JP3482393B2 - Video display device - Google Patents
Video display deviceInfo
- Publication number
- JP3482393B2 JP3482393B2 JP2000337822A JP2000337822A JP3482393B2 JP 3482393 B2 JP3482393 B2 JP 3482393B2 JP 2000337822 A JP2000337822 A JP 2000337822A JP 2000337822 A JP2000337822 A JP 2000337822A JP 3482393 B2 JP3482393 B2 JP 3482393B2
- Authority
- JP
- Japan
- Prior art keywords
- image display
- image
- optical system
- display device
- optical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Lenses (AREA)
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、映像表示装置に関し、
特に、使用者の頭部若しくは顔面に保持して眼球に映像
を投影する小型の頭部又は顔面装着式の映像表示装置に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a video display device,
In particular, the present invention relates to a small-sized head- or face-mounted image display device that holds an image on the user's head or face and projects an image on the eyeball.
【0002】[0002]
【従来の技術】近年、バーチャルリアリティー用、ある
いは、個人的に大画面の映像を楽しむことを目的とし
て、ヘルメット型、ゴーグル型の頭部又は顔面に保持す
る映像表示装置が開発されている。2. Description of the Related Art In recent years, a helmet-type or goggle-type image display device held on the head or face has been developed for virtual reality or for the purpose of personally enjoying a large-screen image.
【0003】例えば、特開平3−191389号におい
ては、図9(a)に示すように、映像を表示する映像表
示素子である液晶表示素子(LCD)1と、LCD1に
より形成された映像光束を観察者の眼球5に導くため
に、LCD1の光軸及び観察者の視軸の交点に傾斜配置
されたハーフミラー2と、正のパワーを有しハーフミラ
ー2を介してLCD1と対向配置された拡大反射鏡3と
を備えてなり、良好な結像性能を保ったまま光学系を小
型化する方法が開示されている。また、米国特許第4,
269,476号では、図9(b)に示したように、上
記のハーフミラー2の代わりにプリズムビームスプリッ
ター4を使用している。For example, in Japanese Unexamined Patent Publication No. 3-191389, as shown in FIG. 9A, a liquid crystal display element (LCD) 1 which is an image display element for displaying an image and an image light flux formed by the LCD 1 are provided. In order to guide it to the observer's eyeball 5, a half mirror 2 that is inclined at the intersection of the optical axis of the LCD 1 and the observer's visual axis, and has a positive power and is opposed to the LCD 1 via the half mirror 2. There is disclosed a method that comprises a magnifying reflecting mirror 3 and downsizes an optical system while maintaining a good imaging performance. Also, US Pat.
In No. 269,476, as shown in FIG. 9B, a prism beam splitter 4 is used instead of the half mirror 2.
【0004】[0004]
【発明が解決しようとする課題】このような光学系にお
いて、観察映像の画角を広くしようとすると、
a)投影光学系が大きくなる。
b)投影光学系とLCDの距離が短くなる。
c)投影光学系と眼球の距離が短くなる。
等の傾向がある。In such an optical system, if an attempt is made to widen the angle of view of an observed image, a) the projection optical system becomes large. b) The distance between the projection optical system and the LCD becomes short. c) The distance between the projection optical system and the eyeball becomes short. And so on.
【0005】この場合、以下のような問題が発生する。
投影光学系が大きくなると、頭部もしくは顔面に映像
表示装置を装着した場合に、使用者にかかる負担が大き
くなる。
LCDを光軸方向に移動させることによって、観察映
像の視度を調整することができるが、投影光学系とLC
Dの距離が短くなると、LCDを拡大反射鏡へ近付ける
方向へ移動させた場合に、ハーフミラーもしくはプリズ
ムビームスプリッターとLCDが干渉するため、視度調
整範囲が狭くなる。
投影光学系と眼球との距離(作動距離:WD)が短く
なると、眼鏡を掛けた状態で観察することができず、使
用者が代わるたびに、視度を大幅に調整する必要があ
る。また、WDが短いと、投影光学系及びLCDと顔面
の干渉が起こる。In this case, the following problems occur. When the projection optical system becomes large, the burden on the user becomes large when the image display device is mounted on the head or face. The diopter of the observed image can be adjusted by moving the LCD in the optical axis direction.
When the distance D becomes shorter, when the LCD is moved in the direction of approaching the magnifying reflection mirror, the half mirror or the prism beam splitter interferes with the LCD, and the diopter adjustment range becomes narrow. When the distance between the projection optical system and the eyeball (working distance: WD) becomes short, it is not possible to observe with the glasses on, and it is necessary to greatly adjust the diopter every time the user changes. Also, if the WD is short, the projection optical system and the LCD interfere with the face.
【0006】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、小型・軽量で、
視度調節が容易で、かつ、眼鏡を掛けたままで使用可能
な頭部もしくは顔面に装着できる映像表示装置を提供す
ることである。The present invention has been made in view of the above problems of the prior art, and its object is to be small and lightweight.
It is an object of the present invention to provide an image display device that can be easily adjusted in diopter and that can be worn on the head or face while wearing glasses.
【0007】[0007]
【課題を解決するための手段】上記目的を達成する本発
明の映像表示装置は、映像を表示する映像表示素子と、
前記映像表示素子により形成された映像光束を観察者の
眼球に導くための観察光学系とを有する映像表示装置に
おいて、前記観察光学系が、少なくとも、前記映像光束
に正のパワーを与える凹形状の反射曲面と、前記映像光
束を透過させる透過面作用と反射させる反射面作用との
両方を併せ持った透過反射作用面とを有し、前記凹形状
の反射曲面と前記透過反射作用面とは、前記凹形状の反
射曲面が前記透過反射面側に凹面を向け、かつ、前記凹
形状の反射曲面と前記透過反射作用との間の光路が折り
返されて往復の光路を形成するように構成され、前記映
像表示素子から射出した前記光軸の延長線と、前記光軸
の延長線が前記透過反射作用面と接した点での前記透過
反射作用面の法線とのなす角がπ/4より小さいことを
特徴とするものである。SUMMARY OF THE INVENTION An image display device of the present invention that achieves the above object comprises an image display element for displaying an image,
In an image display device having an observation optical system for guiding the image light flux formed by the image display element to an eyeball of an observer, the observation optical system has at least a concave shape that gives positive power to the image light flux. A reflective curved surface, and a transflective working surface having both a transmissive surface function of transmitting the image light flux and a reflective surface function of reflecting the image light flux, wherein the concave reflective curved surface and the transmissive reflective working surface are: The concave reflection curved surface is directed to the concave surface toward the transmission reflection surface side, and the optical path between the concave reflection curved surface and the transflective action is folded back to form a reciprocal optical path, An angle formed by an extension line of the optical axis emitted from the image display element and a normal line of the transmission / reflection action surface at a point where the extension line of the optical axis contacts the transmission / reflection action surface is smaller than π / 4. Which is characterized by That.
