JP3473104B2 - Slope drainage method - Google Patents

Slope drainage method

Info

Publication number
JP3473104B2
JP3473104B2 JP10195994A JP10195994A JP3473104B2 JP 3473104 B2 JP3473104 B2 JP 3473104B2 JP 10195994 A JP10195994 A JP 10195994A JP 10195994 A JP10195994 A JP 10195994A JP 3473104 B2 JP3473104 B2 JP 3473104B2
Authority
JP
Japan
Prior art keywords
drainage
fiber
drainage pipe
pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10195994A
Other languages
Japanese (ja)
Other versions
JPH07279177A (en
Inventor
隆愛 中嶋
幸雄 森田
裕一 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP10195994A priority Critical patent/JP3473104B2/en
Publication of JPH07279177A publication Critical patent/JPH07279177A/en
Application granted granted Critical
Publication of JP3473104B2 publication Critical patent/JP3473104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

【発明の詳細な説明】 【0010】 【産業上の利用分野】 本発明は、地滑り対策に有効な
斜面排水方法に関する。さらに詳しくは、集排水管に孔
加工、スリット加工を必要とせず、軽く、斜面施工が容
易であり、部分地滑り、部分崩壊、不同沈下が起きやす
い斜面で長期間使用しても、耐圧性に優れ、割れず、か
つ土砂流入がなく、集水排水効果が大きく、目詰まりが
起こりにい地滑り対策に有効な排水方法に関する。 【0011】 【従来の技術】 従来の斜面の地滑り崩壊対策は、斜面
土壌中の水をいかに多く早く集水し排水するかがポイン
トであり、このため集排水管で斜面の水を集水排水する
方法が多く用いられている。ここで用いる従来の集排水
管は、低コストで簡単に入手出来る多孔塩化ヒ゛ニル樹脂製
管、スリット鋼管などが使用されている。 【0012】 【本発明が解決しようとする課題】 しかし地滑り斜面
崩壊、地盤の不同沈下の起きやすい斜面での使用は、こ
の集排水管に大きな力がかかり、集排水管が大きく変形
し、最悪時には割れ、土砂が流入し、このため排水効果
が減少し、さらには全く排水しない。また従来の集排水
管は、管に孔加工やスリット加工の集水口を設けてある
ので、この集水口から土砂が流入し、このため集排水管
に目詰まりが生じ、排水効果を減少し、さらには全く排
水しない。このため時々集排水管内の土砂を取り除き、
排水効果を回復していたが容易なことではない。このよ
うな集排水管の排水効果が無くなると、多量に水を含ん
だ斜面が地滑りし、斜面崩壊し大事故になる可能性を有
していた。本発明は、斜面で長期間使用し集排水管に大
きな力がかかっても、破損することなく、高い土圧でも
破損することなく、この破損個所からの土砂が流入がな
く、目詰まりがなく、排水効果が良好で、地滑り、斜面
崩壊による大事故を起こさない、新規な排水方法を提供
するものである。 【0013】 【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意研究をかさねた結果、埋設された
集排水管で斜面土壌中の水を排水する方法において、集
排水管は、繊度が1〜1000d/f、熱融着により自
己結合させる温度で加熱した後の糸強度が1g/d 以
上、糸伸度が30%以上である熱接着性繊維を含み、熱
融着され、空隙率60 〜90 %であって、かつ、圧縮
強度が30Kg/10cm以上、変形率60 %時に割
れが発生する事がない通水性の繊維接合成形体を用いた
上記排水方法である。 【0014】 本発明の集排水管は、通水性を保持して
なる繊維接合成形体であり、繊維を接合した管状のもの
であればよく、斜面土壌中に埋設することにより、土壌
中の雨水を速やかに集水し、集水した雨水を排水する。
本発明の集排水管は、繊維を接合した管状のものであれ
ばよく、断面が丸、角、楕円など形状を限定するもので
はないが、一般的に丸で肉厚のものが部分地滑り、部分
崩壊、不同沈下が起きやすい斜面土圧にも耐え好まし
い。繊維接合体としては、ポリプロピレン、ナイロン、
ポリエステルなどの合成繊維、綿、麻、羊毛などの天然
繊維、セルロース系人造繊維など、その原料を特定する
ものではないが、ポリプロピレンを主体としたポリオレ
フィンが好ましい。このような繊維接合した集排水管を
用いることに特定される。繊維接合方法は、接着剤接
着、自己熱融着であってもよいが、通水性がなければ本
発明の目的を果たさない。本発明の集排水管は、通水性
がある繊維接合体なので、集排水管に孔加工、スリット
加工を必要とせず、軽く、斜面施工が容易であり、地滑
り、崩壊、不同沈下の応力のかかる斜面で長期間使用し
ても、耐圧性に優れ、割れず、土砂流入がなく、集水排
水効果が大きく、目詰まりが起こりにくい。 【0015】 本発明に用いる集排水管は、結合させる
温度で加熱した後の糸強度が1g/d以上、糸伸度が3
0%以上である熱接着性繊維を含み、熱融着され、空隙
率60〜90%であって、かつ、圧縮強度が30Kg/
10cm以上、変形率60%時に割れが発生する事がな
い集排水管が好ましい。 【0016】 本発明の排水方法は、斜面に対し繊維接
合成形体の集排水管を直接埋設し排水する方法でもよ
く、斜面に対し垂直方向の集水井戸を堀り、その集水井
戸に集まるよう繊維接合成形体の集排水管を放射状に埋
設し排水する方法でもよく、集水井戸を作成することな
く2,3本の繊維接合成形体の集排水管を埋設しこの
2,3本をまとめて排水する方法でもよい。集水井戸に
よる方法では、垂直方向に深さ5〜30m、径3〜10
mの井戸を堀り、その中から横方法にボーリングを行
い、この集水井戸に集まるよう3〜20度の角度で放射
状に繊維接合成形体の集排水管を埋設し、集水井戸に集
まった排水を排水管で排出する。本発明の集排水管は、
長さ10〜50m、外径50〜300mm、肉厚が内径
の10〜60%の繊維接合成形体の集排水管である。こ
の集排水管を水平方向に対して3〜30度傾け集水排水
する。 【0017】 以下自己接合する熱接着性繊維による集
排水管例について詳細に説明する。熱接着性繊維は、そ
の成分融点以上の温度で熱処理をすると熱融着する繊維
であり、成分の異なる複合繊維でもよく、単一の成分か
らなる単成分繊維でもよく、熱可塑性樹脂を成分とす
る。この成分としてポリプロピレン、ポリエチレン等の
各種ポリオレフインあるいはポリエステル、ナイロン樹
脂等を例示できる。また熱接着性繊維は、低融点成分と
高融点成分を組み合わせた熱可塑性樹脂を成分とする複
合繊維でもよく、複合タイプは、鞘芯タイプ、並列タイ
プでもよい。この複合繊維は、ポリプロピレン、ポリエ
チレン等の各種ポリオレフインあるいはポリエステル、
低融点のポリエステルの組み合わせあるいはナイロン樹
脂等いずれの繊維形成性の樹脂の低融点と高融点のいず
れの組み合わせであっても、低融点の融点以上高融点の
融点以下の熱処理で自己結合が生じるものであれば良
い。この複合繊維の融点差は、10℃以上が好ましく、
20℃以上あると加工がし易く、より好ましい。 【0018】 繊度は、土質に応じて、空隙率との関係
で決められるが、1d/f以上では穴径が小さくなりす
ぎ目詰まりが起こり易く好ましくない。また、1000
d/fを越えるとフィルターとしての穴径が大きくなり
すぎ土の流入が起こるので好ましくない。繊維の強度が
1g/d未満、または、糸伸度が30%未満の場合は、
大きな圧縮がかかったとき割れが発生するので好ましく
ない。熱接着性繊維でない他の繊維を混綿しても良く、
これらの繊維は熱処理を行っても自己結合しない繊維で
あり、ポリエステル繊維のような熱可塑性樹脂繊維であ
ってもよく、綿、麻など熱可塑でない繊維であってもよ
い。また、集排水管の外径は、通水量と扱いのよさから
通例50〜300mmの範囲のものが多いが、本発明は
工事に使用されるものであれば、その範囲を越えるもの
であっても良い。 【0019】 熱接着性繊維の集排水管の製造方法は、
熱接着性繊維を含む繊維を目付10〜100g/m2
2m以上の繊維ウエッブおよび不織布とし、この繊維ウ
エッブおよび不織布を熱処理し中芯に所定の外径になる
まで巻き上げ、その後冷却固化し、その後中芯を取り除
く方法が例示できる。繊維ウエッブは、熱接着性繊維を
含む繊維を目付10〜100g/m2 巾2m以上になる
ようカードその他の開繊機により得たウエッブ、スパン
ボンド法ウェブ、メルトブロー法ウェブなどである。ま
た不織布は、サーマルボンド法、バインダー接着法、お
よびニードルパンチなどによる機械的絡合による乾式不
織布あるいは抄紙による湿式不織布などいずれの不織布
を使用できる。 【0020】 熱処理方法は、一般にサーマルボンデイ
ング不織布に用いられる熱風循環式あるいは熱風吸引型
あるいは遠赤外線照射式などで熱接着性繊維成分の融点
以上の温度に上がるものであればいずれでも使用でき
る。中でも1〜100 sec、低融点成分融点の2℃以上
50℃以下の温度の熱風で加工することが好ましい。中
芯に巻き付ける繊維ウエッブおよび不織布の目付けは、
10〜100g/m2が好ましく、少ないと所定の肉厚に
巻き上げるに時間が掛かりすぎ、開繊機によってはきれ
いにウエッブまたは不織布がとれない。また多すぎると
充分にウエッブ全体または不織布に熱がいきわたるには
時間が掛かり過ぎたり、あるいは熱接着が均一にならず
充分な接着強力が得にくい。 【0021】 本発明の集排水管は、中空集排水管であ
り、その肉厚(T)は、内径(Id)との関係において
次の関係を満足することが好ましい。 0.10≦T/Id≦0.60 肉厚(T)が薄くては耐圧性が不足し、土圧により変形
し集排水が悪くなるので好ましくない。逆に、肉厚
(T)が厚いと集排水が悪くなり好ましくない。中芯
は、通常は円筒状であり、その内径と外径は下記不等式
の条件に合う範囲で状況に応じて設定しなければならな
い。又、三角形、四角形、六角形など多角形であって
も、その内接円と外接円を想定すれば同様に考えられ
る。 【0022】 次に、繊維ウエッブおよび不織布は、線
圧30〜500g/cmに調節して巻き上げるのが好ま
しく、この線圧の調整方法は、中芯となるパイプ、棒の
自重でもよく、パイプ、棒の両端をエア−シリンダ−な
どで調節したものでもよい。パイプ、棒の両端をエア−
シリンダ−などで調節すると、集排水管の肉厚の空隙率
を任意に調節できた。空隙率は、繊度との関係で決めら
れるが60〜90%が好ましい。60%未満では、集排
水管内の粒子を捕まえる空間が少なく目詰まりが早くな
り好ましくない。また、90%を越えると耐圧強度が弱
くなり好ましくない。 【0023】 繊維ウエッブおよび不織布の巻き上げ圧
を数段回に変更し、中芯部分の巻き上げ圧を高く、外周
部を低くエア−シリンダ−などで調節し、集排水管の肉
厚の空隙率を任意に調節したものは、また空隙率、繊度
の異なるウエッブまたは不織布に途中から変更すること
で中芯部、外周部の空隙率、ろ過精度を替えることもで
き、中芯部を密に、外周部を粗くすることで、長時間に
わたり目詰まりすることなく使用できた。圧縮強度は、
土圧に耐え変形による集排水が悪くならないため、30
Kg/10cm以上、さらに、集排水管回りの土質ある
いは地盤の不同沈下による通水性の減少を少なくするた
め50Kg/10cm以上あることが好ましい。 【0024】 【実施例】 以下本発明を実施例で更に詳細に説明す
る。尚、各例の条件、評価は、以下の方法で行った。 (繊維成分) HDPE:融点132℃の高密度ポリエチレン PP :融点165℃のポリプロピレン LPET:融点130℃のポリエステル PET :融点254℃のポリエステル (空隙率) 以下の式により算出する。 【0025】(熱融着性繊維糸の強伸度) 引張り試験機を用い、チャック間距離30mm、引張速
度30mm/分の条件で糸の強伸度を測定した。糸の熱
処理は、サクションドライヤーを用い、中空集排水管の
製造条件と同一の温度で同一の時間(15秒)処理し
た。糸の強伸度は、全て10回測定し平均値を示した。 (耐圧試験) 直径15cmの2枚の円盤の間に長さ10cm集排水管
を横置きし、10mm/minの速度で圧縮し、その降伏点強度
を求め耐圧試験とした。(単位Kg/10cm) 【0026】(目詰まり) 集排水管を斜面に打ち込んで使用し ◎:3年以上排水量が変化しなかった。 ○:1年以上排水量が変化しなかった。 △:2月以上排水量が変化しなかった。 ×:1カ月から排水量が低下した。 (通水量) 通水量試験装置で測定した。集排水管を1mに切断し、
給水水槽側パイプと排水水槽側パイプの間にこの集排水
管を取付け、集排水管外周面を熱収縮フイルムで覆っ
た。あらかじめ集排水管内の気泡を取り除くため給水・
排水水槽間の水頭差Hを5mmの状態で30分通水し、そ
の後水頭差H30mmの状態で安定してから60秒当たり
の通水量を3回連続測定しその平均を求め外径断面積当
たりの通水量とした。断面積[(外径/2)2π]あた
り60秒あたりの通水量(単位cc/cm2) 【0027】(変形状態での通水性) 集排水管を30cmに切断し、圧縮試験機により、中空
集排水管の内面が完全に接触する60%まで変形させ
る。変形された中空集排水管外周面を熱収縮フイルムで
覆い、中空集排水管が回復しないように厚み5mmの鉄
板により両サイドをはさみ変形率60%一定になるよう
にした。この圧縮された中空集排水管を給水水槽側パイ
プと排水水槽側パイプの間に取付け、集排水管の通水量
試験装置で測定した。あらかじめ集排水管内の気泡を取
り除くため給水・排水水槽間の水頭差Hを10mmの状態
で30分通水し、その後水頭差H30mmの状態で安定し
てから60秒当たりの通水量を3回連続測定しその平均
を求め通水量とした。 【0028】(割れ) 圧縮試験機により、中空集排水管の内面が完全に接触す
る60%まで変形させ、割れないものを○、40%まで
変形させ、割れないものを△、割れたものを×で表示し
た。 【0029】 実施例1 実施例1.鞘側低融点成分にポリエチレン、芯側高融点
成分にポリプロピレンのポリマーを用い、孔径0.6m
m、孔数350個の鞘芯型複合口金を用いて、鞘芯型熱
接着性繊維の未延伸糸を紡糸した。この鞘芯型熱接着性
繊維の未延伸糸をロール延伸装置を用いて100℃に加
熱しながら4倍延伸し、クリンパーでクリンプ数12山
/25mmの捲縮を付与した後に、カッターで切断して
単糸繊度65d/f、カット長64mmのステープルフ
ァイバーを得た。得られたステープルファイバーをカー
ド機にて巾4.2m、目付け30g/m2のウェブとした
後、サクションドライヤー(風速1.5m/sec、加
工時間15秒、ネットコンベアー速度10m/min)
にて熱処理加工した。得られた低融点成分が溶融した状
態のウェブを外径30mm、40g/cmのステンレス
製中芯に自重で加圧しながら巻取った。室温のブロア−
風で冷却した後、長さ4mに切断し、内径30、外径5
0mmの繊維接合成形体の集排水管とした。この繊維接
合成形体の集排水管は容易に製造でき、丈夫で、外観の
均一のものであった。この集排水管の評価を表1に示し
た。また、60%の変形率でも割れることは無く、60
%の変形率での状態での通水性は250cc/分となり
通水性のあることを確認した。 【0030】 地滑りの危険性のある切土した地山斜面
に、径3.5m深さ10mの集水井戸を堀り、その中か
ら横穴にボーリングし、放射状に長さ50mの繊維接合
成形体の集排水管1本に対し比較例としての多孔塩化ヒ゛
ニール 製集排水管2本の順で繰り返し、繊維接合成形体5
本、多孔塩化ヒ゛ニール製10本の集排水管を埋設した。埋
設1年後の排水を観察したところ、繊維接合成形体の集
排水管は5本とも排水しており、その排水量に変化がな
かった。一方、塩化ヒ゛ニール製集排水管10本の内、1本
は排水されず、他の5本の排水量は1/3に減少し、4
本の排水量は変化がなかった。 【0031】 実施例2.鞘側低融点成分にPE、芯側
高融点成分にPPのポリマーを用い、孔径0.6mm、
孔数350個の鞘芯型複合口金を用いて、鞘芯型熱接着
性繊維の未延伸糸を紡糸した。この鞘芯型熱接着性繊維
の未延伸糸をロール延伸装置を用いて100℃に加熱し
ながら4倍延伸し、クリンパーでクリンパー数12山/
25mmの捲縮を付与した後に、カッターで切断して単
糸繊度18d/f、カット長64mmの鞘芯型複合熱接
着性繊維を得た。製法などを実施例1に準じ製造し、こ
の集排水管の評価を表1に示した。実施例1および2
は、表1記載のサクションドライヤーの熱処理温度、集
排水管の内径、外径の寸法で実施例1に準じ製造し、こ
の集排水管の評価を表1に示した。 【0032】実施例3は、孔径0.6mm、孔数350
個の並列型複合口金を用いて、並列タイプの低融点PE
T(LPET)/PET熱接着性繊維の未延伸糸を得
た。この未延伸糸を前記実施例1と同条件で延伸し、捲
縮を付与し、繊度15d/f、クリンプ数13山/25
mm、繊維長64mmを得た。該複合熱接着性繊維を用
い実施例1に準じ製造し、この集排水管の評価を表1に
示した。実施例4.鞘側低融点成分にPE、芯側高融点
成分にPETのポリマーを用い、孔径0.6mm、孔数
350個の鞘芯型複合口金を用いて、鞘芯型熱接着性繊
維の未延伸糸を紡糸した。この鞘芯型熱接着性繊維の未
延伸糸をロール延伸装置を用いて100℃に加熱しなが
ら4倍延伸し、クリンパーでクリンプ数12山/25m
mの捲縮を付与した後に、カッターで切断して単糸繊度
18d/f、カット長64mmの鞘芯型複合熱接着性繊
維を得た。製法などを実施例1に準じ製造し、この集排
水管の評価を表1に示した。 【0033】 実施例5では複合繊維を用いず、18d
/fRegPP(クリンプ数12山/25mm繊維長64
mm)70重量%と15d/fRegPET(クリンプ数
14山/25mm繊維長64mm)30重量%の混紡を
用い、実施例1に準じ製造し、この集排水管の評価を表
1に示した。実施例6では、初め実施例1と同様な熱接
着性複合繊維をステンレス製中芯に巻き付け空隙率73
%肉厚10mmとした。この後空隙率88%肉厚19mmの
二層構造とした以外は、実施例1に準じ、この集排水管
の評価を表1に示した。集排水管として使用するには、
耐圧強度で30Kg/10cm以上必要であるが、本発明の集
排水管は耐圧強度で50Kg/10cm以上あり強かった。 【0034】 参考例1〜3 参考例1は、鞘側低融点成分にPE、芯側高融点成分に
PPのポリマーを用い、孔径0.6mm、孔数350個
の鞘芯型複合口金を用いて、鞘芯型熱接着性繊維の未延
伸糸を紡糸した。この鞘芯型熱接着性繊維の未延伸糸を
ロール延伸装置を用いて100℃に加熱しながら2倍延
伸し、クリンパーでクリンパー数12山/25mmの捲
縮を付与した後に、カッターで切断して単糸繊度18d
/f、カット長64mmの鞘芯型複合熱接着性繊維を得
た。製法などを実施例1に準じ製造し、この集排水管の
評価結果を表1に示した。参考例2は、複合繊維を用い
ず、18d/fRegPP(クリンプ数12山/25mm
繊維長64mm)70重量%と15d/fRegPET
(クリンプ数14山/25mm繊維長64mm)30重
量%の混紡を用い、実施例1に準じサクションドライヤ
ーの加工温度を変更し製造した。この集排水管の評価結
果を表1に示した。参考例3は、前記実施例3.におい
て、延伸条件のロール温度120℃、延伸倍率を4.3
倍とした以外は、前記実施例3.に準じて延伸、捲縮付
与し、繊度13.5d/f、クリンプ数13山/25m
m、繊維長64mmを得た。該複合熱接着性繊維を用い
実施例1に準じ製造し、この集排水管の評価を表1に示
した。 【0035】 【発明の効果】 本発明の排水方法は、全て繊維で出
来、その接点が結合された集排水管を用ているので、集
水排水性は抜群でかつ長期間目詰まりもなかった。本発
明の排水方法に用いる集排水管は、繊維接合成形体を用
いているので大きな応力を受けても割れる事がなかっ
た。集排水管の内面が接触するまで大きく変形しても、
通水性を保った。本発明の排水方法に用いる集排水管
は、繊維接合成形体を用いているので集水口の孔加工や
スリット加工を設ける必要が無く、集排水管は繊維の接
点のみが接合した多数の微小孔を有しており、容易に得
ることができた。本発明の排水方法に用いる集排水管
は、繊維接合成形体を用いているので軽く、斜面施工が
容易であった。 【0036】 本発明の排水方法に用いる集排水管は、
繊維接合成形体を用い大きな集水口がないので、土砂の
流入がなく、このための目詰まりもない。また本発明の
集排水管は、破損する事がないので、土砂の流入がな
く、このための目詰まりもない。土砂の流入がないの
で、集排水管内の土砂洗浄しなくてもよい。このように
本発明の排水方法は、集水排水効果に優れ、これにより
多量に水を含んだ斜面の地滑り、斜面崩壊がなく、大事
故を未然に防いだ。この本発明の排水方法は、整地した
切土、盛土に限らず、人手の加えられていない斜面に対
しても、排水効果があり、30度以上の急な斜面に特に
効果があった。このため斜面、えん堤、道路、ダム、排
水路、鉄道、トンネル等の斜面排水用として広範囲の用
途に安心して使用でき、特に地滑り対策に最適な排水方
法である。 【0037】 【表1】
Description: BACKGROUND OF THE INVENTION The present invention relates to a slope drainage method effective for landslide prevention. More specifically, the drainage pipe does not require drilling and slitting, and is light and easy to apply on slopes, and is resistant to pressure even when used for a long period of time on slopes where partial landslides, partial collapse, and uneven settlement tend to occur. The present invention relates to a drainage method that is excellent, does not crack, does not cause sediment inflow, has a large drainage drainage effect, and is effective in preventing landslides where clogging is unlikely. The conventional countermeasures against landslides on slopes are how to collect and drain water in the slope soil as quickly as possible. For this reason, the drainage pipe collects and drains water on the slopes. Many methods are used. As the conventional collecting and draining pipe used here, a pipe made of a porous vinyl chloride resin, a slit steel pipe, or the like, which is easily available at a low cost, is used. However, when used on a slope where a landslide slope is apt to collapse and the ground is unevenly settled, a large force is applied to the drainage pipe, and the drainage pipe is greatly deformed. Occasionally cracks and sediment flow in, thus reducing the drainage effect and even not draining at all. In addition, since the conventional drainage pipe has a drainage port for drilling and slitting in the pipe, sediment flows in from the drainage port, which causes clogging of the drainage pipe, reducing the drainage effect. Furthermore, it does not drain at all. For this reason, we sometimes remove the earth and sand from the drainage pipe,
Although the drainage effect has been restored, it is not easy. When the drainage effect of such a drainage pipe is lost, a slope containing a large amount of water landslides, causing the slope to collapse and causing a serious accident. The present invention can be used for a long time on a slope, even if a large force is applied to the collection / drainage pipe, without being damaged, without being damaged even at a high earth pressure, there is no inflow of earth and sand from the damaged portion, and there is no clogging. Another object of the present invention is to provide a new drainage method that has a good drainage effect and does not cause a major accident due to landslide or slope failure. Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, in a method of draining water in slope soil with a buried drainage pipe, The collection / drainage pipe includes a heat-adhesive fiber having a fineness of 1 to 1000 d / f, a yarn strength of 1 g / d or more after heating at a temperature at which self-bonding is performed by heat fusion, and a yarn elongation of 30% or more, The above drainage method using a water- permeable fiber-bonded molded article which is heat-fused, has a porosity of 60 to 90%, a compressive strength of 30 kg / 10 cm or more, and does not crack when the deformation rate is 60%. It is. [0014] The drainage pipe of the present invention is a fiber-bonded molded body maintaining water permeability, and may be a tubular fiber-bonded fiber, and may be buried in slope soil to provide rainwater in soil. Collect the water immediately and drain the collected rainwater.
The collection / drainage pipe of the present invention may have any shape as long as it has a tubular shape in which fibers are joined, and its cross section is not limited to a shape such as a circle, a corner, and an ellipse. It is preferable because it can withstand the slope earth pressure where partial collapse and differential settlement easily occur. Fiber joints include polypropylene, nylon,
Synthetic fibers such as polyester, cotton, hemp, natural fibers such as wool, cellulose-based artificial fibers, but not identifying the material, polyolefin composed mainly of polypropylene is preferred. It is specified to use such a fiber-collected drainage pipe. The fiber bonding method may be adhesive bonding or self-heat fusion, but the object of the present invention is not achieved without water permeability. The collection / drainage pipe of the present invention is a fibrous joined body having water permeability, so it does not require drilling and slitting of the collection / drainage pipe, it is light, easy to construct slopes, and subjected to landslide, collapse, and uneven settlement stress. Even if it is used for a long time on a slope, it has excellent pressure resistance, does not crack, has no sediment inflow, has a large drainage and drainage effect, and is unlikely to be clogged. [0015] The collection / drainage pipe used in the present invention has a yarn strength of 1 g / d or more and a yarn elongation of 3 g after being heated at the bonding temperature.
0% or more, containing a heat-adhesive fiber, heat-sealed, having a porosity of 60 to 90%, and a compressive strength of 30 kg /
A drainage pipe that does not crack when the deformation rate is 10 cm or more and the deformation rate is 60% is preferable. The drainage method of the present invention may be a method in which a drainage pipe of a fiber-bonded molded body is directly buried in the slope and drained, and a drainage well perpendicular to the slope is dug and collected in the drainage well. It is also possible to bury the drainage pipes of the fiber-bonded molded bodies radially and drain them. Instead, bury the drainage pipes of two or three fiber-bonded molded bodies without creating a water-collecting well. A method of draining all at once may be used. In the method using the catchment well, the depth is 5 to 30 m in the vertical direction, and the diameter is 3 to 10.
m, and drilling is performed in a horizontal manner from the well, and a fiber-joined molded body drainage pipe is buried radially at an angle of 3 to 20 degrees so as to gather in this water collection well. Drain the discharged wastewater through a drainpipe. The drainage pipe of the present invention is
It is a collecting and draining pipe of a fiber-joined molded body having a length of 10 to 50 m, an outer diameter of 50 to 300 mm, and a wall thickness of 10 to 60% of the inner diameter. The collection and drainage pipe is inclined at 3 to 30 degrees with respect to the horizontal direction to collect and drain water. Hereinafter, an example of a drainage pipe made of a self-bonding heat-adhesive fiber will be described in detail. The heat-adhesive fiber is a fiber that is heat-sealed when heat-treated at a temperature equal to or higher than the melting point of the component, and may be a composite fiber having different components or a single component fiber composed of a single component. I do. Examples of this component include various polyolefins such as polypropylene and polyethylene, polyester, and nylon resin. Further, the heat-adhesive fiber may be a composite fiber containing a thermoplastic resin having a combination of a low melting point component and a high melting point component, and the composite type may be a sheath-core type or a side-by-side type. This conjugate fiber is made of various polyolefins such as polypropylene and polyethylene or polyester,
Regardless of the combination of low melting point and high melting point of any fiber forming resin such as a combination of low melting point polyester or nylon resin, self-bonding is generated by heat treatment between low melting point and high melting point. Is fine. The melting point difference of this composite fiber is preferably 10 ° C. or more,
When the temperature is at least 20 ° C., processing is easy, and it is more preferable. [0018] fineness, depending on the soil, but is determined by the relationship between the porosity, the hole diameter is small becomes too clogging occurs easily is not preferable in 1d / f or more. Also, 1000
Exceeding d / f is not preferable because the hole diameter of the filter becomes too large and soil inflow occurs. When the fiber strength is less than 1 g / d or the yarn elongation is less than 30%,
When large compression is applied, cracks occur, which is not preferable. Other fibers that are not heat-adhesive fibers may be mixed,
These fibers are fibers that do not self-bond after heat treatment, and may be thermoplastic resin fibers such as polyester fibers, or non-thermoplastic fibers such as cotton and hemp. In addition, the outer diameter of the collection and drainage pipe is usually in the range of 50 to 300 mm from the viewpoint of water flow and ease of handling, but the present invention exceeds the range if it is used for construction. Is also good. The method for producing the drainage pipe of the heat-adhesive fiber is as follows:
A fiber web and a non-woven fabric having a basis weight of 10 to 100 g / m 2 and a width of 2 m or more are formed from the fiber including the heat-adhesive fiber, and the fiber web and the non-woven fabric are heat-treated and wound up to a predetermined outer diameter around a core, and then cooled and solidified. Thereafter, a method of removing the core can be exemplified. The fiber web is a web, a spun bond web, a melt blow web or the like obtained by using a card or other fiber opening machine so that the fiber including the heat-adhesive fiber has a basis weight of 10 to 100 g / m 2 and a width of 2 m or more. As the non-woven fabric, any non-woven fabric such as a dry non-woven fabric by mechanical entanglement such as a thermal bonding method, a binder bonding method, and needle punching or a wet non-woven fabric by papermaking can be used. As a heat treatment method, any method can be used as long as the temperature rises to a temperature equal to or higher than the melting point of the heat-adhesive fiber component by a hot-air circulation method, a hot-air suction method, or a far-infrared irradiation method generally used for a thermal bonding nonwoven fabric. In particular, it is preferable to process with hot air having a temperature of 2 ° C. or more and 50 ° C. or less, which is the melting point of the low melting point component for 1 to 100 sec. The basis weight of the fiber web and non-woven fabric wound around the core is
It is preferably from 10 to 100 g / m 2. If the amount is small, it takes too much time to wind up to a predetermined thickness, and a web or a nonwoven fabric cannot be neatly taken depending on a fiber opening machine. On the other hand, if the amount is too large, it takes too much time for the heat to sufficiently spread to the entire web or the nonwoven fabric, or it is difficult to obtain sufficient adhesive strength because the thermal adhesion is not uniform. The collecting and draining pipe of the present invention is a hollow collecting and draining pipe, and its thickness (T) preferably satisfies the following relation with respect to the inner diameter (Id). 0.10 ≦ T / Id ≦ 0.60 If the wall thickness (T) is thin, the pressure resistance is insufficient, and it is undesirably deformed due to the earth pressure and deteriorates drainage and collection. Conversely, if the wall thickness (T) is large, collection and drainage becomes poor, which is not preferable. The core is usually cylindrical, and its inner diameter and outer diameter must be set according to the situation within a range that meets the following inequality conditions. Even polygons such as a triangle, a quadrangle, and a hexagon can be similarly considered assuming an inscribed circle and a circumscribed circle. Next, it is preferable that the fiber web and the nonwoven fabric are wound up by adjusting the linear pressure to 30 to 500 g / cm. The method of adjusting the linear pressure may be the own weight of the pipe or rod serving as the core. The both ends of the rod may be adjusted with an air cylinder or the like. Air at both ends of pipe and rod
By adjusting with a cylinder or the like, the porosity of the thickness of the drainage pipe could be arbitrarily adjusted. The porosity is determined depending on the fineness, but is preferably 60 to 90%. If it is less than 60%, the space for catching particles in the collection / drainage pipe is small, and clogging is accelerated, which is not preferable. On the other hand, if it exceeds 90%, the pressure resistance becomes weak, which is not preferable. The winding pressure of the fiber web and the nonwoven fabric is changed to several stages, the winding pressure of the core portion is increased, and the outer peripheral portion is adjusted with an air cylinder to reduce the porosity of the thickness of the drainage pipe. The porosity, porosity of the outer core and the filtration accuracy can be changed by changing the porosity, web or nonwoven fabric with different porosity and fineness from the middle. By roughening the part, it could be used for a long time without clogging. The compressive strength is
Since the drainage due to deformation does not deteriorate due to withstanding the earth pressure, 30
Kg / 10 cm or more, and more preferably 50 kg / 10 cm or more in order to reduce a decrease in water permeability due to uneven settlement of soil or ground around the drainage pipe. The present invention will be described in more detail with reference to the following examples. In addition, the conditions and evaluation of each example were performed by the following methods. (Fiber component) HDPE: high-density polyethylene PP with a melting point of 132 ° C .: polypropylene with a melting point of 165 ° C. LPET: polyester PET with a melting point of 130 ° C .: polyester with a melting point of 254 ° C. (porosity) Calculated by the following formula. (Strength and Elongation of Heat-Fusible Fiber Yarn) Using a tensile tester, the strength and elongation of the yarn were measured under the conditions of a distance between chucks of 30 mm and a pulling speed of 30 mm / min. The heat treatment of the yarn was performed using a suction dryer at the same temperature and for the same time (15 seconds) as the manufacturing conditions for the hollow drainage pipe. The tenacity of the yarn was measured 10 times, and the average value was shown. (Pressure test) A drain pipe with a length of 10 cm was placed horizontally between two disks having a diameter of 15 cm, and compressed at a speed of 10 mm / min. (Unit: Kg / 10cm) (Clogging) A drainage pipe was driven into the slope and used. A: The drainage amount did not change for 3 years or more. ○: The amount of wastewater did not change for more than one year. Δ: The amount of wastewater did not change for more than two months. X: The amount of drainage decreased from one month. (Water flow rate) It measured with the water flow rate test device. Cut the drainage pipe to 1m,
The drainage pipe was attached between the feedwater tank side pipe and the drainage tank side pipe, and the outer peripheral surface of the drainage pipe was covered with a heat shrinkable film. Before removing water from the drainage pipe,
Water is passed for 30 minutes at a head difference H of 5 mm between the drainage tanks. After the water head is stabilized at a head difference H of 30 mm, the flow rate per 60 seconds is continuously measured three times, and the average is determined to obtain the average per outer diameter cross-sectional area. Water flow rate. Amount of water per 60 seconds per cross-sectional area [(outer diameter / 2) 2 π] (unit: cc / cm 2 ) (Water permeability in deformed state) The drainage pipe is cut into 30 cm, and compressed by a compression tester. , The inner surface of the hollow drainage tube is deformed to 60% to make full contact. The outer peripheral surface of the deformed hollow drainage pipe was covered with a heat shrinkable film, and both sides were sandwiched by a 5-mm-thick iron plate so that the hollow drainage pipe was not recovered so that the deformation rate was constant at 60%. This compressed hollow drainage pipe was attached between a feedwater tank side pipe and a drainage tank side pipe, and the measurement was performed with a water flow test device for the drainage pipe. In order to remove air bubbles in the collecting and draining pipes, water is supplied for 30 minutes with a head difference H between the water supply and drainage tanks of 10 mm for 30 minutes. The measured values were averaged to determine the water flow rate. (Crack) Using a compression tester, the inner surface of the hollow drainage pipe is deformed up to 60% where it is completely in contact, unbroken pipe is deformed to ○, 40%, unbroken pipe is Δ, and broken pipe is tested Indicated by ×. Embodiment 1 Embodiment 1 Using polyethylene for the sheath-side low melting point component and polypropylene for the core-side high melting point component, pore diameter 0.6 m
The undrawn yarn of the sheath-core type thermo-adhesive fiber was spun using a sheath-core type composite die having a m of 350 and a number of holes of 350. The unstretched yarn of the sheath-core type heat-adhesive fiber is stretched 4 times while being heated to 100 ° C. by using a roll stretching apparatus, and crimped with a crimper of 12 crimps / 25 mm and then cut with a cutter. Thus, a staple fiber having a single yarn fineness of 65 d / f and a cut length of 64 mm was obtained. The obtained staple fiber was made into a web having a width of 4.2 m and a basis weight of 30 g / m 2 using a card machine, and then a suction drier (wind speed 1.5 m / sec, processing time 15 seconds, net conveyor speed 10 m / min).
Was heat treated. The obtained web in which the low-melting point component was melted was wound around a stainless steel core having an outer diameter of 30 mm and a weight of 40 g / cm while being pressed by its own weight. Room temperature blower
After cooling by wind, cut into length 4m, inner diameter 30, outer diameter 5
It was a drainage pipe of a 0 mm fiber-bonded molded article. The collection / drainage pipe of this fiber-bonded molded article was easily manufactured, was strong, and had a uniform appearance. Table 1 shows the evaluation of the drainage pipe. Also, even at a deformation rate of 60%, there is no cracking.
% Of water permeation at a deformation rate of 250% was confirmed to be 250 cc / min. A 3.5 m diameter, 10 m deep water collecting well is dug on a cut ground slope which is at risk of landslide, and a bored hole is bored from the well, and a fifty meter long fiber-joined molded body is formed. Repeated in the order of two collection / drainage pipes made of porous vinyl chloride as a comparative example for one collection / drainage pipe of
Ten collection / drainage pipes made of perforated vinyl chloride were buried. Observation of the drainage one year after burying revealed that all five drainage pipes of the fiber-bonded molded body drained, and the drainage amount did not change. On the other hand, of the 10 drainage pipes made of vinyl chloride, one was not drained, and the drainage of the other five drains was reduced to 1/3.
The book drainage remained unchanged. Embodiment 2 Using PE for the sheath-side low melting point component and PP for the core-side high melting point component, pore diameter 0.6 mm,
An undrawn yarn of the sheath-core type heat-bondable fiber was spun using a sheath-core type composite die having 350 holes. The undrawn yarn of the sheath-core type heat-bondable fiber is stretched 4 times while heating to 100 ° C. using a roll stretching apparatus, and the number of crimpers is 12 peaks /
After giving a crimp of 25 mm, it was cut with a cutter to obtain a sheath-core composite thermoadhesive fiber having a single yarn fineness of 18 d / f and a cut length of 64 mm. The production method and the like were manufactured in accordance with Example 1, and the evaluation of the drainage pipe was shown in Table 1. Examples 1 and 2
Was manufactured according to Example 1 with the heat treatment temperature of the suction dryer and the inner and outer diameters of the collecting and draining pipes shown in Table 1. The evaluation of the collecting and draining pipes is shown in Table 1. In Example 3, the hole diameter was 0.6 mm, and the number of holes was 350.
Parallel type low melting point PE
An undrawn yarn of T (LPET) / PET thermoadhesive fiber was obtained. This undrawn yarn is drawn under the same conditions as in Example 1 and crimped to give a fineness of 15 d / f and a number of crimps of 13 peaks / 25.
mm and a fiber length of 64 mm. The composite heat-adhesive fiber was used to produce the same as in Example 1, and the evaluation of the drainage pipe is shown in Table 1. Embodiment 4. FIG. Unstretched yarn of a sheath-core type heat-adhesive fiber using a sheath-core type composite die having a pore diameter of 0.6 mm and a number of holes of 350, using PE for the sheath-side low melting point component and PET for the core-side high melting point component Was spun. The undrawn yarn of the sheath-core type heat-bondable fiber is drawn 4 times while heating to 100 ° C. using a roll drawing device, and the number of crimps is 12 peaks / 25 m by a crimper.
After giving a crimp of m, it was cut with a cutter to obtain a sheath-core composite thermoadhesive fiber having a single yarn fineness of 18 d / f and a cut length of 64 mm. The production method and the like were manufactured in accordance with Example 1, and the evaluation of the drainage pipe was shown in Table 1. In Example 5, no composite fiber was used, and 18 d
/ FRegPP (12 crimps / 25mm fiber length 64
mm) 70% by weight and 30% by weight of 15 d / fReg PET (14 crimps / 25 mm fiber length 64 mm) were manufactured according to Example 1, and the evaluation of this drainage pipe was shown in Table 1. In Example 6, the same heat-adhesive conjugate fiber as in Example 1 was wound around a stainless steel core, and the porosity was 73%.
% Wall thickness was 10 mm. Table 1 shows the evaluation of the drainage pipe according to Example 1, except that a two-layer structure having a porosity of 88% and a wall thickness of 19 mm was used. To use as a drainage pipe,
Although the pressure resistance required is 30 kg / 10 cm or more, the drainage pipe of the present invention has a pressure resistance of 50 kg / 10 cm or more, which is strong. Reference Examples 1 to 3 In Reference Example 1, a sheath-core composite mouthpiece having a pore diameter of 0.6 mm and a number of 350 holes was used, using a polymer of PE for the sheath-side low melting point component and a polymer of PP for the core-side high melting point component. Then, an undrawn yarn of the sheath-core type heat-bondable fiber was spun. The undrawn yarn of the sheath-core type heat-adhesive fiber is drawn twice by using a roll drawing device while heating to 100 ° C., crimped with a crimper of 12 crests / 25 mm, and cut with a cutter. T single yarn fineness 18d
/ F, a sheath-core composite heat-adhesive fiber having a cut length of 64 mm was obtained. The production method and the like were manufactured in accordance with Example 1, and the results of evaluation of this drainage pipe are shown in Table 1. Reference Example 2 uses 18d / fRegPP (12 crimps / 25 mm crimp) without using a composite fiber.
Fiber length 64mm) 70% by weight and 15d / fRegPET
(14 crimps / 25 mm fiber length: 64 mm) A 30% by weight blend was used, and the processing temperature of the suction dryer was changed in accordance with Example 1 to manufacture. Table 1 shows the evaluation results of the drainage pipes. Reference Example 3 is the same as Example 3 described above. In the stretching conditions, a roll temperature of 120 ° C and a stretching ratio of 4.3
Example 3 except for doubling. Stretched and crimped according to the standard, fineness 13.5 d / f, crimp number 13 peaks / 25 m
m and a fiber length of 64 mm were obtained. The composite heat-adhesive fiber was used to produce the same as in Example 1, and the evaluation of the drainage pipe is shown in Table 1. The drainage method of the present invention is made entirely of fiber and uses a drainage pipe connected to its contacts, so that drainage drainage is excellent and there is no clogging for a long time. . Since the drainage pipe used in the drainage method of the present invention uses a fiber-bonded molded body, it did not break even under a large stress. Even if it deforms greatly until the inner surface of the drainage pipe contacts,
Water permeability was maintained. Since the drainage pipe used in the drainage method of the present invention uses a fiber-bonded molded body, there is no need to provide a hole or slit in the drainage port. And could be easily obtained. Since the drainage pipe used in the drainage method of the present invention uses a fiber-bonded molded body, it is light and the slope construction is easy. The drainage pipe used in the drainage method of the present invention is:
Since there is no large water collecting port using a fiber-bonded molded body, there is no inflow of earth and sand and no clogging due to this. Further, since the drainage pipe of the present invention is not damaged, there is no inflow of earth and sand, and there is no clogging due to this. Since there is no inflow of sediment, it is not necessary to wash the sediment in the drainage pipe. As described above, the drainage method of the present invention has an excellent drainage and drainage effect, thereby preventing landslides and landslides on slopes containing a large amount of water, and preventing large accidents. The drainage method according to the present invention has a drainage effect not only on the leveled cut and embankment but also on a slope where no manual operation is performed, and is particularly effective on a steep slope of 30 ° or more. For this reason, it can be safely used in a wide range of applications for slope drainage such as slopes, dikes, roads, dams, drainage channels, railways, and tunnels, and is an optimal drainage method especially for landslide prevention. [Table 1]

Claims (1)

(57)【特許請求の範囲】 【請求項1】 埋設された集排水管で斜面土壌中の水を
排水する方法において、集排水管は、繊度が1〜100
0d/f、熱融着により自己結合させる温度で加熱した
後の糸強度が1g/d以上、糸伸度が30%以上である
熱接着性繊維を含み、熱融着され、空隙率60〜90%
であって、かつ、圧縮強度が30Kg/10cm 以
上、変形率60%時に割れが発生する事がない通水性の
繊維接合成形体であることを特徴とする地滑り対策用の
斜面排水方法。
(57) [Claim 1] In a method for draining water in slope soil by a buried drainage pipe, the drainage pipe has a fineness of 1 to 100.
Heated at 0 d / f, temperature at which self-bonding is achieved by thermal fusion
The subsequent yarn strength is 1 g / d or more, and the yarn elongation is 30% or more.
Contains heat-bondable fibers, heat-sealed, porosity 60-90%
And a compressive strength of 30 kg / 10 cm or less
In addition, a slope drainage method for landslide prevention, which is a water-permeable fiber-bonded molded article that does not crack at a deformation rate of 60% .
JP10195994A 1994-04-14 1994-04-14 Slope drainage method Expired - Fee Related JP3473104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195994A JP3473104B2 (en) 1994-04-14 1994-04-14 Slope drainage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195994A JP3473104B2 (en) 1994-04-14 1994-04-14 Slope drainage method

Publications (2)

Publication Number Publication Date
JPH07279177A JPH07279177A (en) 1995-10-24
JP3473104B2 true JP3473104B2 (en) 2003-12-02

Family

ID=14314413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195994A Expired - Fee Related JP3473104B2 (en) 1994-04-14 1994-04-14 Slope drainage method

Country Status (1)

Country Link
JP (1) JP3473104B2 (en)

Also Published As

Publication number Publication date
JPH07279177A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
DE19900424B4 (en) Three-dimensionally structured fibrous sheet and method of manufacture
JP2525306Y2 (en) Vertical drain material
WO1994008083A1 (en) Nonwoven cloth of ultrafine fibers and method of manufacturing the same
KR20190022645A (en) Depth filter capable of backwashing
JP3473104B2 (en) Slope drainage method
JP2007160174A (en) Capping sheet and its capping method of construction
US5753330A (en) Cylindrically shaped product
DE102004020555A1 (en) Dust filter bag, containing foam layer
JP2004245004A (en) Naturally decomposable drain filter, and drain
KR100328371B1 (en) Hollow drained material and manufacturing method thereof
JP3357550B2 (en) Composite coating materials used for waste disposal sites
JPH0529232Y2 (en)
JPH08332328A (en) Filter and usage thereof
JPH0827766A (en) Sediment inflow preventive member of porous pipe for underdrainage and sediment inflow prevention
JPH0211455Y2 (en)
JP4580082B2 (en) Three-dimensional network and method for producing the same
JP3098563B2 (en) Manufacturing method of columnar adsorbent
JP2015183499A (en) Sediment inflow prevention material of porous drain tube
JP2603598B2 (en) Culvert drain
JPH052715U (en) Cartridge Filter
JP2002115165A (en) Three-dimensional netlike body and method for producing the same
JP2001081658A (en) Composite non-woven fabric, and seedling-raising container using the same
JP2006291365A (en) Nonwoven fabric and method for producing the same
JPH0637765B2 (en) Drain material for drainage method
CA1111780A (en) Prefabricated subsurface drains

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees