing out from the second heat exchanger for heating the liquefied gas is lowered and controlled to a constant value set.

【0026】このようにして温度一定に保たれた例えば
圧力11.3kgf/cm2 G,温度42.6℃の液体塩素が
第2の液化ガス加熱用熱交換器11からフラッシュ弁1
2へ導かれて減圧され気化されて塩素ガスとなり、所定
温度・圧力の塩素ガスが下流工程へ供給されることにな
る。
In this way, for example, liquid chlorine having a pressure of 11.3 kgf / cm 2 G and a temperature of 42.6 ° C., which is kept at a constant temperature, flows from the second liquefied gas heating heat exchanger 11 to the flash valve 1.
The gas is guided to 2, depressurized and vaporized to become chlorine gas, and chlorine gas having a predetermined temperature and pressure is supplied to the downstream process.

【0027】図2は本発明の他の実施形態によるガス液
化・再気化用冷凍装置の構成を示す図である。ここで、
吐出冷媒ガス温度制御手段が付加されている点以外は、
図1のガス液化・再気化用冷凍装置の構成と同一なの
で、両者の共通する部分には同一符号を付して説明を省
略し、異なる点について説明する。
FIG. 2 is a diagram showing the structure of a gas liquefaction / revaporization refrigeration system according to another embodiment of the present invention. here,
Except that a discharge refrigerant gas temperature control means is added,
Since the configuration is the same as that of the gas liquefaction / revaporization refrigerating apparatus in FIG. 1, the same reference numerals are given to the common parts between the two and description thereof will be omitted, and different points will be described.

【0028】図2に示すように、15は第2の三方弁で
あり、油分離回収器2から該第2の三方弁15、油冷却
器2aを経て圧縮機1に至る冷却油供給流路16と、第
2の三方弁15から油冷却器2aを経ることなく油冷却
器2aと圧縮機1との間の冷却油供給流路16の部分に
合流する油供給流路17とが備えられている。また、圧
縮機1の出側位置に配設され、圧縮機1から吐出された
冷媒ガスの温度を検出する第2の温度検出器18と、該
検出器18からの温度信号を受けて、圧縮機1から吐出
され、前述した液化ガス温度制御用の三方弁3へ導かれ
る冷媒ガスの温度を設定された一定値に保つべく第2の
三方弁15内の出側の2路の開度を制御する第2の温度
調節計19とが備えられている。
As shown in FIG. 2, reference numeral 15 is a second three-way valve, which is a cooling oil supply passage from the oil separation / recovery device 2 to the compressor 1 through the second three-way valve 15 and the oil cooler 2a. 16 and an oil supply passage 17 that joins the portion of the cooling oil supply passage 16 between the oil cooler 2a and the compressor 1 without passing through the oil cooler 2a from the second three-way valve 15. ing. In addition, a second temperature detector 18 arranged at the outlet side of the compressor 1 for detecting the temperature of the refrigerant gas discharged from the compressor 1, and a temperature signal from the detector 18 are received to perform compression. In order to keep the temperature of the refrigerant gas discharged from the machine 1 and guided to the above-mentioned three-way valve 3 for liquefied gas temperature control at a set constant value, the opening degree of the two passages on the outlet side in the second three-way valve 15 is adjusted. A second temperature controller 19 for controlling is provided.

【0029】前記第2の三方弁15、第2の温度検出器
18及び第2の温度調節計19は、圧縮機1から吐出さ
れ、前記液化ガス温度制御用の三方弁3に流入する冷媒
ガスの温度を設定された一定値になるように制御する吐
出冷媒ガス温度制御手段を構成している。
The second three-way valve 15, the second temperature detector 18, and the second temperature controller 19 are refrigerant gas discharged from the compressor 1 and flowing into the three-way valve 3 for controlling the temperature of the liquefied gas. The discharge refrigerant gas temperature control means is configured to control the temperature of the so that it becomes a set constant value.

【0030】このような吐出冷媒ガス温度制御手段を備
えたガス液化・再気化用冷凍装置の動作を説明する。第
2の温度検出器18で検出された冷媒ガスの温度検出値
が予め設定された一定値を下回る場合には、該温度検出
器18の温度信号を受けた第2の温度調節計19からの
指令信号によって第2の三方弁15の油供給流路17側
の開度を拡げ、油冷却器2aを経ずに圧縮機1へ送り込
まれる油の量を増加させる一方、第2の三方弁15の冷
却油供給流路16側の開度を狭めて圧縮機1へ送り込ま
れる冷却油の量を減少させる。その結果、圧縮機1へ送
り込まれる油の温度が上昇し、圧縮機1から吐出された
冷媒ガスの温度は設定された一定値に制御される。逆
に、第2の温度検出器18で検出された冷媒ガスの温度
検出値が予め設定された一定値を上回る場合には、第2
の温度調節計19からの指令信号によって第2の三方弁
15の油供給流路17側の開度を狭め、油冷却器2aを
経ずに圧縮機1へ送り込まれる油の量を減少させる一
方、第2の三方弁15の冷却油供給流路16側の開度を
拡げて圧縮機1へ送り込まれる冷却油の量を増加させ
る。その結果、圧縮機1へ送り込まれる油の温度が下が
り、圧縮機1から吐出された冷媒ガスの温度は設定され
た一定値に制御される。
The operation of the gas liquefaction / revaporization refrigeration system provided with such discharge refrigerant gas temperature control means will be described. When the temperature detection value of the refrigerant gas detected by the second temperature detector 18 is lower than a preset constant value, the second temperature controller 19 receives the temperature signal of the temperature detector 18 from the second temperature controller 19. The command signal expands the opening of the second three-way valve 15 on the oil supply flow path 17 side to increase the amount of oil sent to the compressor 1 without passing through the oil cooler 2a, while the second three-way valve 15 The opening of the cooling oil supply passage 16 side is narrowed to reduce the amount of cooling oil sent to the compressor 1. As a result, the temperature of the oil sent to the compressor 1 rises, and the temperature of the refrigerant gas discharged from the compressor 1 is controlled to the set constant value. On the contrary, when the temperature detection value of the refrigerant gas detected by the second temperature detector 18 exceeds the preset constant value, the second
In response to a command signal from the temperature controller 19, the opening degree of the second three-way valve 15 on the oil supply flow path 17 side is narrowed to reduce the amount of oil sent to the compressor 1 without passing through the oil cooler 2a. , The opening of the second three-way valve 15 on the cooling oil supply passage 16 side is expanded to increase the amount of cooling oil sent to the compressor 1. As a result, the temperature of the oil sent to the compressor 1 is lowered, and the temperature of the refrigerant gas discharged from the compressor 1 is controlled to the set constant value.

【0031】このように吐出冷媒ガス温度制御手段を備
え、圧縮機から吐出され、冷媒循環流路の三方弁3に流
入する冷媒ガスの温度を設定された一定値になるように
したものであるから、冷媒ガス温度が変動するものに比
べて三方弁3の作動範囲が小さくて済み、該三方弁3を
用いる前記液化ガス温度制御をより安定して行うことが
できる。
As described above, the discharge refrigerant gas temperature control means is provided so that the temperature of the refrigerant gas discharged from the compressor and flowing into the three-way valve 3 of the refrigerant circulation passage becomes a set constant value. Therefore, the operating range of the three-way valve 3 can be smaller than that in which the refrigerant gas temperature fluctuates, and the liquefied gas temperature control using the three-way valve 3 can be performed more stably.

【0032】[0032]

【発明の効果】以上述べたように、請求項1の発明によ
るガス液化・再気化用冷凍装置によると、ガス供給先で
ある下流工程におけるガス圧力・温度条件に合わせて、
不純物が除去された液化ガスの温度を設定された一定値
に制御する液化ガス温度制御を行うようにしたものであ
るから、従来装置に比べて下流工程での操業の安定化を
図ることができる。また、請求項2の発明によるガス液
化・再気化用冷凍装置によると、さらに吐出冷媒ガス温
度制御手段を備え、圧縮機から吐出され、流量調節手段
に流入する冷媒ガスの温度を設定された一定値になるよ
うにしたものであるから、冷媒ガス温度が変動するもの
に比べて流量調節手段の作動範囲が小さくて済み、該流
量調節手段を用いる前記液化ガス温度制御をより安定し
て行うことができる。
As described above, according to the refrigerating apparatus for gas liquefaction / revaporization according to the invention of claim 1, according to the gas pressure / temperature conditions in the downstream process which is the gas supply destination,
Since the temperature of the liquefied gas from which impurities have been removed is controlled to a set constant value, the temperature of the liquefied gas is controlled, so that the operation in the downstream process can be stabilized as compared with the conventional device. . Further, according to the gas liquefaction / revaporization refrigerating apparatus of the present invention, the temperature of the refrigerant gas discharged from the compressor and flowing into the flow rate adjusting means is set to a fixed value. Since the value is set to a value, the operating range of the flow rate adjusting means can be smaller than that in which the refrigerant gas temperature fluctuates, and the liquefied gas temperature control using the flow rate adjusting means can be performed more stably. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態によるガス液化・再気化用
冷凍装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a gas liquefaction / revaporization refrigeration apparatus according to an embodiment of the present invention.

【図2】本発明の他の実施形態によるガス液化・再気化
用冷凍装置の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a gas liquefaction / revaporization refrigeration apparatus according to another embodiment of the present invention.

【図3】従来のガス液化・再気化用冷凍装置の構成を示
す図である。
FIG. 3 is a diagram showing a configuration of a conventional gas liquefaction / revaporization refrigeration apparatus.

【図4】塩素ガスの製造工程の一例を示す説明図であ
る。
FIG. 4 is an explanatory view showing an example of a chlorine gas manufacturing process.

【符号の説明】[Explanation of symbols]

1…圧縮機 2…油分離回収器 2a…油冷却器 3…
三方弁 4…凝縮器 5…受液器 6…膨張弁 7…蒸発器 8…液体塩素受
槽 9…液ポンプ 10…第1の液化ガス加熱用熱交換
器 11…第2の液化ガス加熱用熱交換器 12…フラ
ッシュ弁 13…温度検出器 14…温度調節計 15
…第2の三方弁 16…冷却油供給流路 17…油供給流路 18…第2
の温度検出器 19…第2の温度調節計
1 ... Compressor 2 ... Oil separation and recovery device 2a ... Oil cooler 3 ...
Three-way valve 4 ... Condenser 5 ... Liquid receiver 6 ... Expansion valve 7 ... Evaporator 8 ... Liquid chlorine receiving tank 9 ... Liquid pump 10 ... First liquefied gas heating heat exchanger 11 ... Second liquefied gas heating heat Exchanger 12 ... Flash valve 13 ... Temperature detector 14 ... Temperature controller 15
... second three-way valve 16 ... cooling oil supply flow path 17 ... oil supply flow path 18 ... second
Temperature detector 19 ... Second temperature controller

フロントページの続き (56)参考文献 特開 昭60−86371(JP,A) 特開 昭61−282780(JP,A) 特公 平3−23826(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F25J 1/00 - 5/00 Continuation of the front page (56) References JP-A-60-86371 (JP, A) JP-A-61-282780 (JP, A) JP-B-3-23826 (JP, B2) (58) Fields investigated (Int .Cl. 7 , DB name) F25J 1/00-5/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも圧縮機、凝縮器、膨張弁、蒸
発器を含む冷媒循環流路を形成し、不純物を含み気化し
ているガスを前記蒸発器にて冷媒と熱交換させて液化し
て前記不純物を除去する冷凍機と、冷媒と前記液化され
たガスとの熱交換を行い該液化ガスを加熱する液化ガス
加熱用熱交換器を有し、前記蒸発器にて液化されたガス
を加熱し再び気化させるための気化装置とを備えたガス
液化・再気化用冷凍装置において、 冷媒と前記液化ガス加熱用熱交換器からの液化ガスとの
熱交換を行い該液化ガスを加熱する第2の液化ガス加熱
用熱交換器と、前記圧縮機の出側の冷媒循環流路の部分
から分岐して前記第2の液化ガス加熱用熱交換器を経て
前記凝縮器に至る冷媒流路と、前記圧縮機から吐出され
た冷媒のうち前記凝縮器に流れる量と前記第2の液化ガ
ス加熱用熱交換器に流れる量とを調節する流量調節手段
と、前記第2の液化ガス加熱用熱交換器から流出する液
化ガスの温度を検出する温度検出手段と、この温度検出
手段からの温度信号を受けて、前記液化ガス温度が設定
された一定値になるように前記流量調節手段を制御する
温度調節計とを備えたことを特徴とするガス液化・再気
化用冷凍装置。
1. A refrigerant circulation flow path including at least a compressor, a condenser, an expansion valve, and an evaporator is formed, and a gas containing impurities and vaporized is heat-exchanged with the refrigerant in the evaporator to be liquefied. A refrigerator that removes the impurities, and a liquefied gas heating heat exchanger that heats the liquefied gas by exchanging heat between the refrigerant and the liquefied gas, and heats the liquefied gas in the evaporator. A refrigerating apparatus for gas liquefaction / revaporization, which comprises a vaporizer for vaporizing the gas again and heats the liquefied gas by exchanging heat between the refrigerant and the liquefied gas from the heat exchanger for heating the liquefied gas. A liquefied gas heating heat exchanger, and a refrigerant flow path branched from the outlet side refrigerant circulation flow path of the compressor to the condenser via the second liquefied gas heating heat exchanger, Of the refrigerant discharged from the compressor, the amount flowing to the condenser and The flow rate adjusting means for adjusting the amount flowing to the second liquefied gas heating heat exchanger, the temperature detecting means for detecting the temperature of the liquefied gas flowing out of the second liquefied gas heating heat exchanger, For gas liquefaction / revaporization, comprising: a temperature controller that receives the temperature signal from the temperature detecting means and controls the flow rate adjusting means so that the liquefied gas temperature becomes a set constant value. Refrigeration equipment.
【請求項2】 請求項1記載のガス液化・再気化用冷凍
装置において、さらに、前記圧縮機から吐出され、前記
流量調節手段に流入する冷媒ガスの温度を設定された一
定値になるように制御する吐出冷媒ガス温度制御手段を
備えたことを特徴とするガス液化・再気化用冷凍装置。
2. The gas liquefaction / revaporization refrigerating apparatus according to claim 1, wherein the temperature of the refrigerant gas discharged from the compressor and flowing into the flow rate adjusting means is set to a set constant value. A refrigerating apparatus for gas liquefaction / revaporization, comprising a discharge refrigerant gas temperature control means for controlling.
JP32404998A 1998-11-13 1998-11-13 Refrigeration equipment for gas liquefaction and re-vaporization Expired - Lifetime JP3495267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32404998A JP3495267B2 (en) 1998-11-13 1998-11-13 Refrigeration equipment for gas liquefaction and re-vaporization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32404998A JP3495267B2 (en) 1998-11-13 1998-11-13 Refrigeration equipment for gas liquefaction and re-vaporization

Publications (2)

Publication Number Publication Date
JP2000146432A JP2000146432A (en) 2000-05-26
JP3495267B2 true JP3495267B2 (en) 2004-02-09

Family

ID=18161590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32404998A Expired - Lifetime JP3495267B2 (en) 1998-11-13 1998-11-13 Refrigeration equipment for gas liquefaction and re-vaporization

Country Status (1)

Country Link
JP (1) JP3495267B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339671C (en) * 2003-05-27 2007-09-26 西安联合超滤净化设备有限公司 Method for separating condensed liquid in gas mixture by low pressure common cooling process
JP4720624B2 (en) * 2006-06-02 2011-07-13 東亞合成株式会社 Liquid chlorine tank filling method
CN102612485B (en) * 2010-03-06 2014-08-27 诺拉姆国际公司 Method of processing liquid chlorine containing nitrogen trichloride
US10377629B2 (en) 2010-03-06 2019-08-13 Noram International Limited Method and apparatus for vaporizing liquid chlorine containing nitrogen trichloride

Also Published As

Publication number Publication date
JP2000146432A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3102651U (en) Refrigerator refrigerator with two evaporators
EP1631773A1 (en) Supercritical pressure regulation of economized refrigeration system
KR20160091107A (en) Cooling Cycle Apparatus for Refrigerator
JPH1163686A (en) Refrigeration cycle
JP2002195670A (en) Transcritical vapor compression system, and suction lien heat exchanger regulating pressure of high-pressure component of refrigerant circulating in the system
JP2006220351A (en) Freezer
TWI310450B (en) Cooling unit
JP3495267B2 (en) Refrigeration equipment for gas liquefaction and re-vaporization
KR102380369B1 (en) Cryocooler
JPH11248294A (en) Refrigerating machine
KR20140072626A (en) Cryogenic refrigeration system with protecting means for compressor
JP2006003023A (en) Refrigerating unit
KR20180056854A (en) High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor
JP2020204454A (en) Refrigeration cycle device
JP4408211B2 (en) Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof
JP2003120897A (en) Storage and supply device for carbon dioxide
JP2004226018A (en) Refrigeration unit
JP7328023B2 (en) refrigerated vehicle
KR102151725B1 (en) Crude argon liquid transfer device and cryogenic air separation facility having the same
KR0160870B1 (en) Cooling system of airconditioner
JPH0642829A (en) Freezer for low temperature freezing
JPH0323826B2 (en)
JP2000088371A (en) Heat pump device using non-azeotrope refrigerant
JP2022526970A (en) Methods for operating heat exchangers, configurations with heat exchangers, and systems with corresponding configurations
JPH03247963A (en) Cryogenic refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

EXPY Cancellation because of completion of term