JP3474634B2 - Polycrystalline nickel superalloy and method for producing the same - Google Patents

Polycrystalline nickel superalloy and method for producing the same

Info

Publication number
JP3474634B2
JP3474634B2 JP12211394A JP12211394A JP3474634B2 JP 3474634 B2 JP3474634 B2 JP 3474634B2 JP 12211394 A JP12211394 A JP 12211394A JP 12211394 A JP12211394 A JP 12211394A JP 3474634 B2 JP3474634 B2 JP 3474634B2
Authority
JP
Japan
Prior art keywords
superalloy
nickel
alloy
boron
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12211394A
Other languages
Japanese (ja)
Other versions
JPH07331365A (en
Inventor
ジェイ.ゴウスティック ウィリアム
ピー.ノーリス,ジュニア ポール
Original Assignee
ユナイテッド テクノロジーズ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP94303644A priority Critical patent/EP0683239B1/en
Application filed by ユナイテッド テクノロジーズ コーポレイション filed Critical ユナイテッド テクノロジーズ コーポレイション
Priority to JP12211394A priority patent/JP3474634B2/en
Publication of JPH07331365A publication Critical patent/JPH07331365A/en
Application granted granted Critical
Publication of JP3474634B2 publication Critical patent/JP3474634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル超合金、及びホ
ウ素とジルコニウムの所定量を含有して高い耐酸性を
有するニッケル超合金の製造方法に関する。このような
ニッケル超合金は、高温における優れた耐酸性及び高
い強度が必要とされる技術分野に適しており、例えばジ
ェットエンジンの燃焼器、ノズル、及び低タービン構成
材等に適している。
The present invention relates to a nickel superalloy, and a method for manufacturing a nickel superalloy having high oxidation resistance by containing a predetermined amount of boron and zirconium. Such nickel superalloys is suitable for technical fields has excellent oxidation resistance and high strength at high temperatures is required, for example, of a jet engine combustor, are suitable for the nozzle, and a low turbine constituting material and the like.

【0002】[0002]

【従来の技術】従来、ニッケルをベースとする種々の超
合金が知られている。超合金とは高温においても高い強
度が維持される合金のことである。ニッケルをベースと
する超合金は、例えば米国特許第3,322,543号、3,526,4
99号、3,653,987号、3,832,167号、及び4,719,080号に
開示されており、その内容は後述する。
2. Description of the Prior Art Various nickel-based superalloys have been known. A superalloy is an alloy that maintains high strength even at high temperatures. Nickel-based superalloys have been described, for example, in U.S. Patent Nos. 3,322,543 and 3,526,4.
No. 99, 3,653,987, 3,832,167, and 4,719,080, the contents of which are described later.

【0003】その他、市販されているニッケルをベース
とする超合金としてはB1900+Hf、及びMar-M 247が挙げ
られる。以下にその成分組成を重量比(wt%)にて示す。
Other commercially available nickel-based superalloys include B1900 + Hf and Mar-M247. The composition of the components is shown below by weight ratio (wt%).

【0004】[0004]

【表3】 B1900+HF Mar−M 247 ニッケル 残部 残部 クロム 8.0 8.4 コバルト 10.0 10.0 炭素 0.11 0.15 チタン 1.0 1.1 アルミニウム 6.0 5.5 モリブデン 6.0 0.65 タングステン − 10.0 ホウ素 0.015 0.015 ハフニウム 1.15 1.4 タンタル 4.25 3.1 ジルコニウム 0.08 0.055 これらの合金は、高温でも機械強度が高く維持されるの
で、ジェットエンジンの構成材となる素材として特に有
用である。
Table 3 B1900 + HF Mar-M247 nickel balance balance balance 8.0 8.0 8.4 cobalt 10.0 10.0 10.0 carbon 0.11 0.15 titanium 1.0 1.1 aluminium 6.0 5.5 molybdenum 6. 0 0.65 Tungsten-10.0 Boron 0.015 0.015 Hafnium 1.15 1.4 Tantalum 4.25 3.1 Zirconium 0.08 0.055 These alloys maintain high mechanical strength even at high temperatures. Therefore, it is particularly useful as a material for forming a jet engine.

【0005】超合金の粒子の境界強度と延性を向上する
ために、従来法においてはホウ素は通常0.010〜0.020wt
%加えられる。
In order to improve the boundary strength and the ductility of the particles of the superalloy, boron is usually used in the conventional method in an amount of 0.010 to 0.020 wt.
% Added.

【0006】更に、粒子の境界特性を向上するために、
ジルコニウムが通常0.03〜0.13wt%加えられる。ニッ
ケル超合金の耐酸性を高めるためにイットリウムを加
えてもよい。
Further, in order to improve the boundary characteristics of particles,
Zirconium is usually added in an amount of 0.03 to 0.13 wt%. Yttrium may be added to increase the oxidation resistance of the nickel superalloy.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来技術にお
いて、高温[約1093℃(2000°F)以上]で優秀な酸化抵
抗が得られると称するニッケル超合金は非常に脆い。
However, in the prior art, nickel superalloys, which are said to provide excellent oxidation resistance at high temperatures [above about 1093 ° C. (2000 ° F.)], are very brittle.

【0008】このように、良好な延性が得られるととも
に、高温での優秀な耐酸性を有するニッケル超合金が
必要となっている。
[0008] Thus, with good ductility can be obtained, it has become necessary nickel superalloy having excellent oxidation resistance at high temperatures.

【0009】また、760〜1038(℃)程度(1400゜
F〜1900゜F)の温度範囲内で良好な強度および優秀な耐
性を有するジェットエンジンのタービン構成材も必
要となっている。
Also, about 760 to 1038 (° C) (1400 °
F~1900 ° F) turbine construction material of a jet engine with good strength and excellent oxidation resistance in a temperature range of is also required.

【0010】本発明は上記背景のもとになされたもので
あり、高温で優秀な耐酸性を有し、また良好な延性を
有するニッケル超合金(ニッケル超合金)を提供する
ことを目的とする。
[0010] The present invention has been made based on the above background, have excellent oxidation resistance at high temperatures, also aims to provide a nickel-base superalloy having good ductility (nickel superalloy) And

【0011】更に、760〜1038(℃)程度(1900°F
〜1400°F)の温度範囲において良好な強度が保たれる、
ジェットエンジンの構成材に適したニッケル超合金を提
供することを目的とする。
Further, about 760 to 1038 (° C.) (1900 ° F.
Good strength is maintained in the temperature range of ~ 1400 ° F),
An object of the present invention is to provide a nickel superalloy suitable as a constituent material of a jet engine.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明は0.004〜0.010wt%のホウ素及び0.25〜0.40
wt%のジルコニウムを含有することを特徴とする。
In order to solve the above problems, the present invention provides 0.004 to 0.010 wt% boron and 0.25 to 0.40.
It is characterized by containing wt% zirconium.

【0013】また、耐酸性の高い多結晶質ニッケル超
合金の製造方法であって、0.25〜0.40wt%のジルコニウ
ムと0.004〜0.010wt%のホウ素とを超合金に含有させる
工程を有することを特徴とする超合金の製造方法も提供
される。
A method for producing a polycrystalline nickel superalloy having high oxidation resistance , comprising the step of incorporating 0.25 to 0.40 wt% zirconium and 0.004 to 0.010 wt% boron in the superalloy. A method of making the featured superalloy is also provided.

【0014】[0014]

【作用】好適な実施例において、本発明の超合金は、超
合金の酸化を抑制する効果が得られる障壁層を作るため
に、5.0〜8.0wt%のアルミニウムを含有する。
In the preferred embodiment, the superalloys of the present invention contain 5.0 to 8.0 wt% aluminum to create a barrier layer which provides the effect of inhibiting superalloy oxidation.

【0015】ジルコニウムを超合金中に存在させること
により、アルミナ障壁層の形成が促進される。
The presence of zirconium in the superalloy promotes the formation of an alumina barrier layer.

【0016】バーナーリグ酸化テストによって、ホウ素
は高温[約1093〜1204℃(2000〜2200゜F)]での耐酸
に悪影響を与えることが明らかにされた。
[0016] by burner rig oxidation testing, boron was revealed that adversely affect the oxidation resistance at high temperature [about 1,093 to 1,204 ° C. (from 2,000 to 2,200 ° F)].

【0017】ホウ素をニッケル超合金から除去すればこ
のような問題は生じないが、その結果合金の延性は許容
できないまでに悪くなってしまう。
Although the removal of boron from the nickel superalloy does not present such problems, it results in an unacceptably poor ductility of the alloy.

【0018】少量のホウ素(0.020〜0.010wt%)を加え
ることによって、酸化作用は許容できる程度となった
が、その延性は最適条件下でも取るに足らない程度のも
のであった。
By adding a small amount of boron (0.020-0.010 wt%), the oxidizing effect was acceptable, but its ductility was insignificant under optimal conditions.

【0019】また、イットリウムの添加により、鋳造時
における表面酸化物微粒子の形成に起因する脆弱化が問
題となる。これはイットリウムと鋳造セラミックとが反
応した結果生じる問題である。
Further, the addition of yttrium causes a problem of weakening due to the formation of surface oxide fine particles during casting. This is a problem that results from the reaction of yttrium with the cast ceramic.

【0020】しかし、更に実験を重ねた結果、本明細書
で示されるレベルでジルコニウムとホウ素とを組み合せ
ることにより、粒子の境界特性を維持して鋳造時におけ
る介在物の形成(inclusion formation)を抑制すると
ともに、従来法によって鋳造されたニッケル超合金の耐
性を非常に高くすることが可能であることが見いだ
された。
However, as a result of further experiments, the combination of zirconium and boron at the levels indicated in the present specification maintains the boundary properties of the particles and thus the inclusion formation during casting. It has been found that it is possible to suppress and at the same time make the oxidation resistance of nickel superalloys cast by conventional methods very high.

【0021】上記ジルコニウムとホウ素の臨界濃度に加
えて、本発明に係るニッケル超合金は、下記重量比にて
各元素が添加された場合にその効力が発揮されると認め
られる。
In addition to the above critical concentrations of zirconium and boron, it is recognized that the nickel superalloy according to the present invention exerts its effect when each element is added in the following weight ratio.

【0022】[0022]

【表4】 元素 重量比(wt%) クロム 5.0〜12.0 ハフニウム 0.75〜2.0 コバルト 0〜1.0合金の強度を高めるために下記
元素が加えられる。
[Table 4] Element Weight ratio (wt%) Chromium 5.0 to 12.0 Hafnium 0.75 to 2.0 Cobalt 0 to 1.0 The following elements are added to enhance the strength of the alloy.

【0023】[0023]

【表5】 元素 重量比(wt%) タングステン 0〜12 モリブデン 0〜12 タンタル 0〜12 チタニウム 0〜2 コロンビウム(ニオブ) 0〜2 炭素 0.06〜0.20 マンガン、燐、硫黄、シリコン、鉄、ビスマス、鉛、セ
レン、テルリウム、及びタリウムの各元素は、超合金の
特性低下を抑制するためにその添加量を低レベルとす
る。
[Table 5] Element weight ratio (wt%) Tungsten 0-12 Molybdenum 0-12 Tantalum 0-12 Titanium 0-2 Columbium (niobium) 0-2 Carbon 0.06-0.20 Manganese, phosphorus, sulfur, silicon, iron, bismuth, The elements of lead, selenium, tellurium, and thallium are added at low levels in order to suppress the deterioration of the characteristics of the superalloy.

【0024】本発明の他の実施例においては、超合金は
以下の重量比で与えられる元素を含有する。
In another embodiment of the invention, the superalloy contains the elements given in the following weight ratios:

【0025】[0025]

【表6】 ニッケル 残部所望により、本発明に係る超
合金は下記添加材を含有してもよい。その最大添加重量
比(wt%)を併せて以下に示す。
[Table 6] Nickel Remainder If desired, the superalloy according to the present invention may contain the following additives. The maximum addition weight ratio (wt%) is also shown below.

【0026】マンガン(0.20)、燐(0.015)、硫黄
(0.015)、 シリコン(0.10)、鉄(0.25)、チタン
(0.10)、コロンビウム(0.10)、ビスマス(0.0000
5、0.5ppm)、鉛 (0.0002、2ppm)、 セレン(0.000
1、1ppm)、 テルル(0.00005、0.5ppm)、及びタリウ
ム(0.00005、0.5ppm)。
Manganese (0.20), phosphorus (0.015), sulfur (0.015), silicon (0.10), iron (0.25), titanium (0.10), columbium (0.10), bismuth (0.0000)
5, 0.5ppm), lead (0.0002, 2ppm), selenium (0.000)
1, 1ppm), tellurium (0.00005, 0.5ppm), and thallium (0.00005, 0.5ppm).

【0027】このように、本発明によれば、ジェットエ
ンジン内で生じるような条件下で優れた耐酸性を有す
軸状ニッケル超合金が示される。この超合金には0.
25〜0.40wt%のジルコニウム及び0.004〜0.010wt%のホ
ウ素が含有される。バーナーリグ酸化条件下では、合金
の酸化率を大幅に減少させるジルコニウム安定化アルミ
ナ障壁層がこの合金に形成される。
[0027] Thus, according to the present invention, equiaxed nickel superalloy having excellent oxidation resistance under conditions such as occur in the jet engine is shown. 0 for this superalloy.
It contains 25 to 0.40 wt% zirconium and 0.004 to 0.010 wt% boron. Under burner rig oxidation conditions, a zirconium-stabilized alumina barrier layer is formed in this alloy that significantly reduces the oxidation rate of the alloy.

【0028】また、上記超合金の製造方法、及びその超
合金を原料とするエンジン構成材の鋳造方法も示され
る。
A method for producing the above superalloy and a method for casting an engine constituent material using the superalloy as a raw material are also shown.

【0029】[0029]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0030】図1は約1093℃(2000゜F)におけるバーナ
ーリグ酸化結果の説明図であり、本発明に係るニッケル
超合金と他の市販のニッケル超合金(B1900+Hf、MAR M-
247)とを時間に対する重量損失において比較したもの
である。これら合金の構成成分表3に示される。
FIG. 1 is an illustration of burner rig oxidation results at about 1093 ° C. (2000 ° F.), which shows nickel superalloys according to the present invention and other commercially available nickel superalloys (B1900 + Hf, MAR M-.
247) and weight loss over time. The constituent components of these alloys are shown in Table 3.

【0031】図2は約1204℃(2200°F)でのバーナーリ
グ酸化結果時間の説明図であり、本発明のニッケル超合
金と市販の他のニッケル超合金とを時間に対する重量損
失において比較したものである。
FIG. 2 is an illustration of burner rig oxidation result times at about 1204 ° C. (2200 ° F.), comparing the nickel superalloy of the present invention with other commercially available nickel superalloys in weight loss over time. Is.

【0032】本発明によれば、得られる合金は、必要と
される組成物のインゴットをとり、真空再溶解、及び従
来法にてニッケルを主成分とする合金を得るために用い
られる焼き流し精密鋳造法を用いた再鋳造を行うことに
よって得られる。上記インゴットは、真空下における単
一炉装入(single furnace charge)によって鋳造され
る。
In accordance with the present invention, the resulting alloy is an ingot of the required composition, vacuum remelted, and a precision-baked alloy used to obtain an alloy containing nickel as the major component by conventional methods. It is obtained by performing recasting using a casting method. The ingot is cast by a single furnace charge under vacuum.

【0033】従来法における超合金の焼き流し精密鋳造
法、超合金のインゴットの形成程、及び他の一般情報
に関してはSuperalloysII(シムス他、John Wiley & son
s社,ニューヨーク,1987)に示されており、以下に
その内容を参照する。
The flow baked superalloy in the conventional method precision casting, as formed Engineering ingot superalloys, and SuperalloysII (Sims et respect to other general information, John Wiley & son
S., New York, 1987), the contents of which are referred to below.

【0034】通常、工業的には、合金される元素はイ
ンゴット形成程時においてマスターヒート(master he
at)に加えられる。好適実施例において、合金元素にお
けるMn、P、S、Si、Fe、Ti、Cb(Nb)、Bi、Pb、Se、T
e、Tl等の添加量は、上記した各含有量の最大値よりも
小さくなっている。
[0034] Typically, the industrial, master heat (master he element to be alloyed at the time of degree ingot formation of Engineering
at). In a preferred embodiment, Mn, P, S, Si, Fe, Ti, Cb (Nb), Bi, Pb, Se, T in alloy elements
The added amount of e, Tl, etc. is smaller than the maximum value of each content described above.

【0035】上記のような合金の成分構成例を表7に示
す。
Table 7 shows an example of the component composition of the above alloy.

【0036】[0036]

【表7】 [Table 7]

【0037】本発明の1例において、表7に示される組
成を有する超合金が得られた。尚、この例は本発明を限
定するものではない。
In one example of the present invention, a superalloy having the composition shown in Table 7 was obtained. It should be noted that this example does not limit the present invention.

【0038】本発明と類似の組成を有するものの、ホウ
素及びジルコニウムの含有量が本発明において規定され
る臨界範囲には入っていないニッケル超合金と本発明に
係る超合金とを比較した。表8に示されるように、本発
明においては優れた延性が示された。
A nickel superalloy having a composition similar to that of the present invention but having a boron and zirconium content not within the critical range specified in the present invention was compared with the superalloy according to the present invention. As shown in Table 8, excellent ductility was exhibited in the present invention.

【0039】[0039]

【表8】 引張り伸び(%) 合金 24℃(75°F) 649℃(1200°F) 871℃(1600°F) 982℃(1800° F) 本発明 6.0 5.3 6.6 7.0 合金1 1.3 0.7 3.3 2.0 参照した引張り伸張試験は、Metals handbook(第9
版、American Society for Metals vol 8、1985)に開示
されている。
[Table 8] Tensile elongation (%) Alloy 24 ° C (75 ° F) 649 ° C (1200 ° F) 871 ° C (1600 ° F) 982 ° C (1800 ° F) Invention 6.0 5.3 6.6 7.0 Alloy 1 1.3 0.7 3.3 2.0 The tensile extension test referred to is the Metals handbook (No. 9).
Edition, American Society for Metals vol 8, 1985).

【0040】本発明の超合金における引張り伸び特性
は、ASTM E 8で示されるガイドラインに従って試験され
た。
The tensile elongation properties in the superalloys of the invention were tested according to the guidelines set out in ASTM E8.

【0041】一実施例においては、本発明に係る超合金
は、3つのASTM E 8の試験で649℃(1200°F)において3.
0%を超える平均引張り伸張が得られた。
In one embodiment, a superalloy according to the present invention was tested at three ASTM E 8 tests at 649 ° C (1200 ° F).
An average tensile elongation of greater than 0% was obtained.

【0042】好ましい実施例においては、本発明の超合
金は、3つのASTM E8の試験で649℃(1200°F)において
5.0%を超える平均張力伸張が得られた。
In the preferred embodiment, the superalloys of this invention are tested at three ASTM E8 at 1200 ° F (649 ° C).
An average tensile elongation of more than 5.0% was obtained.

【0043】バーナーリグ酸化テストによって、本発明
の超合金は、従来のニッケル超合金B1900+HF、Mar-M-24
7(図1、2及び表7参照)に比較して優れた耐酸
を有することが示された。
By the burner rig oxidation test, the superalloy of the present invention was found to be conventional nickel superalloy B1900 + HF, Mar-M-24.
It was shown to have excellent oxidation resistance as compared with 7 (see FIGS. 1 and 2 and Table 7).

【0044】1204℃(2200°F)におけるバーナーリグ試
験を70サイクル繰り返したところ、B1900+HFでは55
%、Mar-M-247では75%の重量減少がみられたのに対
し、本発明の合金の重量は約2%しか減少しなかった。
The burner rig test at 1204 ° C. (2200 ° F.) was repeated 70 times, and it was 55 for B1900 + HF.
%, Mar-M-247 had a weight loss of 75%, whereas the alloy of the present invention had a weight loss of only about 2%.

【0045】本発明に係る超合金の評価に用いられたバ
ーナーリグ繰り返し試験においては、燃料圧力によって
液体燃料バーナーを制御することによってインタレスト
(interest)の温度を維持するようにした。
In the burner rig repeat test used to evaluate the superalloys of the present invention, the liquid fuel burner was controlled by the fuel pressure to maintain the temperature of interest.

【0046】試験を繰り返すにあたって、試料の取り出
し又は火炎の消火を行うとともに、高圧大気を直射して
試料が冷却される。
When the test is repeated, the sample is taken out or the flame is extinguished, and the sample is cooled by direct exposure to the high pressure atmosphere.

【0047】試料は通常は円筒状のロッド[この例では
直径0.47インチ×長さ3.25インチ(0.47"×3.25")]形状
となっている。試料を個々に試験することもできる。複
数の試料を試験するには回転スピンドルを用いる。
The sample is usually in the form of a cylindrical rod [0.47 inch diameter x 3.25 inch length (0.47 "x 3.25") in this example]. The samples can also be tested individually. A rotating spindle is used to test multiple samples.

【0048】酸化剥離による原料損失を監視するため
に、上記試験時には一定の間隔をおいて試料の重さと直
径を測定する。酸化率は重量損失に比例(質量損失が増
すにつれて酸化比が増大)する。
In order to monitor the material loss due to oxidative peeling, the weight and diameter of the sample are measured at regular intervals during the above test. The oxidation rate is proportional to the weight loss (the oxidation ratio increases as the mass loss increases).

【0049】本発明に係るニッケル合金を特徴づける
ために、第2の耐酸性試験を行うこともできる。
[0049] To characterize the nickel superalloy of the present invention, it is also possible to carry out the second oxidation resistance test.

【0050】この試験法においては、超合金のクーポン
(coupons)はワイヤーからつるされ、大気に曝された状
態で1149℃±14℃(2100°F±25°F)で維持された炉内に
配置される。
In this test method, a superalloy coupon
Coupons are hung from wires and placed in a furnace maintained at 1149 ° C ± 14 ° C (2100 ° F ± 25 ° F) exposed to the atmosphere.

【0051】この試験法では、合金試料の形状は12.7±
3.05(mm)×19.05±3.05(mm)角で高さ1.016±0.254(mm)
[0.50×0.75in.±0.12in. by 0.040in.±0.010in.]とし
た。
In this test method, the shape of the alloy sample is 12.7 ±
3.05 (mm) × 19.05 ± 3.05 (mm) Square and height 1.016 ± 0.254 (mm)
[0.50 × 0.75 in. ± 0.12 in. By 0.040 in. ± 0.010 in.]

【0052】試料を挿入するに先だって、試料の各辺及
び頂点が丸められる。
Prior to inserting the sample, each side and apex of the sample is rounded.

【0053】試料は24±4時間の周期で加熱される。
それぞれのサイクルの終りに、試料は炉から取り出さ
れ、大気中で冷却された後に重量が測定される。加熱中
もしくは冷却中に剥離した分の質量は測定されない。
The sample is heated in a cycle of 24 ± 4 hours.
At the end of each cycle, the sample is removed from the furnace and weighed after cooling in air. The mass exfoliated during heating or cooling is not measured.

【0054】本発明に係る合金の耐酸性試験例とし
て、大気中、1149℃(2100゜F)にて300時間重量損失
繰り返し試験を行った結果、その損失量は、もとの重量
の10%を超えることはなかった。
[0054] As the oxidation resistance test examples of the alloy according to the present invention, in the air, 1149 ° C. (2100 ° F) at 300 hours Weight Loss repeated test results conducted, the amount of loss, 10 of the original weight It did not exceed%.

【0055】本発明の好ましい実施例に係る合金の耐酸
性試験例として、大気中、繰り返し条件下で1149℃(2
100゜F)にて300時間重量損失試験を行った。その結
果、損失量はもとの重量の5%を超えることはなかっ
た。
Acid resistance of alloys according to preferred embodiments of the present invention
As resistance test example, in the atmosphere, 1149 ° C. at a repetition conditions (2
A weight loss test was conducted at 100 ° F for 300 hours. As a result, the amount of loss did not exceed 5% of the original weight.

【0056】上記程を本発明に係る超合金試料に30
2時間(11サイクル)適用したところ、その重量損失
は4.7%であった。
[0056] 30 to super alloy sample according to the present invention the greater the Engineering
When applied for 2 hours (11 cycles), its weight loss was 4.7%.

【0057】本発明に包含される超合金も追加調製され
た。その成分構成を下記表9に示す。尚、これらは本発
明を限定するものではない。
The superalloys included in the present invention were also prepared. The composition of the components is shown in Table 9 below. Note that these do not limit the present invention.

【0058】[0058]

【表9】 [Table 9]

【0059】好適な実施例においては、本発明に係るニ
ッケル超合金構成材は空気中、1079±14℃(1975±25°
F)にて4時間加熱され、少なくとも22℃/分(40°F/min)
で空冷された。
In a preferred embodiment, the nickel superalloy component according to the present invention is 1079 ± 14 ° C. (1975 ± 25 ° C.) in air.
F) for 4 hours, at least 22 ° C / min (40 ° F / min)
It was air cooled.

【0060】この構成材はその後に871±14℃(1600±2
5°F)にて16時間加熱され、少なくとも22℃/分(40°
F/min)で空冷される。この熱処理によって超合金構成材
の延性およびクリープ(creep)特性が向上される。
This component was then 871 ± 14 ° C. (1600 ± 2
Heated at 5 ° F for 16 hours and at least 22 ° C / min (40 °
It is air cooled at F / min). This heat treatment improves the ductility and creep properties of the superalloy component.

【0061】好適な実施例において、本発明に係る多結
晶質ニッケル超合金は等軸状(equiaxed)であり、他の
実施例においては、本発明に係る多結晶質ニッケル超合
金は柱状(columnar)であった。
In a preferred embodiment, the polycrystalline nickel superalloy according to the present invention is equiaxed, and in another embodiment, the polycrystalline nickel superalloy according to the present invention is columnar. )Met.

【0062】表7に示される本発明のニッケル超合金構
成材は、フロートウォール燃焼器の構成材として好適に
用いることができた。
The nickel superalloy constituents of the present invention shown in Table 7 could be suitably used as constituents of a float wall combustor.

【0063】以上、本発明を各種好適実施例を用いて説
明したが、本発明の主旨及び範囲を逸脱することなく、
当業者が容易に考案することのできる種々の修正や変形
が可能であることはいうまでもない。このような修正及
び変形は発明及び記載された請求の範囲内に包含される
ものである。
Although the present invention has been described with reference to various preferred embodiments, it is possible to use the preferred embodiments without departing from the spirit and scope of the present invention.
It goes without saying that various modifications and variations that can be easily devised by those skilled in the art are possible. Such modifications and variations are intended to fall within the scope of the invention and the appended claims.

【0064】[0064]

【発明の効果】本発明の合金によれば、約1093℃(2000
゜F)、好ましくは約1204℃(2200゜F)までにおいて優れ
た耐酸性が得られる。本発明のニッケル超合金は、約
760℃(1400゜F)〜約1038℃(1900゜F)の温度範囲におい
て良好な強度が得られた。
According to the alloy of the present invention, about 1093 ° C (2000
° F), preferably excellent oxidation resistance at up to about 1204 ° C. (2200 ° F) is obtained. The nickel superalloy of the present invention has a
Good strength was obtained in the temperature range of 760 ° C (1400 ° F) to about 1038 ° C (1900 ° F).

【0065】本発明の超合金は優秀な耐酸性を有する
ので、ジェットエンジンの燃焼器、ノズルおよび低ター
ビン構成材のような、高温下の用途にも適する。
[0065] Since the superalloy of the present invention has excellent oxidation resistance, the jet engine combustor, such as a nozzle and low turbine construction materials, also suitable for high temperature applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】約1093℃(2000°F)におけるバーナーリグ酸化
結果の説明図。
FIG. 1 is an explanatory diagram of burner rig oxidation results at about 1093 ° C. (2000 ° F.).

【図2】約1204℃(2200°F)でのバーナーリグ酸化結果
時間の説明図。
FIG. 2 is an explanatory diagram of burner rig oxidation result time at about 1204 ° C. (2200 ° F.).

フロントページの続き (72)発明者 ポール ピー.ノーリス,ジュニア アメリカ合衆国,フロリダ,ジュノ ビ ーチ,エイピーティー.9,マーキュリ ー サークル 250 (56)参考文献 特開 昭61−79742(JP,A) 特公 平5−69891(JP,B2) 特公 昭47−15585(JP,B1) 特公 昭36−11111(JP,B1) 特公 昭35−11909(JP,B1) 特公 昭56−31345(JP,B1) 特公 昭38−4160(JP,B1) 特公 昭43−12505(JP,B1) 特公 昭36−13511(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 B22C 9/04 Continuation of front page (72) Inventor Paul P. Norris, Jr. USA, Florida, Junoeach, APT. 9, Mercury Circle 250 (56) Reference JP-A-61-79742 (JP, A) JP-B 5-69891 (JP, B2) JP-B 47-15585 (JP, B1) JP-B 36-11111 (JP, B1) JP-B 35-11909 (JP, B1) JP-B 56-31345 (JP, B1) JP-B 38-4160 (JP, B1) JP-B 43-12505 (JP-B1) Publication 36-13511 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 1/00-49/14 B22C 9/04

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 0.25〜0.35wt%のジルコニウム、0.004
〜0.010wt%のホウ素、6.50〜6.70wt%のアルミニウ
ム、9.5〜10.50wt%のクロム、1.05〜1.25wt%のハフニ
ウム、3.003.40wt%のタングステン、1.752.25wt%
のモリブデン、3.90〜4.30wt%のタンタル、および0.08
〜0.13wt%の炭素、含有し、残部がニッケルであるこ
とを特徴とする多結晶質ニッケル基超合金。
1. A 0.25~0. 35 wt% of zirconium, 0.004
~0.010Wt% boron, 6.5 0 to 6.7 0 wt% of aluminum, of 9.5 to 1 0.5 0 wt% chromium, 1. 0 5~ 1. 25 wt% of hafnium, 3.00 ~ 3.40 wt% tungsten, 1.75 to 2. 25 wt%
Molybdenum, 3.9 0 to 4.30 wt% tantalum, and 0.0 8
~0. 13 wt% of carbon, containing, polycrystalline nickel-based superalloy, wherein the balance nickel.
【請求項2】 前記合金の粒子は等軸状であることを特
徴とする請求項1記載の合金。
2. The alloy of claim 1, wherein the particles of the alloy are equiaxed.
【請求項3】 前記合金の粒子は柱状であることを特徴
とする請求項1記載の合金。
3. The alloy according to claim 1, wherein the particles of the alloy are columnar.
【請求項4】 1093℃以上の温度の酸化条件下にさ
らされると、前記超合金の表面に前記超合金の酸化を抑
制するアルミナ層が形成されることを特徴とする請求項
1〜3のいずれかに記載の合金。
4. An alumina layer which suppresses the oxidation of the superalloy is formed on the surface of the superalloy when exposed to an oxidizing condition at a temperature of 1093 ° C. or higher . The alloy according to any one.
【請求項5】 前記合金は0.007wt%以下のホウ素を含
有することを特徴とする請求項1〜のいずれかに記載
の合金。
5. The alloy according to any one of claims 1 to 4 , wherein the alloy contains 0.007 wt% or less of boron.
【請求項6】 前記ニッケル基超合金であって、 649℃での3つのASTM E 8試験における平均引っ張
り伸びが3%を超え、かつ、12.7±3.05(mm)×19.05±
3.05(mm)角で高さ1.016±0.254(mm)の形状を有する前記
超合金試料を用いた大気中、1149℃、24±4時間
の周期で300時間の試験における重量損失がもとの試
料の重量の10%以下であることを特徴とする請求項1
のいずれかに記載の合金。
6. The nickel-base superalloy having an average tensile elongation of 3% in three ASTM E 8 tests at 649 ° C. of 12.7 ± 3.05 (mm) × 19.05 ±
The original weight loss sample in the atmosphere of 1149 ° C. at a cycle of 24 ± 4 hours for 300 hours in the atmosphere using the above superalloy sample having a shape of 3.05 (mm) square and a height of 1.016 ± 0.254 (mm). It is less than 10% of the weight of.
The alloy according to any one of to 5 .
【請求項7】 649℃での3つのASTM E 8試験にお
ける平均引っ張り伸びが5.0%を超え、かつ、12.7±3.0
5(mm)×19.05±3.05(mm)角で高さ1.016±0.254(mm)の形
状を有する前記超合金試料を用いた、大気中、1149
℃、24±4時間の周期で300時間の試験における重
量損失がもとの試料の重量の5%以下であることを特徴
とする請求項1〜のいずれかに記載の合金。
7. The average tensile elongation in three ASTM E 8 tests at 649 ° C. exceeds 5.0% and is 12.7 ± 3.0.
Using the above superalloy sample having a shape of 5 mm × 19.05 ± 3.05 (mm) and a height of 1.016 ± 0.254 (mm), in air, 1149
° C., the alloy according to any one of claims 1 to 6, wherein the weight loss in the test of 300 hours in cycles of 24 ± 4 hours is not more than 5% of the weight of the original sample.
【請求項8】 請求項1〜のいずれかに記載のニッケ
ル基超合金を含有することを特徴とするジェットエンジ
ン構成材。
8. A jet engine construction material characterized by containing a nickel-base superalloy according to any one of claims 1-7.
【請求項9】 前記構成材は、燃焼器またはノズルまた
は低タービン構成材であることを特徴とする請求項
載の構成材。
Wherein said structure material, combustor or construction material according to claim 8, wherein the a nozzle or low turbine constituting material.
【請求項10】 耐酸化性多結晶質ニッケル超合金の製
造方法であって、 0.25〜0.35wt%のジルコニウム、0.004〜0.010wt%のホ
ウ素、6.50〜6.70wt%のアルミニウム、9.5〜10.50wt%
のクロム、1.05〜1.25wt%のハフニウム、3.003.40wt
%のタングステン、1.752.25wt%のモリブデン、3.90
4.30wt%のタンタル、および0.08〜0.13wt%の炭素、
含有させる工程を有し、前記超合金は、残部がニッケ
ルであることを特徴とする超合金の製造方法。
10. A method for producing oxidation resistant polycrystalline nickel superalloy, 0.25~0. 35 wt% of zirconium, 0.004~0.010Wt% boron, 6.5 0 to 6.7 0 wt% aluminum, 9.5 to 1 0.5 0 wt%
Of chromium, 1. 0 5~ 1. 25 wt% of hafnium, 3.00 ~ 3.40 wt
% Tungsten, 1.75 ~ 2. 2 5 wt% molybdenum, 3.9 0
~ 4.30 wt% tantalum, and 0.0 8 ~0. 13 wt% carbon,
The method for producing a superalloy, characterized in that the balance of the superalloy is nickel.
【請求項11】 0.25〜0.35wt%のジルコニウム、0.00
4〜0.010wt%のホウ素、6.50〜6.70wt%のアルミニウ
ム、9.5〜10.50wt%のクロム、1.05〜1.25wt%のハフニ
ウム、3.003.40wt%のタングステン、1.752.25wt%
のモリブデン、3.90〜4.30wt%のタンタル、および0.08
〜0.13wt%の炭素、含有し、残部がニッケルであるニ
ッケル超合金を鋳造する工程を有することを特徴とする
ジェットエンジン構成材の製造方法。
11. 0.25~0. 35 wt% of zirconium, 0.00
4~0.010Wt% boron, 6.5 0 to 6.7 0 wt% of aluminum, of 9.5 to 1 0.5 0 wt% chromium, 1. 0 5~ 1. 25 wt% of hafnium, 3.00 ~ 3.40 wt% tungsten, 1.75 to 2 . 2 5 wt%
Molybdenum, 3.9 0 to 4.30 wt% tantalum, and 0.0 8
~0. 13 wt% of carbon, containing, manufacturing method of a jet engine construction material, characterized in that the balance comprises the step of casting a nickel superalloy is nickel.
【請求項12】 前記超合金は真空下での単一炉挿入に
よって鋳造されることを特徴とする請求項1記載のジ
ェットエンジン構成材の製造方法。
12. The method of claim 11, wherein the superalloy manufacturing method of a jet engine construction material according to claim 1 1, wherein the cast by a single furnace insertion under vacuum.
【請求項13】 前記超合金のインゴットは真空下で再
溶解され、その後にニッケル合金の焼き流し精密鋳造法
を用いて鋳造されることを特徴とする請求項1記載の
ジェットエンジン構成材の製造方法。
Ingot wherein said superalloy is redissolved in vacuo, followed by the claim 1 2, wherein a to be cast using a precision casting flow baked nickel alloy jet engine construction material Production method.
JP12211394A 1994-05-20 1994-06-03 Polycrystalline nickel superalloy and method for producing the same Expired - Fee Related JP3474634B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94303644A EP0683239B1 (en) 1994-05-20 1994-05-20 Oxidation resistant nickel based super alloy
JP12211394A JP3474634B2 (en) 1994-05-20 1994-06-03 Polycrystalline nickel superalloy and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP94303644A EP0683239B1 (en) 1994-05-20 1994-05-20 Oxidation resistant nickel based super alloy
JP12211394A JP3474634B2 (en) 1994-05-20 1994-06-03 Polycrystalline nickel superalloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07331365A JPH07331365A (en) 1995-12-19
JP3474634B2 true JP3474634B2 (en) 2003-12-08

Family

ID=26137119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12211394A Expired - Fee Related JP3474634B2 (en) 1994-05-20 1994-06-03 Polycrystalline nickel superalloy and method for producing the same

Country Status (2)

Country Link
EP (1) EP0683239B1 (en)
JP (1) JP3474634B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145968A1 (en) * 2008-07-14 2010-01-20 Siemens Aktiengesellschaft Nickel base gamma prime strengthened superalloy
US8858873B2 (en) * 2012-11-13 2014-10-14 Honeywell International Inc. Nickel-based superalloys for use on turbine blades
US20150247220A1 (en) 2014-02-28 2015-09-03 General Electric Company Article and method for forming article
US10933469B2 (en) 2018-09-10 2021-03-02 Honeywell International Inc. Method of forming an abrasive nickel-based alloy on a turbine blade tip

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526499A (en) * 1967-08-22 1970-09-01 Trw Inc Nickel base alloy having improved stress rupture properties
US3776704A (en) * 1968-03-01 1973-12-04 Int Nickel Co Dispersion-strengthened superalloys
US4082581A (en) * 1973-08-09 1978-04-04 Chrysler Corporation Nickel-base superalloy
US4046560A (en) * 1975-12-30 1977-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nickel base alloy
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
JPH0641664A (en) * 1992-05-28 1994-02-15 Daido Steel Co Ltd Het resistant elastic machie element and its manufacture

Also Published As

Publication number Publication date
JPH07331365A (en) 1995-12-19
EP0683239B1 (en) 1999-01-20
EP0683239A1 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
CA1090168A (en) Oxidation resistant cobalt base alloy
JP5344453B2 (en) Ni-base superalloy with excellent oxidation resistance
EP2305845B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY AND ALLOY MEMBER USING THE SAME AS BASE
JP2753148B2 (en) Nickel-based single crystal superalloy
US4737205A (en) Platinum group metal-containing alloy
EP2305846B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY AND ALLOY MEMBER OBTAINED FROM THE SAME
EP0549286B1 (en) High temperature resistant Ni-Cr alloy
JP3184882B2 (en) Ni-based single crystal alloy and method for producing the same
JP3892831B2 (en) Superalloys for single crystal turbine vanes.
EP1433865A1 (en) High-strength Ni-base superalloy and gas turbine blades
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
EP0074603B1 (en) Gas turbine nozzle having superior thermal fatigue resistance
JP4222540B2 (en) Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component
JP2990041B2 (en) High temperature corrosion resistant single crystal nickel-based superalloys
JP3474634B2 (en) Polycrystalline nickel superalloy and method for producing the same
EP0132371B1 (en) Process for making alloys having a coarse elongated grain structure
JPH06264169A (en) High-temperature resisting and corrosion resisting ni-cr alloy
US4837384A (en) Nickel-based monocrystalline superalloy, in particular for the blades of a turbomachine
JP2002235135A (en) Nickel based superalloy having extremely high temperature corrosion resistance for single crystal blade of industrial turbine
JP3420815B2 (en) Oxidation and corrosion resistant alloys based on doped iron aluminide and their use
JPH0559474A (en) Improved nickel-base super alloy with balanced properties for producing single crystal product
JP3679973B2 (en) Single crystal Ni-base heat-resistant alloy, turbine blade and gas turbine
CA2334490A1 (en) Trinickel aluminide-base heat-resistant alloy
JPH0741893A (en) Ni-based alloy excellent in sulfate corrosion resistance
KR100336803B1 (en) Polycrystalline Nickel Superalloy with Excellent Oxidation Resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees