JP3472305B2 - Long life vertical structure light emitting diode having an active layer of Iii Nitride - Google Patents

Long life vertical structure light emitting diode having an active layer of Iii Nitride

Info

Publication number
JP3472305B2
JP3472305B2 JP51094396A JP51094396A JP3472305B2 JP 3472305 B2 JP3472305 B2 JP 3472305B2 JP 51094396 A JP51094396 A JP 51094396A JP 51094396 A JP51094396 A JP 51094396A JP 3472305 B2 JP3472305 B2 JP 3472305B2
Authority
JP
Japan
Prior art keywords
layer
nitride
silicon carbide
substrate
heterostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51094396A
Other languages
Japanese (ja)
Other versions
JPH10506234A (en
Inventor
エドモンド,ジョン・アダム
コン,フア−シュアン
ドミトリエフ,ウラディーミル
バルマン,ギャリー・イー
Original Assignee
クリー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/309,251 priority Critical patent/US5523589A/en
Priority to US309,251 priority
Application filed by クリー インコーポレイテッド filed Critical クリー インコーポレイテッド
Priority to PCT/US1995/011472 priority patent/WO1996009653A1/en
Publication of JPH10506234A publication Critical patent/JPH10506234A/en
Application granted granted Critical
Publication of JP3472305B2 publication Critical patent/JP3472305B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Description

【発明の詳細な説明】 発明の分野 本発明は光電子デバイスに関し、具体的には、電磁スペクトルの青から紫外線の部分を出力するIII族窒化物(すなわち、元素の周期表のIII族または3族の元素を含む窒化物)から形成された発光ダイオードに関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to optoelectronic devices, specifically, III-nitride for outputting a portion of the ultraviolet blue of the electromagnetic spectrum (i.e., III or Group 3 of the Periodic Table of the Elements a light emitting diode formed of nitride) containing the element. 発明の背景 発光ダイオード(LED)とは、光電子工学の分野が長年にわたって成長し発展するにつれて様々な役割で有益になってきたpn接合デバイスのことである。 The inventor of the background light emission diode (LED) refers to a pn junction device have become useful in various roles as the field of optoelectronics has grown over the years to develop. 電磁スペクトルの可視部分を発光するデバイスは、特にオーディオシステム、自動車、家電装置、コンピュータシステムなど多くの分野で、単純な状態表示装置、ダイナミックパワーレベル棒グラフ、ならびに英数字表示装置に使用されてきた。 Devices that emit visible portion of the electromagnetic spectrum, in particular audio system, car, consumer electronics device, in many fields such as computer systems, a simple status display devices have been used dynamic power level bar graphs, and alphanumeric display. 赤外線デバイスは、オプトアイソレータ、手持ち式リモコン、間欠式または反射式および光ファイバー式のセンシング分野においてスペクトル整合フォトトランジスタに接続されて使用されてきた。 Infrared devices, opto-isolator has been used is connected to the spectrum matching phototransistor in sensing field of hand-held remote control, intermittent or reflective and fiber optic. LEDは半導体中の電子とホールの再結合に基づいて動作する。 LED operates based on the recombination of electrons and holes in the semiconductor. すなわち、伝導帯の電子キャリアが価電子帯のホールと結合すると、電子キャリアは、放出される光子、すなわち光の形でバンドギャップに相当するエネルギーを失うことになる。 That is, when the electron carrier in the conduction band is bonded to holes in the valence band, the electron carrier is photons emitted, i.e. will lose energy corresponding to the band gap in the form of light. 再結合事象の数は、平衡状態においては実際的な利用には不十分であるが、少数キャリアの密度を増大させることで増やすことができる。 The number of recombination events, which are insufficient for practical use in the equilibrium state, can be increased by increasing the density of minority carriers. LEDでは、以前より、ダイオードに順方向バイアスをかけることで少数キャリア密度を増大させていた。 In LED, than before, it was increased minority carrier density by forward biasing the diode. 注入された少数キャリアは、接合端部の拡散長の2、3倍の範囲内の多数キャリアと放射性再結合する。 Injected minority carriers is radiative recombination with majority carriers within a few times the diffusion length of the joint edge. 再結合の度に電磁気が放射される、すなわち光子がうみだされる。 Electromagnetic whenever recombination is radiated, i.e. photons are produced.
エネルギーの損失は半導体材料のバンドギャップに関連するので、LED材料のバンドギャップの特徴が重視されていた。 Since the energy loss is related to the band gap of the semiconductor material, characterized in the band gap of the LED material it has been emphasized. しかし、他の電子デバイスと共に使用する場合には、 However, when used with other electronic devices,
さらに効率のよいLED、具体的には少ない電力で高い強度の光を出力するLEDが要望されており、また必要でもある。 Further efficient LED, and LED that outputs light of high intensity less power in particular is desired, there is also required. たとえば、より高い光強度のLEDは、特に、周囲温度が高い環境での表示装置や状態表示装置に有益である。 Eg, LED of higher light intensity is particularly beneficial to a display device and a status indicator at ambient temperature is high environment. LEDの強度出力とLEDを駆動するのに必要な電力の間にも関係がある。 Relationship also between the power required to drive the LED intensity output and LED. たとえば、低電力LEDは、ポータブル電子機器分野で特に有益である。 For example, low-power LED is particularly useful in portable electronic equipment field. より低い電力でのより高い光強度を得るという要求に応えようとする試みの一例を、一層効率的なLEDを得るための、可視スペクトルの赤色部分におけるAlGaAsのLED技術の開発に見ることができる。 An example of attempts to live up to the requirements of obtaining a higher light intensity at lower power, can be seen more in order to obtain efficient LED, the development of the AlGaAs LED technology in the red portion of the visible spectrum . 可視スペクトルの青色および紫外線領域においても、LEDに同様の技術が求められ続けている。 Also in the blue and ultraviolet regions of the visible spectrum, the same techniques to the LED is continuously sought. たとえば、青は基本色なので、フルカラー表示または純白光を生み出すために求められており、また必要である。 For example, blue Since basic colors, has been required to produce a full color display or pure white light, it is also required. 本発明の共通譲受人は、この分野で、大量に供給可能な、青色スペクトル光を発光する商業ベースに乗るLED Common assignee of the present invention is in the field, which can be mass-feed, commercially viable emitting blue spectrum light LED
の開発に最初に成功した。 First successful in the development of. こうしたLEDは広バンドギャップ半導体材料である炭化ケイ素で形成されたものである。 Such LED is one formed of silicon carbide is a wide bandgap semiconductor material. こうした青色LEDの例は、米国特許第4918497号と第 Examples of such blue LED, and U.S. Patent No. 4918497 No.
5027168号のEdmondによる「炭化ケイ素製の青色発光ダイオード(Blue Light Emitting Diode Formed In Sili According to the No. 5027168 Edmond "silicon carbide blue light emitting diodes (Blue Light Emitting Diode Formed In Sili
con Carbide)」に記載されている。 It is described in the con Carbide) ". こうした青色LEDの他の例は、米国特許第5306662号の Another example of such a blue LED, U.S. Patent No. 5306662
Nakamuraその他による「P型化合物半導体の製造方法(Method Of Manufacturing P−type Compound Semicon Nakamura Other by "P-type compound semiconductor manufacturing method (Method Of Manufacturing P-type Compound Semicon
ductor)」や米国特許第5290393号のNakamuraによる「窒化ガリウムベース化合物半導体の結晶成長方法(Cr Ductor) "and U.S. Patent No. 5290393 According to Patent of Nakamura" gallium nitride-based compound semiconductor crystal growth method (Cr
ystal Growth Method For Gallium Nitride−Based Com ystal Growth Method For Gallium Nitride-Based Com
pound Semiconductor)」に記載されている。 It is described in the pound Semiconductor) ". Hatanoその他による米国特許第5273933号の「半導体デバイスを製造する過程における被膜形成気相成長方法(Vapor Ph Hatano film-forming vapor deposition process in a process for manufacturing a "semiconductor devices other by U.S. Patent No. 5273933 (Vapor Ph
ase Growth Method Of Forming Film In Process Of Ma ase Growth Method Of Forming Film In Process Of Ma
nufacturing Semiconductor Device)」には、SiC基板上のGaInAINやガリウム砒素(GaAs)基板上のセレン化亜鉛(ZnSe)から形成されたLEDも記載されている。 The nufacturing Semiconductor Device) ", also LED formed from GaInAIN or gallium arsenide on SiC substrate (GaAs) zinc selenide substrate (ZnSe) are described. LEDなどの光子デバイスに習熟した人には周知のように、所与の半導体材料によりうみだされた電磁放射(すなわち、光子)の周波数は、材料のバンドギャップの関数である。 Etc. As is well known to those skilled in the photon device LED, the frequency of the electromagnetic radiation generated by a given semiconductor material (i.e., photons) is a function of the bandgap of the material. バンドギャップが小さくなると、発生するエネルギーも小さくなり、光子の波長も長くなるので、より大きなエネルギーをうみだしたり、光子の波長を短くしたりするのにはより広いバンドギャップを有する材料が必要である。 When the band gap becomes smaller, the energy generated is also reduced, since the wavelength of the photon becomes longer, or produce more energy is required material having a wider band gap to or shorter wavelength photons . たとえば、レーザに通常使用されている半導体は、燐化インジウム・ガリウム・アルミニウム(InGaAlP)である。 For example, semiconductors are commonly used in lasers is indium phosphide, gallium aluminum (InGaAlP). この材料のバンドギャップ(実際は、各元素のモルまたは原子分率に応じたバンドギャップの範囲)のために、InGaAlPから得られる光は、可視スペクトルの赤色部分、すなわち、約600ないし700ナノメータ(nm)に限定されている。 Bandgap (actually a range of bandgaps depending on the molar or atomic fraction of each element) of the material for the light obtained from InGaAlP the red portion of the visible spectrum, i.e., about 600 to 700 nanometers (nm It is limited to). 元に戻るが、スペクトルの青色または紫外線部分の波長の光子を得るためには、比較的大きなバンドギャップを有する半導体材料が必要である。 Returns to the original, but in order to obtain a photon of wavelength in the blue or ultraviolet portions of the spectrum, it is necessary semiconductor material having a relatively large band gap. 代表的な候補材料には、炭化ケイ素(SiC)や窒化ガリウム(GaN)などである。 Representative candidate materials, and the like, silicon carbide (SiC) or gallium nitride (GaN). 波長の短いLEDは、色だけでなく多くの利点を備えている。 Short LED wavelength has a number of advantages not only color. 具体的には、光記憶装置やメモリデバイス(たとえば、CD−ROMや光ディスク)で使用されると、LEDの出す光の波長が短ければ短いほど、こうした記録デバイスが保持する情報の量は増大する。 Specifically, an optical storage device or a memory device (e.g., CD-ROM or an optical disk) when used in, shorter the wavelength of light out of LED is short, the amount of information that such a recording device is held is increased . たとえば、青色光を使用して情報を記憶する光デバイスは、赤色を使用したデバイスの約32倍の情報を同じ空間に保持できる。 For example, an optical device storing information using blue light can hold approximately 32 times the information of devices using red in the same space. 窒化ガリウムは、バンドギャップが比較的高く(室温で3.36eV)、間接バンドギャップ材料よりも直接バンドギャップであるために、青色や紫外線周波数用の魅力的なLED材料の候補である。 Gallium nitride has a relatively high band gap (3.36 eV at room temperature), for a direct band gap than an indirect bandgap material, which is a candidate for attractive LED materials for blue and UV frequencies. 半導体の特徴に習熟した人には周知のように、直接バンドギャップ材料では、価電子帯から伝導帯への電子の遷移のために、電子の結晶モメンタムの変化を必要としない。 As is well known to those skilled in the semiconductor characteristics, a direct bandgap material, in order from the valence band of the electron transition to the conduction band, it does not require a change in the electron crystal momentum. 間接半導体では、他の状況が現れる。 In an indirect semiconductor, it appears other situations. すなわち、価電子帯と伝導帯の間で電子が遷移するためには、結晶モメンタムを必要とする。 That is, in order electrons transition between the valence band and the conduction band, requiring crystal momentum. ケイ素や炭化ケイ素はこうした間接半導体の例である。 Silicon or silicon carbide are examples of such indirect semiconductors. 一般的には、直接遷移による光子は間接遷移による光子より大量のエネルギーを保持しているので、直接バンドギャップ材料で形成されたLEDは、間接バンドギャップ材料で形成されたLEDよりも効率的に動作する。 In general, since the photons by the direct transition retains a large amount of energy from photons by indirect transition, LED formed directly on the band-gap material is efficiently than LED formed by an indirect bandgap material Operate. しかし、窒化ガリウムは欠点も備えている。 However, gallium nitride is also provided drawbacks. 窒化ガリウムの大きな単一結晶を製造して窒化ガリウム光子デバイスに相応しい基材を形成する加工技術は、今迄のところ実現していない。 Processing techniques for forming suitable substrate to the gallium nitride photonic devices to produce large single crystals of gallium nitride are not realized at the until now. 半導体デバイスに習熟した人には周知のように、半導体デバイスには基材または基板となる構造物が必要である。 As is well known to those skilled in the semiconductor device, the semiconductor device is required structure as the base material or substrate. 通常は、デバイスの能動領域と同じ材料から形成された基板は、特に結晶の成長や結晶整合性の点で顕著な利点を備えている。 Typically, a substrate formed of the same material as the active region of the device, in particular with significant advantages in terms of growth and crystalline integrity of the crystal. しかし、窒化ガリウムはこうした大きな結晶がいまだ形成されていないので、窒化ガリウム光子デバイスは、異なる、すなわち、 However, since the gallium nitride has such large crystals are not yet formed, gallium nitride photonic devices are different, i.e.,
GaN以外の基板上のエピタキャシャル層に形成しなければならない。 It must be formed Epitakyasharu layer on a substrate other than GaN. しかし、異なる基板を使用すると、主に結晶格子の整合性の面でさらなる問題が発生する。 However, the use of different substrates, mainly additional problems with consistency of the surface of the crystal lattice. 材料はそれぞれ異なる結晶格子パラメータをもっている場合がほとんどである。 Materials are in most cases have different crystal lattice parameters respectively. 結果、窒化ガリウムエピタキャシャル層は異なる基板で成長すると、結晶の不整合(ミスマッチ)が発生し、その結果得られるエピタキャシャル層はこの不整合のため「ひずみ状態」にある。 Result, when grown in different substrates GaN et pita calibration interstitial layer, mismatch (mismatch) occurs in the crystal, Epitakyasharu layer obtained as a result of the "strain state" for this mismatch. こうした不整合とこの不整合によるひずみにより、結晶や接合部の電子特性に影響を及ぼす欠陥が結晶に発生する可能性が生じ、したがって、光子デバイスの性能を低下させたり、妨害さえする場合がある。 The strain such mismatch and by the mismatch affects defects electronic properties of the crystal and the joint occurs may occur in the crystal, thus, or degrade the performance of photonic devices, sometimes even interfere . こうした欠陥により高電力の構造体ではさらに不利益が助長される。 Further disadvantage is a structure of high power by such defects is promoted. 現在まで、窒化ガリウムデバイスの最も一般的な基板、そして窒化ガリウムLEDで利用される唯一の基板は、サファイア、すなわち、酸化アルミニウム(Al To date, the only substrate utilized in the most common substrate and gallium nitride LED, a gallium nitride device, sapphire, i.e., aluminum oxide (Al
2 O 3 )である。 It is a 2 O 3). サファイアは可視および紫外線範囲では透過であるが、残念なことに、導電性ではなく絶縁性であり、窒化ガリウムに対して16%の格子不整合がある。 While sapphire is transparent in the visible and ultraviolet range, unfortunately, it is an insulating rather than conductive, there is a 16% lattice mismatch with gallium nitride.
導電性の基板がないと、「垂直」デバイス(対向面に接点をもつデバイス)を形成できないので、デバイスの製造や使用が複雑になる。 Without a conductive substrate, it can not form a "vertical" device (device with contacts on the opposing surface), manufacturing and use of the device is complicated. 特定の欠点としては、窒化ガリウムがサファイア上に形成されるときに必要になる水平構造(デバイスの同じ側に接点を持つ構造)では水平方向に電流が流れるので、層内の電流密度は実質的に増大する。 Particular disadvantages, since current flows through the horizontal structure (structure having the contact on the same side of the device) in the horizontal direction is required when gallium nitride is formed on sapphire, a current density in the layer is substantially It increases. この電流の水平方向の流れは、すでに歪んだ(すなわち、16%の格子不整合をもつ)GaN−サファイア構造をさらに歪ませて、全体的に接合部やデバイスの劣化を加速させる。 Horizontal flow of the current is already distorted (i.e., with a 16% lattice mismatch) GaN-further distorts the sapphire structure and accelerates the degradation of the overall joint and devices. 窒化ガリウムは、窒化アルミニウム(AlN)に対して約2.4%の格子不整合を有し、炭化ケイ素に対しては3.5 Gallium nitride has about 2.4% lattice mismatch with respect to aluminum nitride (AlN), for the silicon carbide 3.5
%の格子不整合を有する。 Having a% lattice mismatch. 炭化ケイ素は、窒化アルミニウムとはいくぶん不整合性が少なくなる(わずか1%程度)。 Silicon carbide is somewhat inconsistency decreases the aluminum nitride (only about 1%). III族(3族)元素の3元および4元の窒化物(たとえば、InGaNやInGaAlNなど)は、バンドギャップが比較的広いことが知られているので、青色や紫外線半導体レーザが可能となる。 Group III (Group 3) ternary and quaternary nitrides of elements (for example, InGaN or InGaAlN), since it is a relatively wide band gap is known, it is possible to blue or ultraviolet semiconductor laser. しかし、こうした化合物の大半には、窒化ガリウムと同様の問題がある。 However, most of these compounds, there is similar to gallium nitride issues. すなわち、同一の単結晶基板がないことである。 That is, that there is no identical single crystal substrate. すなわち、各化合物は様々な基板上に成長したエピタキャシャル層の形をとらなければならない。 That is, each compound must take the form of Epitakyasharu layer grown on various substrates. したがって、同様に、結晶の欠陥とそれに付随した電子的な問題が発生する可能性がある。 Thus, similarly, defects and electronic problems associated with its crystal may occur. 発明の目的と要約 したがって、本発明の目的は、電磁スペクトルの青色および紫外線部分を発光し、こうしたデバイスに最も有益である垂直方向に構成可能であり、すぐれた発光性と効率を備えており、これまで利用可能であったダイオードより物理的および電子的な寿命が長く、性能が優れている発光ダイオードを提供することにある。 Summary and object of the invention is therefore an object of the present invention emits blue and ultraviolet portions of the electromagnetic spectrum, can be configured in the vertical direction is most beneficial in these devices has a good luminous and efficiency, Previously long physical and electronic longevity than was available diode is to provide a light emitting diode that has excellent performance. 本発明は、可視スペクトルの青色部分を発光し、有利な材料や構造を使用することにより長寿命を特徴とする発光ダイオードによって上記目的を達成する。 The present invention emits in the blue portion of the visible spectrum, to achieve the above object by a light emitting diode, wherein a long life by using the advantageous materials and structures. この発光ダイオードは、導電性炭化ケイ素基板と、炭化ケイ素基板へのオーム接触部と、窒化ガリウム、窒化アルミニウム、窒化インジウム、式A x B 1-x Nの3元III族(3族)窒化物(式中、AとBはIII族元素であり、xは0、1または1と0の間の分数である)、式A x B y C 1-xy Nの4元I The light emitting diode includes a conductive silicon carbide substrate, and the ohmic contact to the silicon carbide substrate, a gallium nitride, aluminum nitride, indium nitride, ternary Group III of the formula A x B 1-x N ( 3 group) nitride (in the formula, a and B are group III elements, x is a fraction between 0, 1 or 1 and 0), 4-way I of the formula a x B y C 1-xy N
II族窒化物(式中、A、B、CはIII族元素であり、x II-nitride (wherein, A, B, C are group III elements, x
とyが0、1または0と1の間の分数であり、(x+ And y is a fraction between 0, 1 or 0 and 1, (x +
y)は1未満である)、および、そのような3元および4元のIII族窒化物と炭化ケイ素の合金からなる群から選択された、該基板上の導電バッファ層と、その能動層(active layer)およびヘテロ構造層が、2元III族窒化物、3元III族窒化物、4元III族窒化物、およびこうした窒化物と炭化ケイ素の合金からなる群から選択される、該バッファ層上のpn接合部を含む2重ヘテロ構造(double heterostructure)とを含む。 y) is less than 1), and, with such ternary and quaternary Group III nitrides and selected from the group consisting of silicon carbide alloy, conductive buffer layer on the substrate, the active layer ( active layer) and the heterostructure layers, binary group III nitrides, ternary group III nitrides, quaternary group III nitrides, and these nitrides to be selected from the group consisting of an alloy of silicon carbide, the buffer layer and a double heterostructure including the pn junction of the upper (double heterostructure). 本発明の上記および他の目的、利点および特色、ならびにそれらが達成される態様が、添付図面に関連して本発明の以下の詳細な説明に基づいてより容易に明らかになるであろう。 Embodiments The above and other objects of the present invention, advantages and features, as well as their is achieved, in conjunction with the accompanying drawings on the basis of the following detailed description of the present invention will become more readily apparent. 添付図面は好ましい模範的な実施例を示すものである。 The accompanying drawings show a preferred exemplary embodiment. 図面の簡単な説明 図1は、本発明による寿命の長い発光ダイオードの第1実施例の概略垂直断面図である。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic vertical cross-sectional view of a first embodiment of a long light-emitting diode lifetime according to the present invention. 図2は、本発明による寿命の長い発光ダイオードの第2実施例の概略垂直断面図である。 Figure 2 is a schematic vertical cross-sectional view of a second embodiment of the long light emitting diode lifetime according to the present invention. 図3は、本発明による寿命の長い発光ダイオードの第3実施例の概略垂直断面図である。 Figure 3 is a schematic vertical cross-sectional view of a third embodiment of the long light emitting diode lifetime according to the present invention. 図4は、本発明による寿命の長い発光ダイオードの第4実施例の概略垂直断面図である。 Figure 4 is a schematic vertical section view of a fourth embodiment of the long lifetime light emitting diode according to the present invention. 図5は、本発明による発光ダイオードに対する従来の発光ダイオードの時間対相対強度を示すグラフである。 Figure 5 is a graph showing the time vs. relative intensity of a conventional light emitting diode for emitting diode according to the present invention. 図6は、本発明による発光ダイオードで使用されているようなSiC基板上のGaN層の2重結晶X線ロッキング曲線を示すグラフである。 Figure 6 is a graph showing the double crystal X-ray rocking curve of the GaN layer on a SiC substrate as used in light-emitting diode according to the present invention. 図7は、本発明による寿命の長い発光ダイオードで利用されているようなSiC基板上のGaN層のエネルギー出力と比較したホトルミネッサンスを示すグラフである。 Figure 7 is a graph showing the photo Ruminessa Nsu compared to energy output of a GaN layer on a SiC substrate, such as are utilized in a long light emitting diode lifetime according to the present invention. 図8は、SiC−AlN−GaNの合金の運動エネルギー対強度を示すグラフである。 Figure 8 is a graph showing the kinetic energy versus intensity of SiC-AlN-GaN alloy. 図9は、本発明によるSiC−AlN−GaN合金の炭化ケイ素の濃度の関数として結晶格子ピークエネルギーを示すグラフである。 Figure 9 is a graph showing the crystal lattice peak energy as a function of the concentration of silicon carbide SiC-AlN-GaN alloy according to the present invention. 好ましい実施例の詳細な説明 本発明は、可視スペクトルの青色部分の光をうみだす発光ダイオードであり、寿命の長さを特徴とする。 DETAILED DESCRIPTION OF THE INVENTION The preferred embodiment is a light emitting diode that produces light in the blue portion of the visible spectrum, characterized by the length of life. こうした発光ダイオードの性能、特徴、およおび定格に習熟する人には周知のとおり、寿命とは、一般に、LEDの出力が当初の出力の約50%に低下までの時間として定義されている。 Performance of such light-emitting diodes, characterized, as is known to those who skilled in Oyobi rating, and lifetime, generally, the output of the LED is defined as the time to drop to about 50% of the original output. 図1は、本発明による発光ダイオードの断面概略図である。 Figure 1 is a cross-sectional schematic view of a light emitting diode according to the present invention. 発光ダイオードは全体的に20で示してある。 LED are generally indicated at 20. ダイオードは、好ましい実施例では、単一結晶炭化ケイ素基板である導電性炭化ケイ素基板21から構成される。 Diodes, in the preferred embodiment, consists of a conductive silicon carbide substrate 21 is a single crystal silicon carbide substrate. 当業者にはよく理解されているが、高品質単一結晶基板は、 Has been well understood by those skilled in the art, high-quality single crystal substrate,
性能や寿命で有利となる構造面での利点をたくさん備えている。 It has a lot of advantage of the structural surface is advantageous in performance and life. 好ましい実施例では、SiC基板は、この係属中の出願と共に譲渡される米国特許第4866005号(再発行特許第34861号)に記載されている。 In a preferred embodiment, SiC substrate is described in commonly assigned by U.S. Patent No. 4866005 (Reissue Patent No. 34,861) with application in this pending. オーム接触部22は、炭化ケイ素基板に形成されており、本明細書に記載された材料の従来のダイオードと本発明のダイオードとの直接的な相違点となる本発明の特徴の1つである。 Ohmic contacts 22 are formed on a silicon carbide substrate, one of the characteristics of the present invention comprising a direct difference between been conventional diode and the diode of the present invention materials described herein . 前述のように、窒化ガリウムの通常の基板は、導電性にはできないので、オーム接触部に接続できない。 As mentioned above, conventional substrates of gallium nitride, can not be the conductive, can not connect to the ohmic contacts. このためサファイアをベースとするデバイスは、LEDや他の多くのデバイスに最も好ましい垂直構造で形成できない。 Therefore based devices sapphire can not be formed in the most preferred vertical structure LED and many other devices. 図1はさらにLED20が基板21上にバッファ層23を備えていることを示している。 Figure 1 further LED20 is indicates that a buffer layer 23 on the substrate 21. バッファ層23は、窒化ガリウム、窒化アルミニウム、窒化インジウム、AとBがIII Buffer layer 23 is gallium nitride, aluminum nitride, indium nitride, A and B III
族元素で、xが0または1あるいは0と1の間の分数である式A x B 1-x Nの3元III族窒化物、A、B、CがIII族元素で、xとyが0、1または0と1の間の分数で、 In group element, x is from 0 or 1 or 0 and ternary III-nitride of the formula A x B 1-x N is a fraction between 1, A, B, C are Group III elements, x and y a fraction of between 0, 1, or 0 and 1,
(x+y)は1未満である式A x B y C 1-xy Nの4元III族窒化物、および、これらの3元および4元III族窒化物と炭化ケイ素の合金からなる群から選択される。 (X + y) is a quaternary III-nitride of the formula A x B y C 1-xy N is less than 1, and is selected from the group consisting of ternary and quaternary Group III nitrides and alloys of silicon carbide that. バッファ層23と基板21は両方とも導電性である。 Buffer layer 23 and the substrate 21 are both conductive. LED20は、さらに括弧24で示された2重ヘテロ構造を備えており、特にバッファ層23上にpn接合部を含む。 LED20 is further provided with a double heterostructure shown in parentheses 24, in particular a pn junction on the buffer layer 23.
「2重ヘテロ構造(double heterostructure)」とは当技術分野での共通用語として使用されており、周知のものである。 The "double heterostructure (double heterostructure)" are used as a common term in the art, it is well known. こうした構造については、Szeの半導体デバイスの物理学、第2版(1981)第708ないし710頁(Sze, For such structures, Physics of semiconductor devices of Sze, 2nd Edition (1981) # 708 to 710 pages (Sze,
Physics of Semiconductor Devices,Second Edition(1 Physics of Semiconductor Devices, Second Edition (1
981)at pages 708 to 710)に様々な点から説明されている。 It is described from various points in 981) at pages 708 to 710). このSzeの説明はレーザに関連するものだが、ホモ構造接合部、単一ヘテロ構造接合部、および2重ヘテロ構造接合部の特質と差異が例示されている。 Description of Sze's related to the laser, but homostructure joint single heterostructure junctions, and nature and difference of the double heterostructure junction is illustrated. 図1に示す実施例では、2重ヘテロ構造24はさらに能動層25を含み、この能動層25に隣接して上方26と下方27 In the embodiment shown in FIG. 1, a double heterostructure 24 further comprises an active layer 25, lower and upper 26 and adjacent to the active layer 25 27
のヘテロ構造層が配置されている。 Heterostructure layers are disposed of. ヘテロ構造層26と27 Heterostructure layers 26 and 27
は、窒化ガリウム、窒化アルミニウム、窒化インジウム、AとBがIII族の元素でxが0、1または0と1の間の分数である3元III族窒化物、こうした3元III族窒化物と炭化ケイ素の合金(たとえば、(SiC) x A y B Is gallium nitride, aluminum nitride, indium nitride, x A and B are an element of the group III is 0, 1 or 0 and ternary III-nitride is a fraction between 1, such ternary Group III nitrides and alloy of silicon carbide (e.g., (SiC) x a y B
1-y N)から選択された構成物から形成される。 Formed from 1-y N) selected composition from. 言い換えると、最下ヘテロ構造層はバッファ層の上部にあることになる。 In other words, the lowest heterostructure layer will be on top of the buffer layer. 図1では、下方ヘテロ構造27がバッファ層23の上部にあるように示してある。 In Figure 1, the lower heterostructure 27 is shown as the top of the buffer layer 23. オーム接触部30を上方ヘテロ構造層26に形成して、本発明の有益な垂直構造を完成できる。 Ohmic contacts 30 are formed on the upper heterostructure layer 26, it can complete a beneficial vertical structure of the present invention. オーム接触部は、 Ohmic contact portion,
アルミニウム(Al)、金(Au)、プラチナ(Pt)、またはニッケル(Ni)などの金属から形成されるが、当業者には理解されているように他の材料から形成することもできる。 Aluminum (Al), gold (Au), is formed from a metal such as platinum (Pt), or nickel (Ni), to those skilled in the art can also be formed from other materials, as would be understood. 本明細書に例示された実施例ではそれぞれ、2重ヘテロ構造が、窒化ガリウム、窒化アルミニウム、窒化インジウム、AとBがIII族元素であり、xが0、1、または0と1の間の分数である式A x B 1-x Nの3元III族窒化物、そのような3元III族窒化物と炭化ケイ素の合金からなる群から選択された能動層を含む。 Each In the illustrated embodiment herein, the double heterostructure, gallium nitride, aluminum nitride, and indium nitride, A and B III group element, x is from 0, 1, or 0 and between 1, ternary III-nitride of the formula a x B 1-x N is a fraction, containing such a ternary III-nitride and an active layer selected from the group consisting of silicon carbide alloy. 図1に示すヘテロ構造24では、能動層25が、窒化インジウムガリウムを含むのが好ましく、上方および下方ヘテロ構造層26と27は窒化アルミニウムガリウムを含むのが好ましい。 In the heterostructure 24 illustrated in Figure 1, the active layer 25, preferably includes an indium gallium nitride, the upper and lower heterostructure layers 26 and 27 preferably comprises aluminum gallium nitride. 具体的には、窒化アルミニウムガリウムヘテロ構造層26と27は、xが0、1または0と1の間の分数である式Al x Ga 1-x Nをもつのが好ましい。 Specifically, the aluminum gallium nitride heterostructure layers 26 and 27, x is from preferably having the formula Al x Ga 1-x N is a fraction between 0, 1 or 0 and 1. 能動層25が窒化インジウムガリウムを含む場合、その構成はIn z Ga If the active layer 25 comprises indium gallium nitride, the configuration is an In z Ga
1-z Nであると理解される、ただしzは0と1の間の分数である。 Is understood to be a 1-z N, provided that z is a fraction between 0 and 1. 当業者には周知のように、3元III族窒化物の構成は、屈折率とバンドギャップに影響を及ぼす。 As is well known to those skilled in the art, the configuration of the 3-way III nitride affects the refractive index and band gap. 一般的には、アルミニウムの比率が高くなれば、バンドギャップが増加し、屈折率が下がる。 In general, the higher the proportion of aluminum increases the bandgap, refractive index decreases. したがって、好ましい実施例では、ヘテロ構造層26と27が能動層25より大きいバンドギャップをもち、能動層25より小さい屈折率をもつために、層26と27は能動層25よりも高い原子またはモルパーセントのアルミニウムを含む。 Thus, in a preferred embodiment, the heterostructure layers 26 and 27 have a band gap greater than the active layer 25, in order to have an active layer 25 is smaller than the refractive index, higher atomic or mole than the layer 26 and 27 active layer 25 including the percentage of aluminum. ヘテロ構造層26と27のバンドギャップが大きくなると、能動層25を介して電子が注入されるので、デバイスの効率が高まる。 When the bandgap of the heterostructure layers 26 and 27 increases, the electrons through the active layer 25 is injected, it increases the efficiency of the device. 同様に、 Similarly,
ヘテロ構造層26と27の屈折率が低くなると、能動層25から光が光基部に発するようになるのが一層好ましい。 If the refractive index of the heterostructure layers 26 and 27 is low, more preferably the light from the active layer 25 is made to emit the light base. pn接合部を形成するために、上方および下方ヘテロ構造層26と27は互いに反対の導電型であり、能動層25は2 To form the pn junction, the upper and lower heterostructure layers 26 and 27 are opposite conductivity type to each other, the active layer 25 is 2
つのヘテロ構造層の1つと同じ導電型である。 One of which is the same as one conductivity type heterostructure layers. たとえば、好ましい実施例では、上方ヘテロ構造層26はp型で、能動層25はn型で、下方ヘテロ構造層27はn型で、 For example, in a preferred embodiment, in the upper heterostructure layer 26 it is p-type, the active layer 25 is n-type, the lower heterostructure layer 27 is n-type,
バッファおよび炭化ケイ素基板はどちらもn型である。 Buffer and the silicon carbide substrate is also n-type either.
したがってpn接合が能動層25と上方ヘテロ構造層26の間に形成されている。 Therefore pn junction is formed between the active layer 25 and the upper heterostructure layer 26. 図2は、広く32で示された本発明のやや異なる実施例を示す。 Figure 2 shows a slightly different embodiment of the present invention shown in a wide 32. 前述の実施例におけるように、LEDは炭化ケイ素基板33とそのオーム接触部34を含む。 As in the previous embodiment, LED comprises a silicon carbide substrate 33 the ohmic contacts 34. 2重ヘテロ構造は35の括弧により示されている。 Double heterostructure is shown by bracket 35. 図2の実施例では、バッファ層は36で示されており、窒化ガリウムを含んでいる。 In the embodiment of FIG. 2, the buffer layer is shown at 36, includes a gallium nitride. 構造全体はさらに、窒化ガリウムバッファ層36と2 Entire structure further includes a gallium nitride buffer layer 36 2
重ヘテロ構造35の間のバッファ層上に窒化ガリウムエピタキャシャル層37を含む。 On the buffer layer between the heavy heterostructure 35 comprising a gallium nitride-et pita calibration Shall layer 37. 2重ヘテロ構造35に対するオーム接触部40により有益な垂直構造デバイスが完成されることとなる。 Useful vertical structure device is to be completed by the ohmic contacts 40 to the double heterostructure 35. 特定の性能のパラメータが以下に説明されるが、本明細書に説明され上記の図面や残りの図面に示されたダイオードは、室温において50ミリアンペアの順方向バイアス電流で10,000時間より長い時間動作すること、および室温において30ミリアンペアの順方向バイアス電流で1 While the parameters of a particular performance is described below, are described herein above figures and the rest of the indicated diode in the drawings is operated longer than 10,000 hours at 50 mA forward bias current at room temperature it, and 1 in the forward bias current of 30 mA at room temperature
0,000時間より長い時間動作することが期待されている。 It is expected to operate longer than 0,000 hours. こうしたデバイスに習熟する人は理解できるであろうが、こうしたスペックは現在あるデバイスのものよりかなり高い。 People familiar with these devices will be understood, but these specs are considerably higher than those of a current device. 図3は、42で全体的に示している本発明の第3実施例を示す。 Figure 3 shows a third embodiment of the present invention as generally indicated at 42. 前述の実施例におけるように、ダイオード42は炭化ケイ素基板43と基板43へのオーム接触部44を含む。 As in the previous embodiment, the diode 42 comprises ohmic contacts 44 to the silicon carbide substrate 43 and the substrate 43.
2重ヘテロ構造は再度括弧45で示され、上方のオーム接触部46は2重ヘテロ構造45につくられる。 Double heterostructure is shown in parentheses 45 again, the upper ohmic contact 46 is made in a double heterostructure 45. しかし、本実施例では、バッファ層はそれぞれ第1および第2層47と However, in this embodiment, the buffer layer and the first and second layers 47 each
48を備えている。 It is equipped with a 48. 第1層47は基板43上に置かれ、炭化ケイ素窒化ガリウムアルミニウム(SiC) x A y Ga 1-y Nの傾斜(勾配)組成物で形成されている。 The first layer 47 is placed on the substrate 43, it is formed as inclined (gradient) composition of silicon carbide nitride gallium aluminum (SiC) x A y Ga 1 -y N. この傾斜組成物では、基板43に隣接する部分のほぼ全体が炭化ケイ素であり、基板から最も離れた部分のほぼ全体が窒化アルミニウムガリウムであり、その間の各部分における優勢な含有物が炭化ケイ素から窒化アルミニウムガリウムに連続的に組成物に傾斜(勾配)している。 This gradient composition, substantially the entire portion adjacent to the substrate 43 is a silicon carbide, almost all of the most distant portion from the substrate is aluminum gallium nitride, the dominant inclusions silicon carbide in each portion therebetween aluminum gallium nitride inclined continuously compositions are (gradient). 第2層48は第1層47上に置かれて、窒化アルミニウムガリウムの他の傾斜組成物から形成される。 The second layer 48 is placed on the first layer 47 is formed from the other of the inclined composition of the aluminum gallium nitride. 好ましい実施例では、傾斜組成を有する第2層48の組成は、層47と層48が接触する点での第1バッファ層47の組成と同じ組成から、2重ヘテロ構造45の最下層の組成と同じ組成に傾斜(勾配)している。 In a preferred embodiment, the composition of the second layer 48 having a graded composition, the same composition as the first buffer layer 47 at the point where the layer 47 and the layer 48 are in contact, the bottom layer of the composition of the double heterostructure 45 I am inclined (gradient) in the same composition as the. 図3に関して、バッファ層は、炭化ケイ素とIII族窒化物の少なくとも1つの傾斜組成層をもつものとして説明することもできる。 With respect to Figure 3, the buffer layer may also be described as having at least one gradient composition layer of silicon carbide and Group III nitrides. この場合、傾斜組成層は、基板との接触面で炭化ケイ素であり、その後連続的に2重ヘテロ構造との接触面における2重ヘテロ構造の最下層の組成と同じ組成へと傾斜(勾配)している。 In this case, the gradient composition layer is silicon carbide at the interface with the substrate, then continuously inclined to the same composition as the lowermost layer of the composition of the double heterostructure at the interface with the double heterostructure (gradient) doing. 本発明はさらに、2重ヘテロ構造中の能動層の上に歪み最小化接触層(図示せず)を含み、この接触層の格子定数は各バッファ層とほぼ同じである。 The present invention further includes a distortion minimizing contact layer above the active layer in the double heterostructure (not shown), the lattice constant of the contact layer is substantially the same as each buffer layer. このような歪み最小化接触層は、本願と同時に出願されたEdmondおよび Such distortion minimizing contact layer, Edmond and filed concurrently with the present application
Bulmanによる「III族能動層を備えた低歪み構造(Low S According to Bulman "low distortion structure with a Group III active layer (Low S
train Laser Structures with Group III Nitride Acti train Laser Structures with Group III Nitride Acti
ve Layers)」に詳述されている。 Are described in detail in ve Layers) ". この出願は本出願と共に譲り受けられ、その全体が引用により本明細書の一部を構成するものである。 This application is assignee with the present application, in which in its entirety and made a part hereof by reference. 要約すると、こうした多層化結晶デバイス全体の歪みは、格子定数の差に基づく個々の歪みの平均の関数である。 In summary, the overall distortion such multilayered crystal device is a function of the average of the individual distortion based on the difference in lattice constant. したがって、バッファとほぼ同じ格子定数をもつ層を追加することで、歪みの重み付け平均はより一貫性をもつことになるので歪み全体が低下する。 Therefore, by adding a layer having substantially the same lattice constant as the buffer, the whole distortion is reduced because the weighted average of distortion will have a more consistent. 細部を追加すると、実施例のうち任意のものの炭化ケイ素基板の上面にアルミニウムをドープすると、結晶の成長が高まる。 Adding the detail, when doped with aluminum on the upper surface of the silicon carbide substrate of any of the embodiments, the growth of the crystal is increased. すでに述べたように、各実施例の基板とバッファ層は導電性があり、これは、適切な不純物を各層にドープすることで通常実施される。 As already mentioned, the substrate and the buffer layer of each example has conductivity, which is usually carried out by doping the appropriate impurities into the layers. 炭化ケイ素基板は、3C、4H、6Hおよび15Rを特に含む炭化ケイ素ポリタイプから選択できる。 The silicon carbide substrate can be selected 3C, 4H, silicon carbide polytypes, particularly including 6H and 15R. 図4は、50で全体的に示された本発明の他の実施例を示す。 Figure 4 shows another embodiment of the present invention, shown generally at 50. LED50は、括弧52に示されたバッファ層が形成されている炭化ケイ素基板51上に形成されている。 LED50 is formed on the silicon carbide substrate 51 to the buffer layer shown in brackets 52 are formed. バッファ層は、窒化ガリウム、窒化アルミニウム、窒化インジウム、AとBがIII族元素でありxが0、1または0と1の間の分数である式A x B 1-x Nの3元III族窒化物、ならびにこうした3元III族窒化物と炭化ケイ素の合金から選択される。 The buffer layer of gallium nitride, aluminum nitride, ternary Group III of the formula A x B 1-x N is a fraction between indium nitride, A and B are Group III element x is 0, 1 or 0 and 1 nitride, and is selected from such ternary group III nitrides and alloys of silicon carbide. 第1のIII族窒化物層53はバッファ52の上に形成され、その導電型は第1型である。 The first III-nitride layer 53 is formed on the buffer 52, the conductivity type is the first type. 第2のIII族窒化物層54は第1のIII族窒化物層53上に形成され、その導電型は第2型であり第1と第2のIII族窒化物層53 The second group III nitride layer 54 is formed on the first III-nitride layer 53, the conductivity type and the first and second type the second III-nitride layer 53
と54はpn接合デバイスを形成する。 When 54 forms a pn junction device. オーム接触部55は第2のIII族窒化物層54に形成されており、オーム接触部5 Ohmic contacts 55 are formed on the second III-nitride layer 54, ohmic contacts 5
6は炭化ケイ素基板上に形成され、pn接合デバイスとの第1および第2オーム接触部に供給された電流によりpn 6 is formed on a silicon carbide substrate, pn by the supplied current to the first and second ohmic contacts with the pn junction device
接合デバイスから高強度光出力が得られる。 High intensity light output from the junction device is obtained. 図4の点線で示してあるように、バッファ52が基板51 As is shown by the dotted line in FIG. 4, the buffer 52 is the substrate 51
上の第1層57を含むのが好ましく、炭化ケイ素窒化アルミニウムガリウムの傾斜組成体から形成される。 Preferably comprises a first layer 57 of the upper is formed from a graded composition of silicon carbide aluminum gallium nitride. この傾斜組成体では、基板に隣接する部分のほぼ全体が窒化ケイ素であり、基板から最も遠い部分のほぼ全体が窒化アルミニウムガリウムであり、上記の両部分の間の各部では優勢な含有物が炭化ケイ素から窒化アルミニウムガリウムへと連続的に傾斜(勾配)していく。 This gradient composition material, substantially the entire portion adjacent to the substrate is silicon nitride, substantially the entire portion which is furthest from the substrate is aluminum gallium nitride, the dominant inclusions in each section between the two parts of the above carbonized continuously inclined from the silicon to nitride aluminum gallium going to (gradient). 第2バッファ層58は第1層57上に置かれており、窒化アルミニウムガリウムの傾斜組成物から形成されている。 The second buffer layer 58 are placed on the first layer 57 is formed from a tilted composition of the aluminum gallium nitride. 前述の実施例に関して記載されているように、傾斜組成の第2層58の組成は、層58と57が接合する点で第1 As described for the previous examples, the composition of the second layer 58 of graded composition, the at the point of joining the layers 58 and 57 1
バッファ層58の組成と同じ組成から、ダイオードの下方のIII族窒化物層53の組成と同じ組成にまで連続的に組成的に傾斜している。 From the same composition as the buffer layer 58, it is continuously compositionally graded to the same composition as the III-nitride layer 53 below the diode. 図4に示すダイオード50では、窒化物層53と54は、窒化ガリウム、窒化アルミニウム、窒化インジウム、AとBはIII族元素で、xは0、1または0と1の間の分数である式A x B 1-x Nの3元III族窒化物、および、そのような3元III族窒化物と炭化ケイ素の合金からなる群から選択される。 In the diode 50 illustrated in FIG. 4, the nitride layer 53 and 54, gallium nitride, aluminum nitride, indium nitride, A and B are Group III elements, x is a fraction between 0, 1 or 0 and 1 formula ternary group III nitrides a x B 1-x N, and are selected from the group as such ternary group III nitride silicon carbide alloy. このことから、本実施例や前述の実施例では、接合部がホモ構造、単一ヘテロ構造、または2重ヘテロ構造となり得ることが分かる。 Thus, in the present embodiment and the aforementioned embodiment, the joint is a homo structure, it can be seen that can be a single heterostructure or a double heterostructure. バッファ52は、代わりに、炭化ケイ素基板51上に配置された炭化ケイ素から形成された下方中間層57と、下方中間層57上に配置された窒化物の合金から形成された上方中間層58とから構成することもできる。 Buffer 52, instead, a silicon carbide substrate 51 beneath the intermediate layer 57 formed from the arrangement silicon carbide on an upper intermediate layer 58 formed of an alloy of placed nitride on the lower intermediate layer 57 It can also be configured from. バッファは、炭化ケイ素とIII族窒化物の少なくとも1つの傾斜組成層を備えることも可能である。 Buffer may also be provided with at least one gradient composition layer of silicon carbide and Group III nitrides. この傾斜組成層は、基板51との接触面では炭化ケイ素であり、接合構造との接触面では能動デバイスの最も低い層の組成と同じ組成である。 The gradient composition layer is in contact surface with the substrate 51 is silicon carbide, the same composition as the lowest layer of the active device is a contact surface with the junction structure. 前述の実施例のように、発光ダイオードは、頂面にアルミニウムをドープした炭化ケイ素基板を備えてもよい。 As in the previous embodiment, the light emitting diode may comprise a silicon carbide substrate doped with aluminum on the top surface. 他の図を参照して詳述するように、本発明による水晶の特徴は、任意の前述のデバイスが示す特徴より全体的に優れている。 As will be described in detail with reference to other figures, features of the crystal according to the present invention are generally superior features shown any of the aforementioned devices. したがって、本発明によるSiC基板上に成長したGaNの2重結晶X線ロッキング曲線では、半値幅エネルギーは約85アーク秒になる(図6参照)。 Thus, a double crystal X-ray rocking curve of the GaN grown on SiC substrates according to the present invention, FWHM is about 85 arc-seconds (see FIG. 6). 上記のように、LEDの寿命は、LEDの初期発光出力の50 As described above, the life of the LED is 50 LED initial light output
%ほどの発光出力になるまでのLED劣化時間により定義される。 It is defined by the LED degradation time until light output as%. 上記に詳述されたように、図5は、本発明によるLEDとサファイア上のGaNから形成された従来のLEDを比較した時間対相対強度を示すグラフである。 As detailed above, FIG. 5 is a graph showing an LED and time versus relative intensity comparing conventional LED formed of GaN on sapphire according to the present invention. 図5では、本発明によるLEDの寿命が飛躍的に改善されていることがよく示されている。 In Figure 5, the life of the LED is shown often are remarkably improved according to the present invention. デバイスは50ミリアンペアでバーンインした。 The device was burn-in at 50 milliamps. 図5に示すように、本発明によるLEDに電流を供給する期間を10,000またはそれ以上の時間にしても、LEDは強度の高い光を発光し続ける。 As shown in FIG. 5, even if the period for supplying current to the LED according to the present invention is 10,000 or more times, LED continues to emit light with high intensity light. この発光出力は、初期強度の約90%より高い強度を維持するとともに、1,000時間ほどのバーンインでサファイア上GaN(GaNオン・サファイア)のLEDが示す初期光強度出力の約55%と比べると、はるかに高い強度を維持している。 The emission output, while maintaining high strength than about 90% of the initial strength, as compared with about 55% of the initial light intensity output indicated by the LED sapphire on GaN (GaN on sapphire) in burn of about 1,000 hours, It has maintained a much higher intensity. 図5において、 In FIG. 5,
点線は、SiC上のSiCの確立した性能に基づいてSiC上のG Dotted line, G on SiC based on established performance of SiC on SiC
aNの性能を予測したものである。 It is those who predict the performance of aN. 窒化物合金はしばしば、従来の技術では炭化ケイ素上で2次元方向に成長させるのが難しい。 Nitride alloys are often difficult in the prior art growing in a two-dimensional direction on the silicon carbide. これは主に、2 This is mainly, 2
種類の物質の間の表面エネルギーの差によるものである。 It is due to difference in surface energy between the types of substances. 具体的には、比較的高い温度(すなわち、約1,000 Specifically, the relatively high temperatures (i.e., about 1,000
℃より高い温度)での従来の成長技術は、炭化ケイ素基板の頂面上で3次元に成長してしまうことが多い。 Conventional growth techniques at ℃ higher temperatures) often result in growth in three dimensions on the top surface of the silicon carbide substrate. この3次元成長は、基板の頂面上に半導体材料の個々の島のような部分を形成してしまい、表面被覆が貧弱なものとなる。 The three-dimensional growth, will form part, such as the individual islands of semiconductor material on the top surface of the substrate, the surface coating becomes poor. こうした島嶼部の成長は3次元方向のままであり、その結果、成長させたままでは窒化物の合金の表面が非常に荒くなる。 Growth of these islands remains three-dimensional directions, so that the surface of the alloy nitride can be very rough remains were grown. しかし、比較的低い温度、すなわち、1,000℃より低い温度では、炭化ケイ素基板上で、 However, a relatively low temperature, i.e., at temperatures lower than 1,000 ° C., in a silicon carbide substrate,
窒化物合金の小さな島嶼部を高密度で成長させることができる。 The small islands of nitride alloys can be grown at a high density. 従来の成長温度での極めて短時間の成長の後、 After a very short time of growth in the conventional growth temperature,
こうした島嶼部は、合体し、基板の頂面全体の大半を覆うようになる。 These islands are coalesced, so to cover the majority of the entire top surface of the substrate. この表面上の層成長は、窒化物合金上の窒化物合金の成長であり、主に2次元方向の横方向成長である。 Layer growth on this surface is the growth of nitride alloys on nitride alloys are predominantly lateral growth of a two-dimensional direction. この結果、被膜の成長表面が鏡面状となり、窒化物合金は電気的、構造的に高品質となる。 As a result, the growth surface of the film becomes a mirror-like, nitride alloy becomes electrically, structurally high quality. III族窒化物のpn接合デバイスは、化学蒸着法(CVD)や分子線エピタキシー(MBE)などの技術を利用して窒化ガリウム層上に形成される。 pn junction device of the group III nitride is formed on the gallium nitride layer using techniques such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). これについては、同様に譲り受けられた米国特許第5210051号を参照のこと。 For this, see US Patent No. 5210051, which is inherited as well. 図6ないし図9は、本発明による寿命が長いLEDの様々な他の性能や構成上の特徴を示す。 6 to 9, the lifetime of the present invention exhibit various other performance and structural feature of a long LED. 具体的には、図6 Specifically, FIG. 6
は、本発明によるSiC基板上のGaN層の2重結晶X線ロッキング曲線、すなわち、角度秒当りのカウント数を示す。 Is a double crystal X-ray rocking curve of the GaN layer on the SiC substrate according to the present invention, that is, the number of counts per arc second. 結晶材料により分散されたX線の光線の角位置、強度およびピーク幅の分析により、材料の結晶構造上の情報が得られる。 Angular position of the beam of X-rays dispersed by crystal material, by analysis of the intensity and peak width, information on the crystal structure of the material is obtained. この例では、本発明によるLEDの基礎GaN In this example, LED basal GaN according to the invention
の半値幅エネルギー(FWHM)は、約85アーク秒であることが分かっている。 FWHM (FWHM) of has been found to be about 85 arcseconds. X線ロッキング曲線は、SiC基板上のGaNの結晶品質が比較的高く、それにより形成されたL X-ray rocking curve, GaN crystal quality is relatively high on the SiC substrate, thereby being formed L
EDは光の強度が高くなることや、期待されたように寿命が長くなることを示している。 ED shows that it and the intensity of light is high, the service life as expected longer. 図7は、本発明による寿命の長いLEDのSiC上の基部Ga 7, base portion Ga of the SiC long LED life according to the invention
Nのエネルギー出力に対するルミネセンスを示すグラフである。 Is a graph showing the luminescence to the energy output of the N. このグラフは、325nmの励起と295Kの温度でのホトルミネセンスの測定結果を示している。 This graph shows the photoluminescence measurements at temperatures excitation and 295K of 325 nm. 均一の発光が表面上で観察されている。 Uniform emission is observed on the surface. 室温のホトルミネセンスは、発光は、サファイア上に成長した各層では2.2eVでの欠陥ピークで高まるが、3.41eVでの帯域端励起子により高まることを示しており、これは本発明によるSiC基板上のGaNの高品質を示すことになる。 The photoluminescence at room temperature, luminescence is increased in defect peak at 2.2eV in each layer grown on sapphire, shows that increasing the band-edge excitons 3.41 eV, which is a SiC substrate according to the present invention It will show the high quality of GaN of the above. 図8は、角電子スペクトルを示し、本発明による合金層はSiC−AlN−GaN合金の5元素であるSi、C、Al、N Figure 8 shows the angular electron spectrum, the alloy layer according to the invention are five elements of SiC-AlN-GaN alloy Si, C, Al, N
およびGaを含んでいる。 And contains Ga. 陰極ルミネセンスは、約80ケルビン(K)でSiC−AlN−GaN合金層上で測定され、紫外線と紫色の領域のピークをいくつか示している。 Cathodoluminescence is measured on SiC-AlN-GaN alloy layers at about 80 Kelvin (K), it shows several peaks of ultraviolet and violet region. 図9は、本発明による上記の層の炭化ケイ素濃度の関数としてその結果発生するエッジピークエネルギーを示すグラフである。 Figure 9 is a graph showing the results generated edge peak energy as a function of silicon carbide concentration of the layers according to the present invention. 図示のように、エッジピークの光子エネルギーは、合金層のSiC濃度により左右される。 As shown, the photon energy of the edge peak depends on the SiC concentration in the alloy layer. 約10 About ten
モル%のSiC濃度をもつ層では、端部ピークは、約300nm The layer having a SiC concentration mol%, end peaks of about 300nm
の波長で検出されている。 It has been detected in wavelength. 上記の図面と明細書において、本発明の代表的な好ましい実施例が開示されてきた。 In the drawings and specification, typical preferred embodiments of the present invention have been disclosed. 特定の用語が使用されているが、こうした用語は一般的および記述的な意味でのみ使用され、制限のためではない。 Although specific terms are employed, these terms are used only in a generic and descriptive sense only and not by way of limitation. 本発明は、かなり詳細に様々な好ましい実施例を参照しながら説明されてきた。 The present invention has been described with reference to various preferred embodiments in considerable detail. しかし、当然のことながら、上記の明細書に記載され請求の範囲で限定されるように本発明の精神と範囲内で様々な修正と変更が可能であることは明らかである。 However, of course, it will be apparent that various modifications and changes within the spirit and scope of the invention as limited by the claims set forth in the foregoing specification.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 バルマン,ギャリー・イー アメリカ合衆国、 27511 ノース・キ ャロライナ、キャリー、ラルフ・ドライ ヴ 404 (72)発明者 コン,フア−シュアン アメリカ合衆国、 27606 ノース・キ ャロライナ、ローリー、ベクスヒル・ド ライヴ 10840 (72)発明者 ドミトリエフ,ウラディーミル アメリカ合衆国、 27526 ノース・キ ャロライナ、フーキー−ヴァリナ、ラフ ァイエット・ドライヴ 5425 (56)参考文献 特開 平5−110139(JP,A) 特開 平6−21511(JP,A) 特開 平5−243614(JP,A) 特開 平5−41560(JP,A) 特開 平6−97598(JP,A) 特開 平3−265122(JP,A) 米国特許5247533(US,A) 米国 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Balmain, Gary Yee United States, 27511 North key Yaroraina, carry, Ralph dry Vu 404 (72) inventor Con, Hua - Shuang United States, 27606 North key Yaroraina, Raleigh, Bexhill de live 10840 (72) inventor Dmitriev, Vladimir United States, 27526 North key Yaroraina, Fuquay - Varina, rough Aietto-DRIVE 5425 (56) references Patent Rights 5-110139 (JP, A) JP Rights 6-21511 (JP, A) Patent Rights 5-243614 (JP, A) Patent Rights 5-41560 (JP, A) Patent Rights 6-97598 (JP, A) Patent Rights 3-265122 (JP , A) United States Patent 5247533 (US, A) the United States 特許5273933(US,A) (58)調査した分野(Int.Cl. 7 ,DB名) H01L 33/00 Patent 5273933 (US, A) (58 ) investigated the field (Int.Cl. 7, DB name) H01L 33/00

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】可視スペクトルの青色部分で発光し寿命が長い特徴をもつ発光ダイオードであって、 上面と下面を有する導電性炭化ケイ素基板(21)であって、この基板の上面がアルミニウムでドープされている導電性炭化ケイ素基板と、 前記炭化ケイ素基板へのオーム接触部(22)と、 前記基板(21)のドープされた上面上の導電性バッファ層(23)であって、窒化ガリウム、窒化アルミニウム、 (57) Patent Claims 1. A light emitting in the blue portion of the visible spectrum and the life is a light emitting diode with a long feature, a conductive silicon carbide substrate having an upper surface and a lower surface (21) a conductive silicon carbide substrate upper surface of the substrate is doped with aluminum, the ohmic contact to the silicon carbide substrate (22), said substrate (21) conductive buffer layer on the doped upper surface of the ( a 23), gallium nitride, aluminum nitride,
    窒化インジウム、式A x B 1-x Nの3元III族窒化物(式中、 Indium nitride, ternary Group III nitrides of the formula A x B 1-x N (wherein,
    AとBがIII族元素で、xが0、1または0と1の間の分数である)、式A x B y C 1-xy Nの4元III族窒化物(式中、A、B、CがIII族元素で、xとyが0、1または0と1の間の分数であり、(x+y)が1未満である)、および、3元および4元III族窒化物と炭化ケイ素の合金から成る群から選択される導電性バッファ層と、 前記バッファ層上のpn接合2重ヘテロ構造(24)と、 前記2重ヘテロ構造上の接触層であって、前記バッファ層とほぼ同じ格子定数を備え、デバイス層の全体の歪みを低下させる接触層とを含んでなる発光ダイオードであって、 前記2重ヘテロ構造が、第1型の導電型である下方ヘテロ構造層(27)と、第2型の導電型である上方ヘテロ構造層(26)と、前記上方および下方ヘテロ構造層の間の能動層(25)とを含み、 前 A and B are Group III elements, x is from a fraction between 0, 1 or 0 and 1), 4-way III nitride of the formula A x B y C 1-xy N ( wherein, A, B , C is a group III element, a fraction of between x and y is 0, 1 or 0 and 1, (x + y) is less than 1), and, ternary and quaternary III-nitride and silicon carbide a conductive buffer layer is selected from the group consisting of an alloy, a pn junction double heterostructure on the buffer layer (24), a contact layer on the double heterostructure, substantially the same as said buffer layer comprising a lattice constant, a light-emitting diode comprising a contact layer for reducing the distortion of the entire device layer, said double heterostructure, the lower heterostructure layer in the conductivity type of the first type (27) includes upper heterostructure layer (26) in the conductivity type of the second type, an active layer between the upper and lower heterostructure layer (25), before 下方ヘテロ構造層(27)が、前記バッファ層(23) Lower heterostructure layers (27), said buffer layer (23)
    と前記能動層(25)との間に配置され、かつ、Bがアルミニウムを除くIII族元素で、xが1または0と1の間の分数である式Al x B 1-x Nの3元III族窒化物、および、 And the disposed between the active layer (25), and, B is a group III element other than aluminum, x is from formula Al x B 1-x N ternary is a fraction between 1 and 0 and 1 III-nitride, and,
    前記3元III族窒化物と炭化ケイ素との合金から成る群から選択され、 前記能動層(25)が、前記下方ヘテロ構造層(27)と前記上方ヘテロ構造層(26)との間に配置され、かつ、窒素ガリウム、窒化アルミニウム、窒化インジウム、AとBがIII族元素で、xが0、1または0と1の間の分数である式A x B 1-x Nを有する3元III族窒化物、および、このような3元III族窒化物と炭化ケイ素との合金から成る群から選択され、 前記上方ヘテロ構造層(26)が、前記能動層(25)と前記接触層との間に配置され、かつ、Bがアルミニウムを除くIII族元素で、xが1または0と1の間の分数である式Al x B 1-x Nの3元III族窒化物、および、前記3元III The ternary Group III nitrides and is selected from the group consisting of an alloy of silicon carbide, said active layer (25), disposed between said lower heterostructure layer (27) and the upper heterostructure layer (26) it is, and gallium nitride, aluminum nitride, indium nitride, a and B are group III elements, a ternary III where x has the formula a x B 1-x N is a fraction between 0 and 1 or 0 and 1 nitride, and such selected ternary group III nitride from the group consisting of an alloy of silicon carbide, the upper heterostructure layer (26), said active layer (25) and said contact layer disposed between and, B is a group III element other than aluminum, x is from 1 or 0 and ternary III-nitride of the formula Al x B 1-x N is a fraction between 1 and the 3 based on III
    族窒化物と炭化ケイ素との合金から成る群から選択され、 前記上方及び下方ヘテロ構造層(26、27)のバンドギャップが前記能動層(25)のバンドキャップより大きなるように前記上方及び下方ヘテロ構造層(26、27)のアルミニウムの比率が実質的に高い発光ダイオード。 Is selected from the group consisting of an alloy of Nitride and carbide, said upper and lower than the band cap Okinaru so bandgap said active layer of said upper and lower heterostructure layers (26, 27) (25) the ratio of aluminum in the heterostructure layers (26, 27) is substantially higher light-emitting diode. 【請求項2】前記バッファ層(23)が窒化ガリウムを含み、前記窒化ガリウムバッファ層(23)と前記pn接合2 Wherein wherein said buffer layer (23) is gallium nitride, wherein the nitride gallium buffer layer (23) pn junction 2
    重ヘテロ構造(24)との間であって前記バッファ層(2 The buffer layer be between heavy heterostructure (24) (2
    3)上に窒化ガリウムエピタキャシャル層をさらに含む請求項1に記載の発光ダイオード。 3) on the light emitting diode of claim 1, further comprising a gallium nitride-et pita calibration Shall layer. 【請求項3】前記接触層へのオーム接触部(30)をさらに含み、垂直方向のデバイス構造が形成されるように前記基板への前記オーム接触部が前記基板の底部にある請求項1に記載の発光ダイオード。 Wherein further comprising ohmic contacts (30) to the contact layer, in claim 1 wherein the ohmic contact to the substrate as a vertical device structure is formed on the bottom of the substrate the light-emitting diode according. 【請求項4】前記能動層が、zが0と1の間の分数である構成物In z Ga 1-z Nの組成を有する請求項1に記載の発光ダイオード。 Wherein said active layer is a light emitting diode according to claim 1 having a composition of z component comprises a fraction between 0 and 1 an In z Ga 1-z N. 【請求項5】前記炭化ケイ素基板が、3C、4H、6Hと15R Wherein said silicon carbide substrate, 3C, 4H, 6H and 15R
    から成る群から選択されたポリタイプを含む請求項1に記載の発光ダイオード。 The light emitting diode of claim 1 comprising a polytype selected from the group consisting of. 【請求項6】前記導電性バッファ層が、前記炭化ケイ素基板上に配置された炭化ケイ素から形成された下方中間層と、前記下方中間層上に配置された窒化物合金から形成された上方中間層とを含む請求項1に記載の発光ダイオード。 Wherein said conductive buffer layer, wherein the silicon carbide substrate to form from the arrangement silicon carbide was lower intermediate layer, upper intermediate formed from placed nitride alloy the lower intermediate layer the light emitting diode of claim 1 comprising a layer. 【請求項7】前記バッファ層が、 炭化ケイ素と窒化アルミニウムガリウムの傾斜組成を有し、前記基板上にある第1層であって、前記基板に隣接した部分のほぼ全体が炭化ケイ素であり、前記基板から最も遠い部分のほぼ全体が窒化アルミニウムガリウムであり、両部分の間の各部は優勢な含有物が炭化ケイ素から窒化アルミニウムガリウムへと連続して組成が傾斜している第1層と、 前記第1層上に、窒化アルミニウムガリウムの傾斜組成物から成る第2層とを含む請求項1に記載の発光ダイオード。 Wherein said buffer layer has a graded composition of silicon carbide and aluminum gallium nitride, a first layer located on the substrate, substantially the entire portion adjacent said substrate is a silicon carbide, substantially the entire portion which is furthest from the substrate is aluminum gallium nitride, a first layer each part of the predominant inclusions between the two parts composition contiguous with silicon carbide to aluminum gallium nitride is inclined, wherein the first layer, the light emitting diode of claim 1 comprising a second layer of gradient composition of the aluminum gallium nitride. 【請求項8】前記傾斜組成第2層の組成が、前記第1バッファ層の組成と同じ組成から前記接合デバイスの最下層の組成と同じ組成に連続して組成の面で傾斜している請求項17に記載の発光ダイオード。 The composition of claim 8, wherein said gradient composition the second layer is inclined in terms of composition in succession to the same composition as the bottom layer of the said junction device of the same composition as the first buffer layer according light-emitting diode according to claim 17. 【請求項9】前記バッファが、炭化ケイ素とIII族窒化物からなる少なくとも1つの傾斜組成層を含み、前記傾斜組成層は前記基板への接触面が炭化ケイ素であり、前記傾斜組成層と前記接合デバイスとの境界面では前記接合デバイスの最下層の組成と同じ組成である請求項1に記載の発光ダイオード。 Wherein said buffer comprises at least one gradient composition layer consisting of silicon carbide and a group III nitride, said gradient composition layer is contacting surfaces of silicon carbide to the substrate, the said gradient composition layer the light emitting diode according to claim 1 is the same composition as the lowermost layer of the composition of the joining device at the boundary surface between the joining device.
JP51094396A 1994-09-20 1995-09-19 Long life vertical structure light emitting diode having an active layer of Iii Nitride Expired - Lifetime JP3472305B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/309,251 US5523589A (en) 1994-09-20 1994-09-20 Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US309,251 1994-09-20
PCT/US1995/011472 WO1996009653A1 (en) 1994-09-20 1995-09-19 Vertical geometry light emitting diode with group iii nitride active layer and extended lifetime

Publications (2)

Publication Number Publication Date
JPH10506234A JPH10506234A (en) 1998-06-16
JP3472305B2 true JP3472305B2 (en) 2003-12-02

Family

ID=23197389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51094396A Expired - Lifetime JP3472305B2 (en) 1994-09-20 1995-09-19 Long life vertical structure light emitting diode having an active layer of Iii Nitride

Country Status (11)

Country Link
US (1) US5523589A (en)
EP (1) EP0783768B1 (en)
JP (1) JP3472305B2 (en)
KR (1) KR100384923B1 (en)
CN (1) CN1096120C (en)
AT (1) AT188575T (en)
AU (1) AU3629495A (en)
CA (1) CA2200305C (en)
DE (2) DE69514375T2 (en)
ES (1) ES2143077T3 (en)
WO (1) WO1996009653A1 (en)

Families Citing this family (412)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69431333D1 (en) * 1993-10-08 2002-10-17 Mitsubishi Cable Ind Ltd GaN single crystal
US5656832A (en) * 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
JPH0880288A (en) * 1994-09-14 1996-03-26 Seiko Epson Corp Organism information instrument and brain wave instrument
US5804834A (en) * 1994-10-28 1998-09-08 Mitsubishi Chemical Corporation Semiconductor device having contact resistance reducing layer
US5585648A (en) * 1995-02-03 1996-12-17 Tischler; Michael A. High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same
TW290743B (en) * 1995-03-27 1996-11-11 Sumitomo Electric Industries
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JP3564811B2 (en) * 1995-07-24 2004-09-15 豊田合成株式会社 3-nitride semiconductor light emitting device
JPH0964477A (en) * 1995-08-25 1997-03-07 Toshiba Corp Semiconductor light emitting element and its manufacture
SE9503630D0 (en) * 1995-10-18 1995-10-18 Abb Research Ltd A semiconductor device having a heterojunction
US5847414A (en) * 1995-10-30 1998-12-08 Abb Research Limited Semiconductor device having a hetero-junction between SiC and a Group 3B-nitride
JP3409958B2 (en) * 1995-12-15 2003-05-26 株式会社東芝 Semiconductor light-emitting element
US5900647A (en) * 1996-02-05 1999-05-04 Sharp Kabushiki Kaisha Semiconductor device with SiC and GaAlInN
US5684309A (en) * 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
DE19645035C1 (en) * 1996-10-31 1998-04-30 Siemens Ag Multi-colored light-emitting image display device
US6284395B1 (en) 1997-03-05 2001-09-04 Corning Applied Technologies Corp. Nitride based semiconductors and devices
US6153010A (en) * 1997-04-11 2000-11-28 Nichia Chemical Industries Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
US5923946A (en) * 1997-04-17 1999-07-13 Cree Research, Inc. Recovery of surface-ready silicon carbide substrates
US5891790A (en) * 1997-06-17 1999-04-06 The Regents Of The University Of California Method for the growth of P-type gallium nitride and its alloys
CN1142598C (en) 1997-07-25 2004-03-17 日亚化学工业株式会社 Nitride semiconductor luminescent device
KR100651145B1 (en) * 1997-08-29 2006-11-28 크리 인코포레이티드 Robust group iii nitride light emitting diode for high reliability in standard applications
US8101961B2 (en) * 2006-01-25 2012-01-24 Cree, Inc. Transparent ohmic contacts on light emitting diodes with growth substrates
US6825501B2 (en) * 1997-08-29 2004-11-30 Cree, Inc. Robust Group III light emitting diode for high reliability in standard packaging applications
US6201262B1 (en) 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
US6890809B2 (en) * 1997-11-18 2005-05-10 Technologies And Deviles International, Inc. Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device
US20020047135A1 (en) * 1997-11-18 2002-04-25 Nikolaev Audrey E. P-N junction-based structures utilizing HVPE grown III-V compound layers
US6479839B2 (en) 1997-11-18 2002-11-12 Technologies & Devices International, Inc. III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US6472300B2 (en) 1997-11-18 2002-10-29 Technologies And Devices International, Inc. Method for growing p-n homojunction-based structures utilizing HVPE techniques
US6476420B2 (en) 1997-11-18 2002-11-05 Technologies And Devices International, Inc. P-N homojunction-based structures utilizing HVPE growth III-V compound layers
US6559467B2 (en) 1997-11-18 2003-05-06 Technologies And Devices International, Inc. P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
US6555452B2 (en) 1997-11-18 2003-04-29 Technologies And Devices International, Inc. Method for growing p-type III-V compound material utilizing HVPE techniques
US6599133B2 (en) 1997-11-18 2003-07-29 Technologies And Devices International, Inc. Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6559038B2 (en) 1997-11-18 2003-05-06 Technologies And Devices International, Inc. Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6218269B1 (en) 1997-11-18 2001-04-17 Technology And Devices International, Inc. Process for producing III-V nitride pn junctions and p-i-n junctions
US6849862B2 (en) * 1997-11-18 2005-02-01 Technologies And Devices International, Inc. III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
EP1928034A3 (en) 1997-12-15 2008-06-18 Philips Lumileds Lighting Company LLC Light emitting device
US6298710B1 (en) 1998-02-20 2001-10-09 Ford Global Technologies, Inc. Combustible gas diode sensor
US6297538B1 (en) 1998-03-23 2001-10-02 The University Of Delaware Metal-insulator-semiconductor field effect transistor having an oxidized aluminum nitride gate insulator formed on a gallium nitride or silicon substrate
US6064076A (en) * 1998-05-20 2000-05-16 Visual Photonics Epitaxy Co., Ltd. Light-emitting diode having a transparent substrate
DE19925233A1 (en) * 1998-06-08 1999-12-09 Siemens Ag Semiconductor structure, e.g. a Schottky diode, p-n diode or MOSFET, has low contact resistance, temperature stable ohmic contacts
US6646292B2 (en) 1999-12-22 2003-11-11 Lumileds Lighting, U.S., Llc Semiconductor light emitting device and method
US6459100B1 (en) * 1998-09-16 2002-10-01 Cree, Inc. Vertical geometry ingan LED
US6909119B2 (en) * 2001-03-15 2005-06-21 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
US6508878B2 (en) * 1998-10-15 2003-01-21 Lg Electronics Inc. GaN system compound semiconductor and method for growing crystal thereof
DE19904378B4 (en) 1999-02-03 2006-10-05 Osram Opto Semiconductors Gmbh A process for producing nitride crystals
US6326654B1 (en) 1999-02-05 2001-12-04 The United States Of America As Represented By The Secretary Of The Air Force Hybrid ultraviolet detector
JP3770014B2 (en) 1999-02-09 2006-04-26 日亜化学工業株式会社 Nitride semiconductor device
AT452445T (en) 1999-03-04 2010-01-15 Nichia Corp Nitridhalbleiterlaserelement
JP2000261035A (en) * 1999-03-12 2000-09-22 Toyoda Gosei Co Ltd GaN-BASED SEMICONDUCTOR DEVICE
JP2001119102A (en) * 1999-10-15 2001-04-27 Toyoda Gosei Co Ltd Iii nitride compound semiconductor laser diode
US8829546B2 (en) 1999-11-19 2014-09-09 Cree, Inc. Rare earth doped layer or substrate for light conversion
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6573537B1 (en) 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
JP2003532298A (en) * 2000-04-26 2003-10-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light-emitting semiconductor element
TWI292227B (en) * 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
WO2001084640A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Gan-based light-emitting-diode chip and a method for producing a luminescent diode component
US6495894B2 (en) * 2000-05-22 2002-12-17 Ngk Insulators, Ltd. Photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
JP2002016311A (en) * 2000-06-27 2002-01-18 Sharp Corp Gallium nitride based light emitting element
US7687888B2 (en) * 2000-08-04 2010-03-30 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
DE10039433B4 (en) * 2000-08-11 2017-10-26 Osram Opto Semiconductors Gmbh Semiconductor chip for optoelectronics
US6946685B1 (en) 2000-08-31 2005-09-20 Lumileds Lighting U.S., Llc Light emitting semiconductor method and device
US6764888B2 (en) * 2000-09-27 2004-07-20 Sensor Electronic Technology, Inc. Method of producing nitride-based heterostructure devices
DE10051465A1 (en) 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh A process for producing a semiconductor device, the GaN-based
US6534797B1 (en) 2000-11-03 2003-03-18 Cree, Inc. Group III nitride light emitting devices with gallium-free layers
JP4063520B2 (en) * 2000-11-30 2008-03-19 日本碍子株式会社 Semiconductor light-emitting element
JP3872327B2 (en) * 2000-12-04 2007-01-24 日本碍子株式会社 Semiconductor light-emitting element
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
US6800876B2 (en) * 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
USRE46589E1 (en) 2001-01-16 2017-10-24 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6906352B2 (en) 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6740906B2 (en) * 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7211833B2 (en) * 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6611002B2 (en) 2001-02-23 2003-08-26 Nitronex Corporation Gallium nitride material devices and methods including backside vias
US6956250B2 (en) * 2001-02-23 2005-10-18 Nitronex Corporation Gallium nitride materials including thermally conductive regions
US7233028B2 (en) * 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6522063B2 (en) * 2001-03-28 2003-02-18 Epitech Corporation Light emitting diode
US6635904B2 (en) * 2001-03-29 2003-10-21 Lumileds Lighting U.S., Llc Indium gallium nitride smoothing structures for III-nitride devices
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US6958497B2 (en) * 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
JP3946969B2 (en) 2001-05-31 2007-07-18 日本碍子株式会社 Field effect transistors, and heterojunction bipolar transistor
WO2002103814A1 (en) 2001-06-15 2002-12-27 Cree, Inc. Gan based led formed on a sic substrate
US6747298B2 (en) * 2001-07-23 2004-06-08 Cree, Inc. Collets for bonding of light emitting diodes having shaped substrates
US6888167B2 (en) 2001-07-23 2005-05-03 Cree, Inc. Flip-chip bonding of light emitting devices and light emitting devices suitable for flip-chip bonding
US6645885B2 (en) * 2001-09-27 2003-11-11 The National University Of Singapore Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
US7858403B2 (en) 2001-10-31 2010-12-28 Cree, Inc. Methods and systems for fabricating broad spectrum light emitting devices
US20030090103A1 (en) * 2001-11-09 2003-05-15 Thomas Becker Direct mailing device
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US6635503B2 (en) 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
US7343708B2 (en) * 2002-02-02 2008-03-18 Darren Edward Pieczynski Ice fishing tip-up display
CA2474883A1 (en) * 2002-02-08 2003-08-14 Cree, Inc. Methods of treating a silicon carbide substrate for improved epitaxial deposition
US8294172B2 (en) * 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
US6982204B2 (en) * 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US6841001B2 (en) * 2002-07-19 2005-01-11 Cree, Inc. Strain compensated semiconductor structures and methods of fabricating strain compensated semiconductor structures
JP3867635B2 (en) * 2002-07-29 2007-01-10 豊田合成株式会社 Scintillator
US6875995B2 (en) * 2002-08-16 2005-04-05 Cree, Inc. Heterogeneous bandgap structures for semiconductor devices and manufacturing methods therefor
KR100497890B1 (en) * 2002-08-19 2005-06-29 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method for thereof
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
EP1540747B1 (en) * 2002-09-19 2012-01-25 Cree, Inc. Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor
US7009199B2 (en) * 2002-10-22 2006-03-07 Cree, Inc. Electronic devices having a header and antiparallel connected light emitting diodes for producing light from AC current
JP2004179274A (en) * 2002-11-26 2004-06-24 Hitachi Ltd Optical semiconductor device
US6818928B2 (en) * 2002-12-05 2004-11-16 Raytheon Company Quaternary-ternary semiconductor devices
TWI230978B (en) * 2003-01-17 2005-04-11 Sanken Electric Co Ltd Semiconductor device and the manufacturing method thereof
US7138291B2 (en) 2003-01-30 2006-11-21 Cree, Inc. Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
US7170097B2 (en) * 2003-02-14 2007-01-30 Cree, Inc. Inverted light emitting diode on conductive substrate
US7898047B2 (en) * 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
US7112860B2 (en) * 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
US6885033B2 (en) * 2003-03-10 2005-04-26 Cree, Inc. Light emitting devices for light conversion and methods and semiconductor chips for fabricating the same
US7531380B2 (en) * 2003-04-30 2009-05-12 Cree, Inc. Methods of forming light-emitting devices having an active region with electrical contacts coupled to opposing surfaces thereof
US7087936B2 (en) * 2003-04-30 2006-08-08 Cree, Inc. Methods of forming light-emitting devices having an antireflective layer that has a graded index of refraction
US7714345B2 (en) * 2003-04-30 2010-05-11 Cree, Inc. Light-emitting devices having coplanar electrical contacts adjacent to a substrate surface opposite an active region and methods of forming the same
WO2005060007A1 (en) * 2003-08-05 2005-06-30 Nitronex Corporation Gallium nitride material transistors and methods associated with the same
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
CN100541745C (en) 2003-09-09 2009-09-16 加利福尼亚大学董事会;克锐公司 Fabrication of single or multiple gate field plates
US7183587B2 (en) * 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7029935B2 (en) * 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7915085B2 (en) * 2003-09-18 2011-03-29 Cree, Inc. Molded chip fabrication method
KR100744933B1 (en) * 2003-10-13 2007-08-01 삼성전기주식회사 Nitride Semiconductors on Silicon Substrate and Manufacturing Method thereof
KR20060131774A (en) * 2003-11-12 2006-12-20 크리 인코포레이티드 Methods of processing semiconductor wafer backsides having light emitting devices(leds) thereon and leds so formed
US7518158B2 (en) * 2003-12-09 2009-04-14 Cree, Inc. Semiconductor light emitting devices and submounts
US7071498B2 (en) * 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
US20050145851A1 (en) * 2003-12-17 2005-07-07 Nitronex Corporation Gallium nitride material structures including isolation regions and methods
US7135715B2 (en) * 2004-01-07 2006-11-14 Cree, Inc. Co-doping for fermi level control in semi-insulating Group III nitrides
US7045404B2 (en) * 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7901994B2 (en) * 2004-01-16 2011-03-08 Cree, Inc. Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers
US7033912B2 (en) 2004-01-22 2006-04-25 Cree, Inc. Silicon carbide on diamond substrates and related devices and methods
US7170111B2 (en) * 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
US7612390B2 (en) * 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US7615689B2 (en) * 2004-02-12 2009-11-10 Seminis Vegatable Seeds, Inc. Methods for coupling resistance alleles in tomato
US7202181B2 (en) * 2004-03-26 2007-04-10 Cres, Inc. Etching of substrates of light emitting devices
US7355284B2 (en) 2004-03-29 2008-04-08 Cree, Inc. Semiconductor light emitting devices including flexible film having therein an optical element
US7439609B2 (en) * 2004-03-29 2008-10-21 Cree, Inc. Doping of gallium nitride by solid source diffusion and resulting gallium nitride structures
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
US7279346B2 (en) * 2004-03-31 2007-10-09 Cree, Inc. Method for packaging a light emitting device by one dispense then cure step followed by another
US7326583B2 (en) 2004-03-31 2008-02-05 Cree, Inc. Methods for packaging of a semiconductor light emitting device
US7517728B2 (en) * 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US7939842B2 (en) * 2005-01-27 2011-05-10 Cree, Inc. Light emitting device packages, light emitting diode (LED) packages and related methods
US7419912B2 (en) * 2004-04-01 2008-09-02 Cree, Inc. Laser patterning of light emitting devices
US7868343B2 (en) * 2004-04-06 2011-01-11 Cree, Inc. Light-emitting devices having multiple encapsulation layers with at least one of the encapsulation layers including nanoparticles and methods of forming the same
WO2005106985A2 (en) * 2004-04-22 2005-11-10 Cree, Inc. Improved substrate buffer structure for group iii nitride devices
CN100387547C (en) 2004-05-06 2008-05-14 旭硝子株式会社 Method for producing laminated dielectric
US7550783B2 (en) 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7573078B2 (en) 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US9773877B2 (en) 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
US7084441B2 (en) 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
US7432142B2 (en) * 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7361946B2 (en) * 2004-06-28 2008-04-22 Nitronex Corporation Semiconductor device-based sensors
US7339205B2 (en) * 2004-06-28 2008-03-04 Nitronex Corporation Gallium nitride materials and methods associated with the same
US7329905B2 (en) * 2004-06-30 2008-02-12 Cree, Inc. Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US20060002442A1 (en) * 2004-06-30 2006-01-05 Kevin Haberern Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures
TWI422044B (en) * 2005-06-30 2014-01-01 Cree Inc Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US7795623B2 (en) 2004-06-30 2010-09-14 Cree, Inc. Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
US7687827B2 (en) * 2004-07-07 2010-03-30 Nitronex Corporation III-nitride materials including low dislocation densities and methods associated with the same
US7118262B2 (en) * 2004-07-23 2006-10-10 Cree, Inc. Reflective optical elements for semiconductor light emitting devices
US7238560B2 (en) 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
US20060017064A1 (en) * 2004-07-26 2006-01-26 Saxler Adam W Nitride-based transistors having laterally grown active region and methods of fabricating same
US7557380B2 (en) 2004-07-27 2009-07-07 Cree, Inc. Light emitting devices having a reflective bond pad and methods of fabricating light emitting devices having reflective bond pads
TWI374552B (en) 2004-07-27 2012-10-11 Cree Inc Ultra-thin ohmic contacts for p-type nitride light emitting devices and methods of forming
US7217583B2 (en) * 2004-09-21 2007-05-15 Cree, Inc. Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension
US7294324B2 (en) * 2004-09-21 2007-11-13 Cree, Inc. Low basal plane dislocation bulk grown SiC wafers
US8174037B2 (en) * 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US7372198B2 (en) * 2004-09-23 2008-05-13 Cree, Inc. Semiconductor light emitting devices including patternable films comprising transparent silicone and phosphor
KR100661708B1 (en) 2004-10-19 2006-12-26 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
US20060097385A1 (en) 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
EP1831919A2 (en) * 2004-10-28 2007-09-12 Nitronex Corporation Gallium nitride/silicon based monolithic microwave integrated circuit
KR101216622B1 (en) 2004-11-01 2012-12-31 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Interdigitated multi-pixel arrays for the fabrication of light-emitting devices with very low series-resistances and improved heat-sinking
US7456443B2 (en) * 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7709859B2 (en) 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US7247889B2 (en) 2004-12-03 2007-07-24 Nitronex Corporation III-nitride material structures including silicon substrates
US7161194B2 (en) * 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US7355215B2 (en) * 2004-12-06 2008-04-08 Cree, Inc. Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies
US7322732B2 (en) 2004-12-23 2008-01-29 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
US7368757B2 (en) * 2004-12-24 2008-05-06 Covalent Materials Corporation Compound semiconductor and compound semiconductor device using the same
US7236053B2 (en) * 2004-12-31 2007-06-26 Cree, Inc. High efficiency switch-mode power amplifier
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US7304694B2 (en) * 2005-01-12 2007-12-04 Cree, Inc. Solid colloidal dispersions for backlighting of liquid crystal displays
US7335920B2 (en) * 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
WO2006083065A1 (en) 2005-02-04 2006-08-10 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and method of fabricating the same
US7465967B2 (en) * 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
US7422634B2 (en) * 2005-04-07 2008-09-09 Cree, Inc. Three inch silicon carbide wafer with low warp, bow, and TTV
US8575651B2 (en) 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
US7626217B2 (en) * 2005-04-11 2009-12-01 Cree, Inc. Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
US7446345B2 (en) * 2005-04-29 2008-11-04 Cree, Inc. Light emitting devices with active layers that extend into opened pits
US7615774B2 (en) * 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7544963B2 (en) * 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US7365374B2 (en) 2005-05-03 2008-04-29 Nitronex Corporation Gallium nitride material structures including substrates and methods associated with the same
JP2006332205A (en) * 2005-05-24 2006-12-07 Rohm Co Ltd Nitride semiconductor light emitting element
US20060267043A1 (en) * 2005-05-27 2006-11-30 Emerson David T Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
US9331192B2 (en) * 2005-06-29 2016-05-03 Cree, Inc. Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20070018198A1 (en) * 2005-07-20 2007-01-25 Brandes George R High electron mobility electronic device structures comprising native substrates and methods for making the same
US8835952B2 (en) 2005-08-04 2014-09-16 Cree, Inc. Submounts for semiconductor light emitting devices and methods of forming packaged light emitting devices including dispensed encapsulants
US7365371B2 (en) * 2005-08-04 2008-04-29 Cree, Inc. Packages for semiconductor light emitting devices utilizing dispensed encapsulants
US7638818B2 (en) 2005-09-07 2009-12-29 Cree, Inc. Robust transistors with fluorine treatment
KR20080072833A (en) * 2005-10-04 2008-08-07 니트로넥스 코오포레이션 Gallium nitride material transistors and methods for wideband applications
US7566913B2 (en) 2005-12-02 2009-07-28 Nitronex Corporation Gallium nitride material devices including conductive regions and methods associated with the same
EP1969635B1 (en) 2005-12-02 2017-07-19 Infineon Technologies Americas Corp. Gallium nitride material devices and associated methods
US7419892B2 (en) * 2005-12-13 2008-09-02 Cree, Inc. Semiconductor devices including implanted regions and protective layers and methods of forming the same
CN103925521A (en) 2005-12-21 2014-07-16 科锐公司 The lighting device
TWI396814B (en) 2005-12-22 2013-05-21 Cree Inc Lighting device
US7592211B2 (en) * 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US7709269B2 (en) * 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
US7442564B2 (en) * 2006-01-19 2008-10-28 Cree, Inc. Dispensed electrical interconnections
TWI491062B (en) * 2006-01-20 2015-07-01 Cree Inc Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US7521728B2 (en) * 2006-01-20 2009-04-21 Cree, Inc. Packages for semiconductor light emitting devices utilizing dispensed reflectors and methods of forming the same
US20120161287A1 (en) * 2006-01-20 2012-06-28 Japan Science And Technology Agency METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US8008670B2 (en) * 2006-02-21 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7566918B2 (en) * 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
US7388236B2 (en) * 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
US8969908B2 (en) * 2006-04-04 2015-03-03 Cree, Inc. Uniform emission LED package
US7863639B2 (en) * 2006-04-12 2011-01-04 Semileds Optoelectronics Co. Ltd. Light-emitting diode lamp with low thermal resistance
US8373195B2 (en) 2006-04-12 2013-02-12 SemiLEDs Optoelectronics Co., Ltd. Light-emitting diode lamp with low thermal resistance
JP2007294769A (en) * 2006-04-26 2007-11-08 Toshiba Corp Nitride semiconductor element
US9040398B2 (en) * 2006-05-16 2015-05-26 Cree, Inc. Method of fabricating seminconductor devices including self aligned refractory contacts
JP2009538532A (en) * 2006-05-23 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device
JP2009538531A (en) * 2006-05-23 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Illumination device, and a method
JP2009538536A (en) 2006-05-26 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Solid state light emitting device, and a method of manufacturing the same
US7646035B2 (en) * 2006-05-31 2010-01-12 Cree, Inc. Packaged light emitting devices including multiple index lenses and multiple index lenses for packaged light emitting devices
US7943952B2 (en) * 2006-07-31 2011-05-17 Cree, Inc. Method of uniform phosphor chip coating and LED package fabricated using method
US7728402B2 (en) * 2006-08-01 2010-06-01 Cree, Inc. Semiconductor devices including schottky diodes with controlled breakdown
US8432012B2 (en) 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
WO2008021451A2 (en) * 2006-08-14 2008-02-21 Aktiv-Dry Llc Human-powered dry powder inhaler and dry powder inhaler compositions
KR101529331B1 (en) 2006-08-17 2015-06-16 크리 인코포레이티드 High power insulated gate bipolar transistors
US7646024B2 (en) * 2006-08-18 2010-01-12 Cree, Inc. Structure and method for reducing forward voltage across a silicon carbide-group III nitride interface
US7763478B2 (en) 2006-08-21 2010-07-27 Cree, Inc. Methods of forming semiconductor light emitting device packages by liquid injection molding
EP2060155A2 (en) 2006-08-23 2009-05-20 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7808013B2 (en) * 2006-10-31 2010-10-05 Cree, Inc. Integrated heat spreaders for light emitting devices (LEDs) and related assemblies
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
WO2008056813A1 (en) * 2006-11-08 2008-05-15 C.I.Kasei Company, Limited Light emitting device and method for manufacturing the same
US10295147B2 (en) * 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
EP1921669B1 (en) 2006-11-13 2015-09-02 Cree, Inc. GaN based HEMTs with buried field plates
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US9318327B2 (en) 2006-11-28 2016-04-19 Cree, Inc. Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same
US7795054B2 (en) * 2006-12-08 2010-09-14 Samsung Led Co., Ltd. Vertical structure LED device and method of manufacturing the same
US9024349B2 (en) * 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9159888B2 (en) * 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US8232564B2 (en) * 2007-01-22 2012-07-31 Cree, Inc. Wafer level phosphor coating technique for warm light emitting diodes
TWI440210B (en) 2007-01-22 2014-06-01 Cree Inc Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same
JP2010517273A (en) * 2007-01-22 2010-05-20 クリー レッド ライティング ソリューションズ、インコーポレイテッド Methods of making fault-tolerant emitters, the system and fault tolerant light emitter comprising a fault tolerant illuminant
US7709853B2 (en) 2007-02-12 2010-05-04 Cree, Inc. Packaged semiconductor light emitting devices having multiple optical elements
US9061450B2 (en) * 2007-02-12 2015-06-23 Cree, Inc. Methods of forming packaged semiconductor light emitting devices having front contacts by compression molding
US20080198572A1 (en) * 2007-02-21 2008-08-21 Medendorp Nicholas W LED lighting systems including luminescent layers on remote reflectors
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US7825432B2 (en) 2007-03-09 2010-11-02 Cree, Inc. Nitride semiconductor structures with interlayer structures
US8362503B2 (en) 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
US9484499B2 (en) * 2007-04-20 2016-11-01 Cree, Inc. Transparent ohmic contacts on light emitting diodes with carrier substrates
US7910944B2 (en) * 2007-05-04 2011-03-22 Cree, Inc. Side mountable semiconductor light emitting device packages and panels
US7982363B2 (en) * 2007-05-14 2011-07-19 Cree, Inc. Bulk acoustic device and method for fabricating
US20090002979A1 (en) * 2007-06-27 2009-01-01 Cree, Inc. Light emitting device (led) lighting systems for emitting light in multiple directions and related methods
US8042971B2 (en) 2007-06-27 2011-10-25 Cree, Inc. Light emitting device (LED) lighting systems for emitting light in multiple directions and related methods
US20090014736A1 (en) * 2007-07-11 2009-01-15 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same
JP5431320B2 (en) * 2007-07-17 2014-03-05 クリー インコーポレイテッドCree Inc. Optical element having internal optical function and method for manufacturing the same
US20090020153A1 (en) * 2007-07-20 2009-01-22 Chien-Min Sung Diamond-Like Carbon Electronic Devices and Methods of Manufacture
US7863635B2 (en) * 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US7745848B1 (en) 2007-08-15 2010-06-29 Nitronex Corporation Gallium nitride material devices and thermal designs thereof
KR101525274B1 (en) * 2007-10-26 2015-06-02 크리, 인코포레이티드 Illumination device having one or more lumiphors, and methods of fabricating same
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US8119028B2 (en) 2007-11-14 2012-02-21 Cree, Inc. Cerium and europium doped single crystal phosphors
US9660153B2 (en) 2007-11-14 2017-05-23 Cree, Inc. Gap engineering for flip-chip mounted horizontal LEDs
US9673363B2 (en) 2011-01-31 2017-06-06 Cree, Inc. Reflective mounting substrates for flip-chip mounted horizontal LEDs
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8167674B2 (en) * 2007-12-14 2012-05-01 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8940561B2 (en) * 2008-01-15 2015-01-27 Cree, Inc. Systems and methods for application of optical materials to optical elements
US8058088B2 (en) 2008-01-15 2011-11-15 Cree, Inc. Phosphor coating systems and methods for light emitting structures and packaged light emitting diodes including phosphor coating
US8178888B2 (en) * 2008-02-01 2012-05-15 Cree, Inc. Semiconductor light emitting devices with high color rendering
US8026581B2 (en) * 2008-02-05 2011-09-27 International Rectifier Corporation Gallium nitride material devices including diamond regions and methods associated with the same
US8637883B2 (en) * 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
US20090250626A1 (en) * 2008-04-04 2009-10-08 Hexatech, Inc. Liquid sanitization device
US8343824B2 (en) * 2008-04-29 2013-01-01 International Rectifier Corporation Gallium nitride material processing and related device structures
TWI362769B (en) 2008-05-09 2012-04-21 Univ Nat Chiao Tung Light emitting device and fabrication method therefor
US8232558B2 (en) 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
US9147812B2 (en) * 2008-06-24 2015-09-29 Cree, Inc. Methods of assembly for a semiconductor light emitting device package
US8240875B2 (en) 2008-06-25 2012-08-14 Cree, Inc. Solid state linear array modules for general illumination
US7955875B2 (en) * 2008-09-26 2011-06-07 Cree, Inc. Forming light emitting devices including custom wavelength conversion structures
US8269244B2 (en) 2010-06-28 2012-09-18 Cree, Inc. LED package with efficient, isolated thermal path
US8648359B2 (en) 2010-06-28 2014-02-11 Cree, Inc. Light emitting devices and methods
US8598602B2 (en) 2009-01-12 2013-12-03 Cree, Inc. Light emitting device packages with improved heat transfer
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
US8294507B2 (en) 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8193848B2 (en) 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8629509B2 (en) 2009-06-02 2014-01-14 Cree, Inc. High voltage insulated gate bipolar transistors with minority carrier diverter
US8304783B2 (en) 2009-06-03 2012-11-06 Cree, Inc. Schottky diodes including polysilicon having low barrier heights and methods of fabricating the same
US8686445B1 (en) 2009-06-05 2014-04-01 Cree, Inc. Solid state lighting devices and methods
US8610140B2 (en) 2010-12-15 2013-12-17 Cree, Inc. Light emitting diode (LED) packages, systems, devices and related methods
US8860043B2 (en) 2009-06-05 2014-10-14 Cree, Inc. Light emitting device packages, systems and methods
US7923739B2 (en) * 2009-06-05 2011-04-12 Cree, Inc. Solid state lighting device
US20110012141A1 (en) 2009-07-15 2011-01-20 Le Toquin Ronan P Single-color wavelength-converted light emitting devices
US8541787B2 (en) * 2009-07-15 2013-09-24 Cree, Inc. High breakdown voltage wide band-gap MOS-gated bipolar junction transistors with avalanche capability
US8105889B2 (en) 2009-07-27 2012-01-31 Cree, Inc. Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions
US8354690B2 (en) 2009-08-31 2013-01-15 Cree, Inc. Solid-state pinch off thyristor circuits
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
WO2011035265A1 (en) * 2009-09-18 2011-03-24 Soraa, Inc. Power light emitting diode and method with current density operation
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
US9312343B2 (en) 2009-10-13 2016-04-12 Cree, Inc. Transistors with semiconductor interconnection layers and semiconductor channel layers of different semiconductor materials
US20110108854A1 (en) * 2009-11-10 2011-05-12 Chien-Min Sung Substantially lattice matched semiconductor materials and associated methods
US8466611B2 (en) 2009-12-14 2013-06-18 Cree, Inc. Lighting device with shaped remote phosphor
US8536615B1 (en) 2009-12-16 2013-09-17 Cree, Inc. Semiconductor device structures with modulated and delta doping and related methods
US8604461B2 (en) * 2009-12-16 2013-12-10 Cree, Inc. Semiconductor device structures with modulated doping and related methods
US8575592B2 (en) * 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
US9548206B2 (en) 2010-02-11 2017-01-17 Cree, Inc. Ohmic contact structure for group III nitride semiconductor device having improved surface morphology and well-defined edge features
US8563372B2 (en) * 2010-02-11 2013-10-22 Cree, Inc. Methods of forming contact structures including alternating metal and silicon layers and related devices
US9214352B2 (en) 2010-02-11 2015-12-15 Cree, Inc. Ohmic contact to semiconductor device
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8508127B2 (en) * 2010-03-09 2013-08-13 Cree, Inc. High CRI lighting device with added long-wavelength blue color
US8415671B2 (en) 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
DE112011101530T5 (en) * 2010-04-30 2013-07-11 Trustees Of Boston University Highly efficient ultraviolet light-emitting diode with band-structure potential fluctuations
US8829999B2 (en) 2010-05-20 2014-09-09 Cree, Inc. Low noise amplifiers including group III nitride based high electron mobility transistors
USD643819S1 (en) 2010-07-16 2011-08-23 Cree, Inc. Package for light emitting diode (LED) lighting
US8410679B2 (en) 2010-09-21 2013-04-02 Cree, Inc. Semiconductor light emitting devices with densely packed phosphor layer at light emitting surface
US9515229B2 (en) 2010-09-21 2016-12-06 Cree, Inc. Semiconductor light emitting devices with optical coatings and methods of making same
US9627361B2 (en) 2010-10-07 2017-04-18 Cree, Inc. Multiple configuration light emitting devices and methods
US9249952B2 (en) 2010-11-05 2016-02-02 Cree, Inc. Multi-configurable, high luminous output light fixture systems, devices and methods
USD721339S1 (en) 2010-12-03 2015-01-20 Cree, Inc. Light emitter device
USD712850S1 (en) 2010-11-18 2014-09-09 Cree, Inc. Light emitter device
US9300062B2 (en) * 2010-11-22 2016-03-29 Cree, Inc. Attachment devices and methods for light emitting devices
US8455908B2 (en) 2011-02-16 2013-06-04 Cree, Inc. Light emitting devices
US8624271B2 (en) 2010-11-22 2014-01-07 Cree, Inc. Light emitting devices
US8575639B2 (en) 2011-02-16 2013-11-05 Cree, Inc. Light emitting devices for light emitting diodes (LEDs)
US9000470B2 (en) 2010-11-22 2015-04-07 Cree, Inc. Light emitter devices
US8564000B2 (en) 2010-11-22 2013-10-22 Cree, Inc. Light emitting devices for light emitting diodes (LEDs)
US9490235B2 (en) 2010-11-22 2016-11-08 Cree, Inc. Light emitting devices, systems, and methods
US8772817B2 (en) 2010-12-22 2014-07-08 Cree, Inc. Electronic device submounts including substrates with thermally conductive vias
USD679842S1 (en) 2011-01-03 2013-04-09 Cree, Inc. High brightness LED package
US8698184B2 (en) 2011-01-21 2014-04-15 Cree, Inc. Light emitting diodes with low junction temperature and solid state backlight components including light emitting diodes with low junction temperature
US8589120B2 (en) 2011-01-28 2013-11-19 Cree, Inc. Methods, systems, and apparatus for determining optical properties of elements of lighting components having similar color points
US9831220B2 (en) 2011-01-31 2017-11-28 Cree, Inc. Light emitting diode (LED) arrays including direct die attach and related assemblies
US9754926B2 (en) 2011-01-31 2017-09-05 Cree, Inc. Light emitting diode (LED) arrays including direct die attach and related assemblies
US9508904B2 (en) 2011-01-31 2016-11-29 Cree, Inc. Structures and substrates for mounting optical elements and methods and devices for providing the same background
TW201251140A (en) 2011-01-31 2012-12-16 Cree Inc High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion
US9053958B2 (en) 2011-01-31 2015-06-09 Cree, Inc. Light emitting diode (LED) arrays including direct die attach and related assemblies
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9401103B2 (en) 2011-02-04 2016-07-26 Cree, Inc. LED-array light source with aspect ratio greater than 1
US9583681B2 (en) 2011-02-07 2017-02-28 Cree, Inc. Light emitter device packages, modules and methods
US8922108B2 (en) 2011-03-01 2014-12-30 Cree, Inc. Remote component devices, systems, and methods for use with light emitting devices
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US10098197B2 (en) 2011-06-03 2018-10-09 Cree, Inc. Lighting devices with individually compensating multi-color clusters
US8814621B2 (en) 2011-06-03 2014-08-26 Cree, Inc. Methods of determining and making red nitride compositions
US8906263B2 (en) 2011-06-03 2014-12-09 Cree, Inc. Red nitride phosphors
US8729790B2 (en) 2011-06-03 2014-05-20 Cree, Inc. Coated phosphors and light emitting devices including the same
US8747697B2 (en) 2011-06-07 2014-06-10 Cree, Inc. Gallium-substituted yttrium aluminum garnet phosphor and light emitting devices including the same
US8684569B2 (en) 2011-07-06 2014-04-01 Cree, Inc. Lens and trim attachment structure for solid state downlights
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
US8664665B2 (en) 2011-09-11 2014-03-04 Cree, Inc. Schottky diode employing recesses for elements of junction barrier array
US8618582B2 (en) 2011-09-11 2013-12-31 Cree, Inc. Edge termination structure employing recesses for edge termination elements
USD702653S1 (en) 2011-10-26 2014-04-15 Cree, Inc. Light emitting device component
WO2013070696A1 (en) 2011-11-07 2013-05-16 Cree, Inc. High voltage array light emitting diode (led) devices, fixtures and methods
US10043960B2 (en) 2011-11-15 2018-08-07 Cree, Inc. Light emitting diode (LED) packages and related methods
US9496466B2 (en) 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
US9318669B2 (en) 2012-01-30 2016-04-19 Cree, Inc. Methods of determining and making red nitride compositions
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US10134961B2 (en) 2012-03-30 2018-11-20 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
US9840790B2 (en) 2012-08-23 2017-12-12 Hexatech, Inc. Highly transparent aluminum nitride single crystalline layers and devices made therefrom
WO2014087799A1 (en) * 2012-12-05 2014-06-12 株式会社村田製作所 Piezoelectric member, elastic wave apparatus, and piezoelectric member manufacturing method
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
JP2016511938A (en) 2013-01-29 2016-04-21 ヘクサテック,インコーポレイテッド Optoelectronic devices incorporating single crystal aluminum nitride substrates
US9316382B2 (en) 2013-01-31 2016-04-19 Cree, Inc. Connector devices, systems, and related methods for connecting light emitting diode (LED) modules
US9039746B2 (en) 2013-02-08 2015-05-26 Cree, Inc. Solid state light emitting devices including adjustable melatonin suppression effects
US9030103B2 (en) 2013-02-08 2015-05-12 Cree, Inc. Solid state light emitting devices including adjustable scotopic / photopic ratio
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
US9055643B2 (en) 2013-03-13 2015-06-09 Cree, Inc. Solid state lighting apparatus and methods of forming
US9748409B2 (en) 2013-03-14 2017-08-29 Hexatech, Inc. Power semiconductor devices incorporating single crystalline aluminum nitride substrate
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
USD739565S1 (en) 2013-06-27 2015-09-22 Cree, Inc. Light emitter unit
USD740453S1 (en) 2013-06-27 2015-10-06 Cree, Inc. Light emitter unit
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US9240528B2 (en) 2013-10-03 2016-01-19 Cree, Inc. Solid state lighting apparatus with high scotopic/photopic (S/P) ratio
WO2016073678A1 (en) 2014-11-06 2016-05-12 Koninklijke Philips N.V. Light emitting device with trench beneath a top contact
US9985168B1 (en) 2014-11-18 2018-05-29 Cree, Inc. Group III nitride based LED structures including multiple quantum wells with barrier-well unit interface layers
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
CN107438899A (en) 2015-03-31 2017-12-05 科锐公司 Light emitting diodes and methods with encapsulation
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
US10074635B2 (en) 2015-07-17 2018-09-11 Cree, Inc. Solid state light emitter devices and methods
USD782094S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782093S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
US9627473B2 (en) 2015-09-08 2017-04-18 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation in III-nitride material semiconductor structures
US10211294B2 (en) 2015-09-08 2019-02-19 Macom Technology Solutions Holdings, Inc. III-nitride semiconductor structures comprising low atomic mass species
US9673281B2 (en) 2015-09-08 2017-06-06 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using rare-earth oxide and/or rare-earth nitride diffusion barrier regions
US9773898B2 (en) 2015-09-08 2017-09-26 Macom Technology Solutions Holdings, Inc. III-nitride semiconductor structures comprising spatially patterned implanted species
US9799520B2 (en) 2015-09-08 2017-10-24 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation via back side implantation
US9704705B2 (en) 2015-09-08 2017-07-11 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation via reaction with active species
US9806182B2 (en) 2015-09-08 2017-10-31 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using elemental diboride diffusion barrier regions
WO2018022456A1 (en) 2016-07-26 2018-02-01 Cree, Inc. Light emitting diodes, components and related methods
WO2018052902A1 (en) 2016-09-13 2018-03-22 Cree, Inc. Light emitting diodes, components and related methods
USD823492S1 (en) 2016-10-04 2018-07-17 Cree, Inc. Light emitting device
US20180145059A1 (en) 2016-11-22 2018-05-24 Cree, Inc. Light emitting diode (led) devices, components and methods
WO2018164870A1 (en) 2017-03-08 2018-09-13 Cree, Inc. Substrates for light emitting diodes and related methods
US10410997B2 (en) 2017-05-11 2019-09-10 Cree, Inc. Tunable integrated optics LED components and methods
EP3428975A1 (en) 2017-07-14 2019-01-16 AGC Glass Europe Light-emitting devices having an antireflective silicon carbide or sapphire substrate and methods of forming the same
US20190058003A1 (en) 2017-08-18 2019-02-21 Cree, Inc. Light emitting diodes, components and related methods
US10361349B2 (en) 2017-09-01 2019-07-23 Cree, Inc. Light emitting diodes, components and related methods

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650744B2 (en) * 1988-12-28 1997-09-03 シャープ株式会社 Light emitting diode
US5210051A (en) * 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
US5243204A (en) * 1990-05-18 1993-09-07 Sharp Kabushiki Kaisha Silicon carbide light emitting diode and a method for the same
JP3160914B2 (en) * 1990-12-26 2001-04-25 浩 天野 Gallium nitride-based compound semiconductor laser diode
JPH088217B2 (en) * 1991-01-31 1996-01-29 日亜化学工業株式会社 Gallium nitride-based compound semiconductor crystal growth method
US5290393A (en) * 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US5273933A (en) * 1991-07-23 1993-12-28 Kabushiki Kaisha Toshiba Vapor phase growth method of forming film in process of manufacturing semiconductor device
US5306662A (en) * 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
US5313078A (en) * 1991-12-04 1994-05-17 Sharp Kabushiki Kaisha Multi-layer silicon carbide light emitting diode having a PN junction
JP3105981B2 (en) * 1992-01-28 2000-11-06 シャープ株式会社 Semiconductor light-emitting element
US5432808A (en) * 1993-03-15 1995-07-11 Kabushiki Kaisha Toshiba Compound semicondutor light-emitting device
US5416342A (en) * 1993-06-23 1995-05-16 Cree Research, Inc. Blue light-emitting diode with high external quantum efficiency
US5338944A (en) * 1993-09-22 1994-08-16 Cree Research, Inc. Blue light-emitting diode with degenerate junction structure
US5393993A (en) * 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices

Also Published As

Publication number Publication date
CN1096120C (en) 2002-12-11
WO1996009653A1 (en) 1996-03-28
EP0783768A1 (en) 1997-07-16
EP0783768B1 (en) 2000-01-05
CA2200305C (en) 2003-06-17
DE69514375T2 (en) 2000-06-21
DE69514375D1 (en) 2000-02-10
US5523589A (en) 1996-06-04
CN1166890A (en) 1997-12-03
AT188575T (en) 2000-01-15
JPH10506234A (en) 1998-06-16
KR970706618A (en) 1997-11-03
AU3629495A (en) 1996-04-09
ES2143077T3 (en) 2000-05-01
KR100384923B1 (en) 2003-08-19
CA2200305A1 (en) 1996-03-28

Similar Documents

Publication Publication Date Title
Chang et al. InGaN-GaN multiquantum-well blue and green light-emitting diodes
Tadatomo et al. High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy
Yasan et al. 4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes
EP0844675B1 (en) Light-emitting gallium nitride-based compound semiconductor device
Eason et al. High‐brightness blue and green light‐emitting diodes
US8592841B2 (en) Nitride semiconductor device
US5592501A (en) Low-strain laser structures with group III nitride active layers
CN1059755C (en) Buffer structure between silicon carbide and gallium nitride and semiconductor obtained from the same
JP4173445B2 (en) Nitride semiconductor substrate, a method of manufacturing the same, and a semiconductor light-emitting device using the same
US6285696B1 (en) Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission
Khan et al. Violet‐blue GaN homojunction light emitting diodes with rapid thermal annealed p‐type layers
DE102005013580B4 (en) Light-emitting element
US6611004B2 (en) Gallium nitride based light emitting element
CN101427431B (en) High efficiency leds with tunnel junctions
US20030231683A1 (en) Nitride based semiconductor structures with highly reflective mirrors
EP1514313B1 (en) Group iii nitride light emitting diode with undoped cladding layer and multiple quantum well
Vanderwater et al. High-brightness AlGaInP light emitting diodes
JP3270476B2 (en) Ohmic contacts and ii-vi group compound semiconductor device and a method for their preparation
US5985687A (en) Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
US5679965A (en) Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US20020109146A1 (en) Nitride-based semiconductor light-emitting device
Nakahara et al. Improved external efficiency InGaN-based light-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes
Chang et al. 400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes
JP4135550B2 (en) Semiconductor light-emitting device
US7348602B2 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term