【0008】この場合、その観察光学系は、少なくとも
凹形状の反射曲面と透過反射作用面との間がプリズム媒
質によって充填されたプリズム部材を有して構成されて
いることが望ましい。In this case, it is preferable that the observing optical system has a prism member in which at least a concave curved surface and a transmissive / reflective surface are filled with a prism medium.
【0009】そして、観察光学系の有するプリズム部材
は、映像表示素子から射出された映像光束が凹形状の反
射曲面に至るまでの光路中に、記映像光束がプリズム部
材に入射するための入射面を配置して構成されているこ
とが望ましい。The prism member of the observation optical system has an incident surface for allowing the image light flux to enter the prism member in the optical path of the image light flux emitted from the image display element to reach the concave reflection curved surface. Is preferably arranged.
【0010】また、観察光学系は、少なくともプリズム
部材を有し、その観察光学系の有するプリズム部材は、
映像表示素子から射出された映像光束が凹形状の反射曲
面に至るまでの光路中に、映像光束がプリズム部材に入
射するための入射面を配置して構成され、プリズム部材
の有する入射面は、その面形状が光束にパワーを与える
非球面形状にて構成されていることが望ましい。The observation optical system has at least a prism member, and the prism member included in the observation optical system is
In the optical path until the image light flux emitted from the image display element reaches the concave reflection curved surface, it is configured by arranging an incident surface for the image light flux to enter the prism member, and the incident surface of the prism member is It is desirable that the surface shape is an aspherical shape that gives power to the light flux.
【0011】また、映像表示素子は、映像光束を射出す
る面を観察者眼球側に向けて配置することが望ましい。Further, it is desirable that the image display element is arranged so that the surface from which the image light flux is emitted is directed toward the observer's eyeball side.
【0012】また、映像表示素子から射出した光軸の延
長線と、光軸の延長線が透過反射作用面と接した点での
透過反射作用面の法線とのなす角θが、上下方向の画角
を2φ、プリズム部材の媒質の屈折率をnとした場合
に、
π/4−φ’/2≦θ<π/4 ・・・(4)
ただし、
φ’=sin-1(sinφ/n) ・・・(5)
を満足することが望ましい。Further, the angle θ formed by the extension line of the optical axis emitted from the image display element and the normal line of the transmission / reflection action surface at the point where the extension line of the optical axis contacts the transmission / reflection action surface is the vertical direction. Is 2φ and the refractive index of the medium of the prism member is n, then π / 4−φ ′ / 2 ≦ θ <π / 4 (4) where φ ′ = sin −1 (sinφ / N) It is desirable to satisfy (5).
【0013】[0013]
【作用】本発明においては、映像表示素子から射出した
光軸の延長線と、光軸の延長線が透過反射作用面と接し
た点での透過反射作用面の法線とのなす角がπ/4より
小さく設定されているので、透過反射作用面の面積を小
さくでき、また、投影光学系と映像表示素子との間の距
離が短くなり、視度調整範囲が大きくなり、さらに、投
影光学系と眼球の距離(作動距離)が短くなり、眼鏡を
掛けた状態で観察することができる。In the present invention, the angle formed by the extension line of the optical axis emitted from the image display element and the normal line of the transmission / reflection action surface at the point where the extension line of the optical axis contacts the transmission / reflection action surface is π. Since it is set to be smaller than / 4, the area of the transmissive / reflective working surface can be reduced, the distance between the projection optical system and the image display element can be shortened, the diopter adjustment range can be increased, and The distance between the system and the eyeball (working distance) becomes shorter, and it is possible to observe while wearing glasses.
【0014】[0014]
【実施例】以下、本発明の映像表示装置の原理と実施例
について、図面を参照にして説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle and embodiments of the image display device of the present invention will be described below with reference to the drawings.
【0015】図1は本発明による映像表示装置の基本形
態を示す図であり、映像を表示するLCD1と、LCD
1により形成された映像光束を観察者の眼球5に導くた
めに、LCD1の光軸及び観察者の視軸の交点に傾斜配
置されたハーフミラー2と、正のパワーを有しハーフミ
ラー2を介してLCD1と対向配置された拡大反射鏡3
とを備えてなり、ハーフミラー2の法線とLCD1の光
軸とのなす角θがπ/4より小さいようにハーフミラー
2が配置されているものである。FIG. 1 is a diagram showing a basic form of an image display apparatus according to the present invention, which is an LCD 1 for displaying an image and an LCD.
In order to guide the image light flux formed by 1 to the observer's eyeball 5, the half mirror 2 tilted at the intersection of the optical axis of the LCD 1 and the observer's visual axis and the half mirror 2 having a positive power are provided. A magnifying mirror 3 arranged to face the LCD 1 through
And the half mirror 2 is arranged such that the angle θ between the normal line of the half mirror 2 and the optical axis of the LCD 1 is smaller than π / 4.
【0016】図2に本発明の基本となる光学系の展開図
を示す。LCDaに表示される映像が正のパワーを持つ
光学要素bによってアイポイントdに位置する眼球へ拡
大投影される。光学要素bとアイポイントdの間にハー
フミラーcが配置されている。FIG. 2 shows a developed view of the optical system which is the basis of the present invention. The image displayed on the LCDa is magnified and projected onto the eyeball located at the eye point d by the optical element b having a positive power. A half mirror c is arranged between the optical element b and the eye point d.
【0017】LCDaの表示映像寸法と観察映像の画角
から光学要素bの焦点距離fが決定される。The focal length f of the optical element b is determined from the size of the image displayed on the LCDa and the angle of view of the observed image.
【0018】屈折力を持つ要素bが1枚の凹面鏡である
場合、LCDaと凹面鏡bの距離l 1 及び凹面鏡bとア
イポイントdの距離l2 は一義的に決まる。光学系の配
置の上で自由度を持つのは、凹面鏡bとハーフミラーc
の距離l21及びLCDaの光軸とハーフミラーcの法線
のなす角である。本発明においては、ハーフミラーcの
角度を最適化することで前記した〜の問題点の改善
が可能となる。以下、図3〜図5を参照にして、投影光
学系の大きさ、投影光学系とLCDの距離、投影光学系
と眼球の距離の点からこれらを説明する。The element b having a refractive power is a single concave mirror.
In this case, the distance l between LCDa and concave mirror b 1And concave mirror b and
Distance l of point d2Is uniquely determined. Optical system layout
On the table, the concave mirror b and the half mirror c have the degree of freedom.
Distance ltwenty oneAnd the optical axis of LCDa and the normal of half mirror c
It is the angle formed by. In the present invention, the half mirror c
Improvement of the above-mentioned problems (1) by optimizing the angle
Is possible. Hereinafter, with reference to FIG. 3 to FIG.
Academic system size, distance between projection optical system and LCD, projection optical system
These are explained in terms of eyeball distance.
【0019】まず、投影光学系の大きさについて説明す
る。図3に凹面鏡bで反射された光束に対して配置され
るハーフミラーcを示す。ハーフミラーcの面積につい
ては、ハーフミラーcの面積を小さく抑えることは、投
影光学系全体の小型化、軽量化につながる。ハーフミラ
ーcの大きさは、最低限凹面鏡bで反射された光束のハ
ーフミラーcが配置される平面による断面より大きくな
くてはならない。つまり、ハーフミラーcの法線とLC
Daの光軸とのなす角θが小さい程、ハーフミラーcの
大きさは小さくなる。First, the size of the projection optical system will be described. FIG. 3 shows a half mirror c arranged for the light flux reflected by the concave mirror b. Regarding the area of the half mirror c, keeping the area of the half mirror c small leads to downsizing and weight reduction of the entire projection optical system. The size of the half mirror c must be at least larger than the cross section of the plane of the light flux reflected by the concave mirror b on which the half mirror c is arranged. That is, the normal of the half mirror c and LC
The smaller the angle θ formed by Da with the optical axis, the smaller the size of the half mirror c.
【0020】ハーフミラーcをプリズムビームスプリッ
ターで構成する場合のプリズムの大きさについては、ハ
ーフミラーcのLCDaに近い側の端面uからLCDa
の光軸へ下ろした垂線とLCDaの光軸との交点をvと
すると、ハーフミラーcの法線とLCDaの光軸とのな
す角θが小さい程、ハーフミラーcの傾斜が弱くなり、
凹面鏡bとv点の距離が短くなる。このことは、特に、
ハーフミラーcをプリズムビームスプリッターで構成し
た場合に、効果が大きく、凹面鏡bとv点の距離が短い
程、プリズムの体積が小さくなる。Regarding the size of the prism in the case where the half mirror c is formed of a prism beam splitter, the size of the prism is from the end surface u of the half mirror c closer to the LCDa to the LCDa.
Let v be the intersection point of the perpendicular line drawn to the optical axis of the LCDa and the optical axis of the LCDa, the smaller the angle θ between the normal line of the half mirror c and the optical axis of the LCDa, the weaker the inclination of the half mirror c,
The distance between the concave mirror b and the point v becomes shorter. This is especially true
When the half mirror c is composed of a prism beam splitter, the effect is large, and the smaller the distance between the concave mirror b and the point v, the smaller the volume of the prism.
【0021】次に、投影光学系とLCDの距離について
説明する。ハーフミラーcのLCDaに近い側の端面u
からLCDaの光軸へ下ろした垂線とLCDaの光軸と
の交点をvとすると、ハーフミラーcの法線とLCDa
の光軸とのなす角θが小さい程、凹面鏡bとv点の距離
が短くなるため、LCDaとプリズムの距離を長くと
れ、LCDaの移動により視度を調整する場合に、視度
調整範囲が大きくなる。Next, the distance between the projection optical system and the LCD will be described. The end surface u of the half mirror c on the side closer to the LCDa
Let v be the intersection point of the perpendicular line drawn from the LCD to the optical axis of the LCDa and the optical axis of the LCDa, and the normal line of the half mirror c and the LCDa.
The smaller the angle θ between the concave mirror b and the point v is, the longer the distance between the LCDa and the prism can be, and when the diopter is adjusted by moving the LCDa, the diopter adjustment range is growing.
【0022】次に、投影光学系と眼球の距離について説
明する。図4にLCDの光軸xと眼球中心を含む平面で
の光学系の断面図を示す。LCDの光軸xと凹面鏡bが
交わる点をe、凹面鏡bとハーフミラーcの交わる曲線
が光束を蹴らないようにハーフミラーcを配置した場合
の、LCDaの光軸xとハーフミラーcの法線を含む平
面上でのハーフミラーcと凹面鏡bの交点をp、LCD
の光軸xとハーフミラーcの交点をf、LCDの光軸x
とハーフミラーcの法線のなす角をθ、凹面鏡b上でL
CDの光軸xに対して点pと対称な点をq、凹面鏡bか
らの光線がハーフミラーcで反射されて形成される光軸
(視軸)と、この光軸上へ点qから降ろした垂線との交
点をsとする。 WDは、凹面鏡bとハーフミラーcの
距離をef、ハーフミラーcと点sの距離をfsとした
とき、
WD=l2 −(ef+fs) ・・・(1)
であることから、(ef+fs)を最小にしたときに、
WDは最大となる。Next, the distance between the projection optical system and the eyeball will be described. FIG. 4 shows a sectional view of the optical system in a plane including the optical axis x of the LCD and the center of the eyeball. When the point where the optical axis x of the LCD and the concave mirror b intersect is e, and the half mirror c is arranged so that the curve where the concave mirror b and the half mirror c do not block the light flux, the method of the optical axis x of the LCDa and the half mirror c is arranged. The intersection point of the half mirror c and the concave mirror b on the plane including the line is p, LCD
The optical axis x of the LCD and the half mirror c, and the optical axis x of the LCD.
And the normal line of the half mirror c is θ, and L is on the concave mirror b.
A point symmetric to the point p with respect to the optical axis x of the CD is q, an optical axis (visual axis) formed by the light rays from the concave mirror b being reflected by the half mirror c, and the optical axis is lowered from the point q onto the optical axis. Let s be the intersection with the vertical line. WD = l 2 − (ef + fs) (1), where ef is the distance between the concave mirror b and the half mirror c and fs is the distance between the half mirror c and the point s. Therefore, (ef + fs) When is minimized,
WD is maximum.
【0023】凹面鏡bとハーフミラーcの交点pを固定
したときに、(ef+fs)は角度θのみの関数とな
り、これを、
g(θ)=ef+fs ・・・(2)
とする。When the intersection p of the concave mirror b and the half mirror c is fixed, (ef + fs) becomes a function of only the angle θ, which is g (θ) = ef + fs (2).
【0024】点p〜q間の距離を2k、LCDの光軸x
に点p及び点qから降ろした垂線との交点をe’とす
る。The distance between points p and q is 2k, and the optical axis x of the LCD is x.
Let e ′ be the intersection with the perpendicular drawn from the points p and q.
【0025】点e〜e’の距離は、凹面鏡bの曲率と点
pの位置を固定した場合、定数となり、これをtとする
と、
g(θ)=k(tanθ+1/sin2θ+ tanθcos2θ−cos2θ/tan 2θ) +t
・・・(3)
となる。The distance between the points e to e'is a constant when the curvature of the concave mirror b and the position of the point p are fixed, and when this is t, g (θ) = k (tan θ + 1 / sin2θ + tan θcos2θ−cos2θ / tan 2θ) + t (3)
【0026】図5に上記g(θ)とθの関係を表すグラ
フを示す。g(θ)はθ=π/4(45°)で最大値を
とり、θ<π/4で単調増加、θ>π/4で単調減少と
なる。ただし、θ>π/4の場合には、LCDaが顔面
に接近する方向で、あり望ましくない。FIG. 5 is a graph showing the relationship between the above g (θ) and θ. g (θ) has a maximum value at θ = π / 4 (45 °), monotonically increases at θ <π / 4, and monotonically decreases at θ> π / 4. However, in the case of θ> π / 4, the LCDa is in the direction of approaching the face, which is not desirable.
【0027】このことから、LCDの光軸xとハーフミ
ラーcの法線のなす角θを小さくすることで、WDを大
きくすることが可能である。From this, it is possible to increase WD by reducing the angle θ formed by the optical axis x of the LCD and the normal line of the half mirror c.
【0028】以上のことから、ハーフミラーcの角度を
π/4より小さくする程、投影光学系の大きさを小さ
く、かつ、眼球と投影光学系の距離WD及びLCDと投
影光学系の距離を長く保つことができる。From the above, as the angle of the half mirror c is made smaller than π / 4, the size of the projection optical system becomes smaller, and the distance WD between the eyeball and the projection optical system and the distance between the LCD and the projection optical system become smaller. You can keep it for a long time.
【0029】ただし、LCDaの光軸に対してハーフミ
ラーcの法線のなす角度をπ/4より小さくして行く
と、LCDaを射出し、凹面鏡bとハーフミラーcで反
射した光線の中、眼球へ最も下側から入射する光線が、
LCDの光軸xと直交するようになり、さらに、LCD
の光軸xに対してハーフミラーcの法線のなす角度を小
さくすると、ハーフミラーcと凹面鏡bの交わる部分の
LCDの光軸xに対して反対側の凹面鏡bの縁が、ハー
フミラーcで反射されて眼球へと入射する光線を蹴るこ
とになる。However, when the angle formed by the normal of the half mirror c to the optical axis of the LCDa is made smaller than π / 4, among the light rays emitted from the LCDa and reflected by the concave mirror b and the half mirror c, The light ray that enters the eyeball from the bottom is
It becomes orthogonal to the optical axis x of the LCD.
When the angle formed by the normal to the half mirror c with respect to the optical axis x of the half mirror c is reduced, the edge of the concave mirror b on the opposite side of the optical axis x of the LCD at the intersection of the half mirror c and the concave mirror b becomes half mirror c. It will kick the ray that is reflected by and enters the eyeball.
【0030】具体的には、上下方向の画角を2φ、ハー
フミラーcをプリズムで構成した場合のプリズム媒質の
屈折率をnとすると、LCDの光軸xとハーフミラーc
の法線とのなす角θは、
π/4−φ’/2≦θ<π/4 ・・・(4)
と設定することが望ましい。ただし、
φ’=sin-1(sinφ/n) ・・・(5)
である。Specifically, when the vertical angle of view is 2φ and the refractive index of the prism medium when the half mirror c is a prism is n, the optical axis x of the LCD and the half mirror c
It is desirable to set the angle θ formed by the normal line to π / 4−φ ′ / 2 ≦ θ <π / 4 (4). However, φ ′ = sin −1 (sin φ / n) (5)
【0031】プリズムの媒質を空気にした場合(ハーフ
ミラーにした場合)に、(4)式は、
π/4−φ/2≦θ<π/4 ・・・(6)
となる。When the medium of the prism is air (half mirror), the equation (4) becomes π / 4-φ / 2 ≦ θ <π / 4 (6).
【0032】上記(4)式又は(6)式において、θの
値が左辺に近付く程、上記の効果が大きい。In the above equation (4) or equation (6), the closer the value of θ is to the left side, the greater the above effect.
【0033】眼球とハーフミラーcの間に、光学系を小
型化するための正のパワーを持つ面を挿入した場合に
は、上記(4)及び(6)式の左辺より少し大きい値に
最適値が存在する。When a surface having a positive power for miniaturizing the optical system is inserted between the eyeball and the half mirror c, a value slightly larger than the left side of the equations (4) and (6) is optimal. Value exists.
【0034】次に、本発明の映像表示装置の実施例につ
いて、従来例と比較しながら説明する。Next, an embodiment of the image display device of the present invention will be described in comparison with a conventional example.
【0035】図6(a)に本発明の第1実施例の光学系
の断面図を、同図(b)にそれに対応する第1従来例の
光学系の断面図を示す。図中、Eは観察者の瞳孔位置、
1はLCD、2はハーフミラー、3は凹面鏡を示し、L
CD1の光軸とハーフミラー2の法線のなす角度は、第
1実施例の場合は38.5度、第1従来例の場合は45
度である。これらの数値データは後記するが、画角は何
れも35×26度、LCDサイズは何れも26.0×1
9.1mmと等しく、LCD1から凹面鏡3、凹面鏡3
から瞳孔位置Eへの距離は等しい。FIG. 6A shows a sectional view of the optical system of the first embodiment of the present invention, and FIG. 6B shows a sectional view of the optical system of the first conventional example corresponding thereto. In the figure, E is the observer's pupil position,
1 is an LCD, 2 is a half mirror, 3 is a concave mirror, L
The angle formed by the optical axis of the CD 1 and the normal line of the half mirror 2 is 38.5 degrees in the case of the first embodiment and 45 in the case of the first conventional example.
It is degree. Although these numerical data will be described later, the angle of view is 35 × 26 degrees, and the LCD size is 26.0 × 1.
It is equal to 9.1 mm, and the concave mirror 3 and the concave mirror 3 from the LCD 1
To pupil position E are equal.
【0036】本実施例では、LCD1の光軸とハーフミ
ラー2の法線のなす角度を38.5度としたことで、光
学系の端面から眼球までの距離を、従来例の16.5m
mから17.5mmへ、ハーフミラー2端面からLCD
1までの距離を、従来例の14mmから19mmへと延
ばすことができる。また、ハーフミラー2の面積を従来
例より7.5%減少させることができる。In the present embodiment, the angle formed by the optical axis of the LCD 1 and the normal line of the half mirror 2 is 38.5 degrees, so that the distance from the end face of the optical system to the eyeball is 16.5 m in the conventional example.
From m to 17.5 mm, LCD from half mirror 2 end face
The distance to 1 can be extended from the conventional 14 mm to 19 mm. Further, the area of the half mirror 2 can be reduced by 7.5% as compared with the conventional example.
【0037】図7(a)に本発明の第2実施例の光学系
の断面図を、同図(b)にそれに対応する第2従来例の
光学系の断面図を示す。図中、Eは観察者の瞳孔位置、
1はLCD、4はプリズムビームスプリッター、2はプ
リズムビームスプリッター4のハーフミラー面、3は凹
面鏡、6はプリズムビームスプリッター4のLCD1に
面する面、7はプリズムビームスプリッター4の眼球に
面する面を示し、LCD1の光軸とハーフミラー面2の
法線のなす角度は、第2実施例の場合は40.5度、第
2従来例の場合は45度である。これらの数値データは
後記するが、画角は何れも37×27.6度、LCDサ
イズは何れも26.0×19.1mmと等しい。FIG. 7A shows a sectional view of the optical system of the second embodiment of the present invention, and FIG. 7B shows a sectional view of the optical system of the second conventional example corresponding thereto. In the figure, E is the observer's pupil position,
1 is an LCD, 4 is a prism beam splitter, 2 is a half mirror surface of the prism beam splitter 4, 3 is a concave mirror, 6 is a surface of the prism beam splitter 4 facing the LCD 1, and 7 is a surface of the prism beam splitter 4 facing the eye. The angle formed by the optical axis of the LCD 1 and the normal line of the half mirror surface 2 is 40.5 degrees in the second embodiment and 45 degrees in the second conventional example. Although these numerical data will be described later, the angle of view is equal to 37 × 27.6 degrees, and the LCD size is equal to 26.0 × 19.1 mm.
【0038】本実施例では、ハーフミラーをプリズムビ
ームスプリッターとすることにより、光束の広がりを抑
えることができ、画角を広くすることができる。本実施
例においては、LCD1の光軸とハーフミラー面2の法
線のなす角度を40.5度としたことで、プリズム端面
7から眼球までの距離を、従来例の19.0mmから1
9.2mmへ、プリズム端面6からLCD1までの距離
を、従来例の22.5mmから24.9mmへと延ばす
ことができる。また、プリズムの体積を従来例より12
%減少させることができる。In this embodiment, the half mirror is a prism beam splitter, whereby the spread of the light flux can be suppressed and the angle of view can be widened. In this embodiment, the angle formed by the optical axis of the LCD 1 and the normal line of the half mirror surface 2 is set to 40.5 degrees, so that the distance from the prism end surface 7 to the eyeball is 19.0 mm to 1 in the conventional example.
The distance from the prism end surface 6 to the LCD 1 can be extended to 9.2 mm from 22.5 mm in the conventional example to 24.9 mm. In addition, the volume of the prism is 12 compared with the conventional example.
% Can be reduced.
【0039】図8(a)に本発明の第3実施例の光学系
の断面図を、同図(b)にそれに対応する第3従来例の
光学系の断面図を示す。図中、Eは観察者の瞳孔位置、
1はLCD、4はプリズムビームスプリッター、2はプ
リズムビームスプリッター4のハーフミラー面、3は凹
面鏡、6はプリズムビームスプリッター4のLCD1に
面する面、7はプリズムビームスプリッター4の眼球に
面する面、8は凹レンズ、9は凸レンズを示し、LCD
1の光軸とハーフミラー面2の法線のなす角度は、第3
実施例の場合は41度、第2従来例の場合は45度であ
る。これらの数値データは後記するが、画角は何れも4
4×33.2度、LCDサイズは何れも26.0×1
9.1mmと等しい。FIG. 8A shows a sectional view of the optical system of the third embodiment of the present invention, and FIG. 8B shows a sectional view of the optical system of the third conventional example corresponding thereto. In the figure, E is the observer's pupil position,
1 is an LCD, 4 is a prism beam splitter, 2 is a half mirror surface of the prism beam splitter 4, 3 is a concave mirror, 6 is a surface of the prism beam splitter 4 facing the LCD 1, and 7 is a surface of the prism beam splitter 4 facing the eye. , 8 is a concave lens, 9 is a convex lens, LCD
The angle formed by the optical axis of 1 and the normal of the half mirror surface 2 is the third
In the case of the embodiment, it is 41 degrees, and in the case of the second conventional example, it is 45 degrees. These numerical data will be described later, but the angle of view is 4
4 × 33.2 degrees, LCD size is 26.0 × 1
Equal to 9.1 mm.
【0040】この実施例は、第2実施例のプリズムの眼
球側の面7に凸のパワーを持たせてプリズム内の光束の
広がりを抑えることにより更に広角化している。従来例
においては、LCD1からプリズムまでの距離が短く、
LCD1の移動による視度調整において、視度を負の方
向に補正(像位置を近方へ移動)する場合に、調整範囲
が狭い。本実施例においては、LCD1の光軸とハーフ
ミラー面2の法線のなす角度を41度としたことで、プ
リズム端面6の面頂からLCD1までの距離を、従来例
の5.55mmから7.00mmへと延ばすことができ
る。これにより、視度補正を従来例より−側に1.3/
m拡張することができる。また、プリズム端面7から眼
球までの距離を、従来例の19.3mmから20.0m
mへと延ばすことができる。また、プリズムの体積を従
来例より10%減少させることができる。In this embodiment, the surface 7 on the eyeball side of the prism of the second embodiment has a convex power to suppress the spread of the light beam in the prism to further widen the angle. In the conventional example, the distance from the LCD 1 to the prism is short,
In the diopter adjustment by moving the LCD 1, the adjustment range is narrow when the diopter is corrected in the negative direction (the image position is moved closer). In this embodiment, the angle between the optical axis of the LCD 1 and the normal to the half mirror surface 2 is 41 degrees, so that the distance from the top of the prism end face 6 to the LCD 1 is 5.55 mm to 7 mm in the conventional example. It can be extended to 0.00 mm. As a result, the diopter correction is performed to the negative side by 1.3 /
It can be extended by m. Further, the distance from the prism end face 7 to the eyeball is set to 20.0 m from the conventional example of 19.3 mm.
can be extended to m. Further, the volume of the prism can be reduced by 10% as compared with the conventional example.
【0041】以下、上記各実施例及び従来例の逆追跡の
数値データを示すが、これらのデータは全て、瞳孔Eか
ら映像表示素子1に至る逆追跡の順で示してあり、全て
の実施例において、r0 は瞳孔Eを、d0 は作動距離
(WD)を、r1 、r2 …は各レンズ面又は反射面の曲
率半径を、d1 、d2 …は各面間の間隔を、nd1、nd2
…は各硝材のd線の屈折率、νd1、νd2…は各硝材のア
ッベ数を表し、r20は映像表示素子1を表す。また、非
球面形状は、
z=ch2 /{1+〔1−c2 (K+1)h2 〕1/2 }
+Ah4 +Bh6 +Ch8 +Dh10 ・・・(7)
で表される。ただし、z :光軸でレンズに接する接平
面からのずれ(サグ値)
c :近軸曲率
h :光軸からの距離
K :円錐定数
A :4次非球面係数
B :6次非球面係数
C :8次非球面係数
D :10次非球面係数
である。Numerical data of the reverse tracking of each of the above-mentioned embodiments and the conventional example will be shown below, but all these data are shown in the order of the reverse tracking from the pupil E to the image display element 1, and all the embodiments are shown. , R 0 is the pupil E, d 0 is the working distance (WD), r 1 , r 2 ... Is the radius of curvature of each lens surface or reflecting surface, and d 1 , d 2 ... Is the distance between the surfaces. , N d1 and n d2
... d-line refractive index of each glass material, ν d1, ν d2 ... represents the Abbe number of each glass material, r 20 represents a video display device 1. Moreover, the aspherical shape is expressed by z = ch 2 / {1+ [1-c 2 (K + 1 ) h 2 ] 1/2} + Ah 4 + Bh 6 + Ch 8 + Dh 10 ··· (7). However, z: deviation from a tangent plane in contact with the lens on the optical axis (sag value) c: paraxial curvature h: distance from the optical axis K: conical constant A: fourth-order aspherical coefficient B: sixth-order aspherical coefficient C : 8th-order aspherical surface coefficient D: 10th-order aspherical surface coefficient.
【0042】 第1実施例 r0 = ∞ (E) d0 = 35.300000 r1 = ∞ (2) d1 = -14.172190 (θ=38.500000°) r2 = 85.48059 (3) d2 = 43.835912 r20= ∞ (1) 第1従来例 r0 = ∞ (E) d0 = 32.000000 r1 = ∞ (2) d1 = -17.472190 (θ=45.000000°) r2 = 85.48059 (3) d2 = 43.835912 r20= ∞ (1) 。First Embodiment r 0 = ∞ (E) d 0 = 35.300000 r 1 = ∞ (2) d 1 = -14.172190 (θ = 38.500000 °) r 2 = 85.48059 (3) d 2 = 43.835912 r 20 = ∞ (1) First conventional example r 0 = ∞ (E) d 0 = 32.000000 r 1 = ∞ (2) d 1 = -17.472190 (θ = 45.000000 °) r 2 = 85.48059 (3) d 2 = 43.835912 r 20 = ∞ (1).
【0043】 第2実施例 r0 = ∞ (E) d0 = 19.200000 r1 = ∞ (7) d1 = 16.200000 nd1 =1.516330νd1 =64.1 r2 = ∞ (2) d2 = -13.339170 nd2 =1.516330νd2 =64.1 (θ=40.500000°) r3 = 123.40676 (3) d3 = 24.500000 nd3 =1.516330νd3 =64.1 r4 = ∞ (6) d4 = 24.846988 r20= ∞ (1) 第2従来例 r0 = ∞ (E) d0 = 19.000000 r1 = ∞ (7) d1 = 14.500000 nd1 =1.516330νd1 =64.1 r2 = ∞ (2) d2 = -15.339170 nd2 =1.516330νd2 =64.1 (θ=45.000000°) r3 = 123.40638 (3) d3 = 28.000000 nd3 =1.516330νd3 =64.1 r4 = ∞ (6) d4 = 22.542094 r20= ∞ (1) 。Second embodiment r 0 = ∞ (E) d 0 = 19.200000 r 1 = ∞ (7) d 1 = 16.200000 n d1 = 1.516330ν d1 = 64.1 r 2 = ∞ (2) d 2 = -13.339170 n d2 = 1.516330ν d2 = 64.1 (θ = 40.500000 °) r 3 = 123.40676 (3) d 3 = 24.500000 n d3 = 1.516330ν d3 = 64.1 r 4 = ∞ (6) d 4 = 24.846988 r 20 = ∞ (1) Second conventional example r 0 = ∞ (E) d 0 = 19.000000 r 1 = ∞ (7) d 1 = 14.500000 nd 1 = 1.516330ν d1 = 64.1 r 2 = ∞ (2) d 2 = -15.339170 nd 2 = 1.516330 ν d2 = 64.1 (θ = 45.000000 °) r 3 = 123.40638 (3) d 3 = 28.000000 n d3 = 1.516330 ν d3 = 64.1 r 4 = ∞ (6) d 4 = 22.542094 r 20 = ∞ (1).
【0044】 第3実施例 r0 = ∞ (E) d0 = 20.000000 r1 = 79.40268 (7) d1 = 17.000000 nd1 =1.516330νd1 =64.1 r2 = ∞ (2) d2 = -15.000000 nd2 =1.516330νd2 =64.1 (θ=41.000000°) r3 = 55.04852 d2 = -0.500000 r4 = 140.20084 (8) d2 = -1.500000 nd3 =1.805177νd3 =25.4 r5 = 9305.57882 (9) d2 = -2.600000 nd4 =1.516330νd4 =64.1 r6 = 144.37844 (3) d3 = 2.600000 nd5 =1.516330νd5 =64.1 r7 = 9305.57882 d2 = 1.500000 nd6 =1.805177νd6 =25.4 r8 = 140.20084 d2 = 0.500000 r8 = 55.04852 d3 = 26.000000 nd7 =1.516330νd7 =64.1 r10= ∞ (6) d4 = 7.000000 (非球面) r20= ∞ (1) 非球面係数 第10面 k = -1.000000 A = 0.187498×10-4 B =C =D =0 第3従来例 r0 = ∞ (E) d0 = 19.340000 r1 = 91.35114 (7) d1 = 16.000000 nd1 =1.516330νd1 =64.1 r2 = ∞ (2) d2 = -17.000000 nd2 =1.516330νd2 =64.1 (θ=45.000000°) r3 = 50.81031 d2 = -0.500000 r4 = 140.90134 (8) d2 = -1.500000 nd3 =1.805177νd3 =25.4 r5 = 9305.57882 (9) d2 = -2.600000 nd4 =1.516330νd4 =64.1 r6 = 151.92998 (3) d3 = 2.600000 nd5 =1.516330νd5 =64.1 r7 = 9305.57882 d2 = 1.500000 nd6 =1.805177νd6 =25.4 r8 = 140.90134 d2 = 0.500000 r8 = 50.81031 d3 = 29.000000 nd7 =1.516330νd7 =64.1 r10= ∞ (6) d4 = 5.550034 (非球面) r20= ∞ (1) 非球面係数 第10面 k = -1.000000 A = 0.252379×10-4 B =C =D =0 。Third Embodiment r 0 = ∞ (E) d 0 = 20.000000 r 1 = 79.40268 (7) d 1 = 17.000000 n d1 = 1.516330ν d1 = 64.1 r 2 = ∞ (2) d 2 = -15.000000 n d2 = 1.516330ν d2 = 64.1 (θ = 41.000000 °) r 3 = 55.04852 d 2 = -0.500000 r 4 = 140.20084 (8) d 2 = -1.500000 n d3 = 1.805177ν d3 = 25.4 r 5 = 9305.57882 (9) d 2 = -2.600000 n d4 = 1.516330ν d4 = 64.1 r 6 = 144.37844 (3) d 3 = 2.600000 n d5 = 1.516330ν d5 = 64.1 r 7 = 9305.57882 d 2 = 1.500000 n d6 = 1.805177ν d6 = 25.4 r 8 = 140.20084 d 2 = 0.500000 r 8 = 55.04852 d 3 = 26.000000 n d7 = 1.516330ν d7 = 64.1 r 10 = ∞ (6) d 4 = 7.000000 (aspherical surface) r 20 = ∞ (1) Aspherical surface coefficient 10th surface k = -1.000000 A = 0.187498 × 10 -4 B = C = D = 0 3rd conventional example r 0 = ∞ (E) d 0 = 19.340000 r 1 = 91.35114 (7) d 1 = 16.000000 n d1 = 1.516330ν d1 = 64.1 r 2 = ∞ (2) d 2 = -17.000000 nd 2 = 1.51 6330ν d2 = 64.1 (θ = 45.000000 °) r 3 = 50.81031 d 2 = -0.500000 r 4 = 140.90134 (8) d 2 = -1.500000 n d3 = 1.805177ν d3 = 25.4 r 5 = 9305.57882 (9) d 2 =- 2.600000 n d4 = 1.516330ν d4 = 64.1 r 6 = 151.92998 (3) d 3 = 2.600000 n d5 = 1.516330ν d5 = 64.1 r 7 = 9305.57882 d 2 = 1.500000 n d6 = 1.805177ν d6 = 25.4 r 8 = 140.90134 d 2 = 0.500000 r 8 = 50.81031 d 3 = 29.000000 n d7 = 1.516330ν d7 = 64.1 r 10 = ∞ (6) d 4 = 5.550034 (aspherical surface) r 20 = ∞ (1) 10th surface of aspherical surface k = -1.000000 A = 0.252379 × 10 -4 B = C = D = 0.
【0045】以上、本発明の映像表示装置をいくつかの
実施例に基づいて説明してきたが、本発明はこれら実施
例に限定されず種々の変形が可能である。Although the video display device of the present invention has been described above based on some embodiments, the present invention is not limited to these embodiments and various modifications can be made.
【0046】[0046]
【発明の効果】以上の説明から明らかなように、本発明
の映像表示装置によると、映像表示素子から射出した光
軸の延長線と、光軸の延長線が透過反射作用面と接した
点での透過反射作用面の法線とのなす角がπ/4より小
さく設定されているので、透過反射作用面の面積を小さ
くでき、また、投影光学系と映像表示素子との間の距離
が短くなり、視度調整範囲が大きくなり、さらに、投影
光学系と眼球の距離(作動距離)が短くなり、眼鏡を掛
けた状態で観察することができる。As is apparent from the above description, according to the image display device of the present invention, the extension line of the optical axis emitted from the image display element and the point where the extension line of the optical axis is in contact with the transmissive / reflecting surface. Since the angle formed by the normal line of the transmissive / reflective working surface at is less than π / 4, the area of the transflective working surface can be reduced, and the distance between the projection optical system and the image display element can be reduced. The distance becomes shorter, the diopter adjustment range becomes wider, and the distance (working distance) between the projection optical system and the eyeball becomes shorter, so that it is possible to observe while wearing glasses.
【図1】本発明による映像表示装置の基本形態を示す図
である。FIG. 1 is a diagram showing a basic form of an image display device according to the present invention.
【図2】本発明の基本となる光学系の展開図である。FIG. 2 is a development view of an optical system that is the basis of the present invention.
【図3】凹面鏡で反射された光束に対して配置されるハ
ーフミラーを示す図である。FIG. 3 is a diagram showing a half mirror arranged for a light flux reflected by a concave mirror.
【図4】LCDの光軸と眼球中心を含む平面での光学系
の断面図である。FIG. 4 is a sectional view of an optical system on a plane including the optical axis of the LCD and the center of the eyeball.
【図5】g(θ)とθの関係を表す図である。FIG. 5 is a diagram showing a relationship between g (θ) and θ.
【図6】第1実施例の光学系とそれに対応する第1従来
例の光学系の断面図である。FIG. 6 is a sectional view of the optical system of the first example and the optical system of the first conventional example corresponding thereto.
【図7】第2実施例の光学系とそれに対応する第1従来
例の光学系の断面図である。FIG. 7 is a cross-sectional view of an optical system of a second example and an optical system of a first conventional example corresponding thereto.
【図8】第3実施例の光学系とそれに対応する第1従来
例の光学系の断面図である。FIG. 8 is a cross-sectional view of an optical system of a third example and an optical system of a first conventional example corresponding thereto.
【図9】従来の映像表示素子の構成を示す断面図であ
る。FIG. 9 is a cross-sectional view showing a configuration of a conventional image display element.
LCD…液晶表示素子 a…LCD b…正パワーの光学要素(凹面鏡) c…ハーフミラー d…アイポイント x…LCDの光軸 E…観察者瞳孔位置 1…LCD 2…ハーフミラー(ハーフミラー面) 3…拡大反射鏡 4…プリズムビームスプリッター 5…観察者の眼球 6…プリズムビームスプリッターのLCDに面する面 7…プリズムビームスプリッターの眼球に面する面 8…凹レンズ 9…凸レンズ LCD: Liquid crystal display element a ... LCD b ... Optical element with positive power (concave mirror) c ... Half mirror d ... eye point x ... LCD optical axis E ... Observer pupil position 1 ... LCD 2 ... Half mirror (half mirror surface) 3 ... Magnifying mirror 4 ... Prism beam splitter 5 ... Eyeball of observer 6 ... Surface of prism beam splitter facing LCD 7 ... Surface of prism beam splitter facing the eye 8 ... concave lens 9 ... Convex lens
フロントページの続き (51)Int.Cl.7 識別記号 FI H04N 5/64 511 H04N 5/64 511A Continuation of front page (51) Int.Cl. 7 Identification code FI H04N 5/64 511 H04N 5/64 511A
Claims (6)
像表示素子により形成された映像光束を観察者の眼球に
導くための観察光学系とを有する映像表示装置におい
て、 前記観察光学系が、少なくとも、前記映像光束に正のパ
ワーを与える凹形状の反射曲面と、前記映像光束を透過
させる透過面作用と反射させる反射面作用との両方を併
せ持った透過反射作用面とを有し、 前 記凹形状の反射曲面と前記透過反射作用面とは、前記
凹形状の反射曲面が前記透過反射面側に凹面を向け、か
つ、前記凹形状の反射曲面と前記透過反射作用との間の
光路が折り返されて往復の光路を形成するように構成さ
れ、 前記映像表示素子から射出した前記光軸の延長線と、前
記光軸の延長線が前記透過反射作用面と接した点での前
記透過反射作用面の法線とのなす角がπ/4より小さい
ことを特徴とする映像表示装置。1. An image display device having an image display element for displaying an image and an observation optical system for guiding an image light flux formed by the image display element to an eyeball of an observer, wherein the observation optical system comprises: At least, the it has a concave reflection curved surface to provide a positive power in the image beam, and a transparent reflecting action surface that combines both the reflecting surface action of reflection and transmission surface acts to transmit the image beam, before Symbol The concave reflection curved surface and the transflective action surface, the concave reflection curved surface facing the concave surface toward the transmission reflection surface side, and the optical path between the concave reflection curved surface and the transflective action. It is configured to be folded back to form a reciprocal optical path, and the extension line of the optical axis emitted from the image display element and the transmission reflection at the point where the extension line of the optical axis contacts the transmission reflection action surface. The normal of the working surface An image display device having a corner angle smaller than π / 4.
状の反射曲面と前記透過反射作用面との間がプリズム媒
質によって充填されたプリズム部材を有して構成されて
いることを特徴とする請求項1記載の映像表示装置。2. The observation optical system comprises a prism member in which a prism medium is filled at least between the concave reflection curved surface and the transmissive / reflecting surface. The image display device according to item 1.
は、前記映像表示素子から射出された映像光束が前記凹
形状の反射曲面に至るまでの光路中に、前記映像光束が
前記プリズム部材に入射するための入射面を配置して構
成されていることを特徴とする請求項2記載の映像表示
装置。3. The prism member of the observing optical system has the image light beam incident on the prism member in an optical path until the image light beam emitted from the image display element reaches the concave reflection curved surface. The image display device according to claim 2, wherein an incident surface for light is arranged.
部材を有し、 前記観察光学系の有するプリズム部材は、前記映像表示
素子から射出された映像光束が前記凹形状の反射曲面に
至るまでの光路中に、前記映像光束が前記プリズム部材
に入射するための入射面を配置して構成され、 前記プリズム部材の有する入射面は、その面形状が光束
にパワーを与える非球面形状にて構成されていることを
特徴とする請求項1記載の映像表示装置。4. The observation optical system has at least a prism member, and the prism member of the observation optical system has an optical path through which an image light flux emitted from the image display element reaches the concave reflection curved surface. An incident surface for allowing the image light flux to enter the prism member is disposed therein, and the incident surface of the prism member has an aspherical surface shape that gives power to the light flux. The video display device according to claim 1, wherein
出する面を前記観察者眼球側に向けて配置したことを特
徴とする請求項1〜4の何れか1項記載の映像表示装
置。5. The image display device according to claim 1, wherein the image display element is arranged such that a surface from which the image light flux is emitted is directed toward the observer's eyeball side.
の延長線と、前記光軸の延長線が前記透過反射作用面と
接した点での前記透過反射作用面の法線とのなす角θ
が、上下方向の画角を2φ、前記プリズム部材の媒質の
屈折率をnとした場合に、 π/4−φ’/2≦θ<π/4 ・・・(4) ただし、 φ’=sin-1(sinφ/n) ・・・(5) を満足することを特徴とする請求項2〜5の何れか1項
記載の映像表示装置。6. An angle formed by an extension line of the optical axis emitted from the image display element and a normal line of the transmission / reflection action surface at a point where the extension line of the optical axis is in contact with the transmission / reflection action surface. θ
However, when the vertical angle of view is 2φ and the refractive index of the medium of the prism member is n, then π / 4−φ ′ / 2 ≦ θ <π / 4 (4) where φ ′ = The image display device according to claim 2, wherein sin −1 (sin φ / n) (5) is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000337822A JP3482393B2 (en) | 2000-11-06 | 2000-11-06 | Video display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000337822A JP3482393B2 (en) | 2000-11-06 | 2000-11-06 | Video display device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28664793A Division JP3397256B2 (en) | 1993-03-02 | 1993-11-16 | Video display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001188195A JP2001188195A (en) | 2001-07-10 |
JP3482393B2 true JP3482393B2 (en) | 2003-12-22 |
Family
ID=18813140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000337822A Expired - Fee Related JP3482393B2 (en) | 2000-11-06 | 2000-11-06 | Video display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3482393B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012230349A (en) * | 2011-04-13 | 2012-11-22 | Ricoh Opt Ind Co Ltd | Reflection optical element and reflection optical system |
JP6369017B2 (en) * | 2013-12-03 | 2018-08-08 | セイコーエプソン株式会社 | Virtual image display device |
KR20210129477A (en) * | 2020-04-20 | 2021-10-28 | (주)큐미스 | Augmented Reality optical system based on micro prism array |
-
2000
- 2000-11-06 JP JP2000337822A patent/JP3482393B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001188195A (en) | 2001-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37579E1 (en) | Image display apparatus comprising an internally reflecting ocular optical system | |
USRE37175E1 (en) | Image display apparatus | |
US6317267B1 (en) | Head or face mounted image display apparatus | |
USRE37667E1 (en) | Head-mounted image display apparatus | |
US6181475B1 (en) | Optical system and image display apparatus | |
EP1102105B1 (en) | Image display apparatus with a prism having optical power | |
JP3865906B2 (en) | Image display device | |
US7081999B2 (en) | Image display apparatus and head mounted display using it | |
USRE37292E1 (en) | Optical system and optical apparatus | |
JPH09258104A (en) | Optical system | |
JP2000221440A (en) | Picture display device | |
JP3155335B2 (en) | Visual display device | |
EP1429171A2 (en) | Image display apparatus and image display system | |
US5777794A (en) | Image display apparatus | |
JP3245472B2 (en) | Head mounted display | |
JP3482393B2 (en) | Video display device | |
JP3977002B2 (en) | Image display device and head mounted display using the same | |
JP3397256B2 (en) | Video display device | |
JP3212784B2 (en) | Visual display device | |
JPH09197336A (en) | Picture display device | |
JP4583625B2 (en) | Image display device | |
JP3870071B2 (en) | Image display device and imaging device | |
JP2000019450A (en) | Display device | |
JP4153630B2 (en) | Observation optical system and image display apparatus using the same | |
JP4194219B2 (en) | Image display device and image display system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030924 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081010 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091010 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |