JP3471976B2 - Temperature control method of adsorption refrigerator - Google Patents

Temperature control method of adsorption refrigerator

Info

Publication number
JP3471976B2
JP3471976B2 JP15837395A JP15837395A JP3471976B2 JP 3471976 B2 JP3471976 B2 JP 3471976B2 JP 15837395 A JP15837395 A JP 15837395A JP 15837395 A JP15837395 A JP 15837395A JP 3471976 B2 JP3471976 B2 JP 3471976B2
Authority
JP
Japan
Prior art keywords
temperature
cooling water
condenser
adsorption
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15837395A
Other languages
Japanese (ja)
Other versions
JPH08327177A (en
Inventor
義孝 栢原
尚二 山口
泰夫 米澤
博樹 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP15837395A priority Critical patent/JP3471976B2/en
Publication of JPH08327177A publication Critical patent/JPH08327177A/en
Application granted granted Critical
Publication of JP3471976B2 publication Critical patent/JP3471976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸着式冷凍機の温度制御
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to temperature control of an adsorption refrigerator.

【0002】[0002]

【従来の技術】吸着式冷凍機は、従来の吸収式冷凍機に
比し取り扱いが簡便である上に、熱源の許容温度範囲が
広い等の利点があり、近年コージェネレーションの排熱
回収用に多く採用されている。図1は吸着式冷凍機の構
造の概略を示したもので、再生器1a及び吸着器1bと
して交互に用いる2つの熱交換器A,Bと、凝縮器2及
び蒸発器3を備え、両熱交換器A,B内のコイル4に供
給する冷却水と温水を、一定時間毎に切り換えて吸着器
1bとして作用する熱交換器では固体吸着剤5に冷媒
(水蒸気)を吸着させ、再生器1aとして作用する熱交
換器では固体吸着剤5から冷媒を放出させるようにした
ものであり、同図に示すように、再生器1aと凝縮器
2、吸着器1bと蒸発器3をそれぞれ連通させることに
よって、再生器1aで放出された冷媒蒸気を凝縮器2で
凝縮させ、凝縮した冷媒水を凝縮水配管6によって蒸発
器3に供給する。一方蒸発器3では、冷媒蒸気が吸着器
1bに吸収されて蒸気圧が低く保たれているために、凝
縮器2から供給される冷媒水が被冷却コイル7の表面で
蒸発し、気化熱を奪うことによって冷房等に用いられる
負荷冷水を冷却する。なお固体吸着剤には通常シリカゲ
ルが使用され、また脱着とは吸着剤に吸着している冷媒
(水)を温水による加熱によって放出させることをい
う。
2. Description of the Related Art Adsorption refrigerators are easier to handle than conventional absorption refrigerators and have advantages such as wide allowable temperature range of heat source. It is widely adopted. FIG. 1 shows a schematic structure of an adsorption refrigerator, which includes two heat exchangers A and B used alternately as a regenerator 1a and an adsorber 1b, a condenser 2 and an evaporator 3, and both heat exchangers. In the heat exchanger that functions as the adsorber 1b by switching the cooling water and the hot water supplied to the coils 4 in the exchangers A and B at regular intervals, the solid adsorbent 5 adsorbs the refrigerant (steam), and the regenerator 1a. In the heat exchanger that acts as a unit, the solid adsorbent 5 is made to release the refrigerant, and as shown in the figure, the regenerator 1a and the condenser 2, and the adsorber 1b and the evaporator 3 are connected to each other. The refrigerant vapor discharged from the regenerator 1a is condensed by the condenser 2, and the condensed refrigerant water is supplied to the evaporator 3 through the condensed water pipe 6. On the other hand, in the evaporator 3, since the refrigerant vapor is absorbed by the adsorber 1b and the vapor pressure is kept low, the refrigerant water supplied from the condenser 2 evaporates on the surface of the cooled coil 7 and heats vaporization. By depriving it, the load cold water used for cooling or the like is cooled. Silica gel is usually used as the solid adsorbent, and desorption means releasing the refrigerant (water) adsorbed by the adsorbent by heating with warm water.

【0003】上記負荷冷水の取り出し温度は、食品の保
存等の用途を考慮すれば、できるだけ低いのが望ましい
が、例えば冷水出口温度を3℃にするには、蒸発器3の
被冷却コイル7の表面温度を平均1℃程度にする必要が
ある。一方吸着側熱交換器1aにおける固体吸着剤5へ
の冷媒の吸着力は1運転サイクル中に大きく変動し、こ
の吸着力のピーク時より若干の時間遅れで蒸発器3にお
ける冷媒蒸発温度が最も低くなるので、このときの被冷
却コイル7の表面の凍結を回避するために、従来は蒸発
器3内の冷媒蒸発温度センサ8で検出される蒸発温度が
予め設定されている下限値よりも低下した時には、直ち
に吸着側熱交換器1aの冷却水を停止して、蒸発温度が
一定値まで上昇した時に冷却水の供給を再開させるよう
にし、これによって冷水負荷の変動や冷却水温度の変動
に対処していた。
The temperature at which the loaded cold water is taken out is preferably as low as possible in consideration of applications such as food preservation. However, for example, in order to set the cold water outlet temperature to 3 ° C., the cooled coil 7 of the evaporator 3 is cooled. The surface temperature needs to be about 1 ° C. on average. On the other hand, the adsorbing power of the refrigerant to the solid adsorbent 5 in the adsorption side heat exchanger 1a fluctuates greatly during one operation cycle, and the refrigerant evaporating temperature in the evaporator 3 becomes the lowest with a slight time delay from the peak of the adsorbing power. Therefore, in order to avoid freezing of the surface of the cooled coil 7 at this time, the evaporation temperature detected by the refrigerant evaporation temperature sensor 8 in the evaporator 3 is lower than a preset lower limit value in the past. At times, the cooling water of the adsorption-side heat exchanger 1a is immediately stopped, and the supply of cooling water is restarted when the evaporation temperature rises to a certain value, thereby coping with fluctuations in the cooling water load and fluctuations in the cooling water temperature. Was.

【0004】[0004]

【発明が解決しようとする課題】しかしながら冷凍機の
用途を冷房以外の用途に拡大するための年中運転を考慮
すると、特に冬期には冷却水温度が低下して吸着力のピ
ークの傾斜が大きくなるために制御が困難になり、凍結
防止のための保護システムが頻繁に作動して冷凍機の発
停を繰り返すという問題がある。本発明はこれらの問題
点に鑑み、冷却水温度の低下による吸着力の急激な増加
を抑制して、冷媒蒸発温度に的確に追従して吸着力の制
御を行うことができるようなこの種の吸着式冷凍機の温
度制御方法を提供することを目的とするものである。
However, considering the year-round operation for expanding the use of the refrigerator to the use other than the cooling, especially in the winter, the temperature of the cooling water is lowered and the inclination of the peak of the adsorption force is large. Therefore, there is a problem that the control becomes difficult and the protection system for preventing freezing frequently operates to repeatedly start and stop the refrigerator. In view of these problems, the present invention suppresses a rapid increase in adsorption force due to a decrease in cooling water temperature, and can control the adsorption force by appropriately following the refrigerant evaporation temperature. It is an object of the present invention to provide a temperature control method for an adsorption refrigerator.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1による
吸着式冷凍機の温度制御方法は、図1に示すように、再
生器1a及び吸着器1bとして交互に用いる2つの熱交
換器と、凝縮器2及び蒸発器3を備え、両熱交換器1
a,1b内のコイル4に供給する冷却水と温水を所定の
サイクル時間毎に切り換えて、それぞれのコイル4の周
囲に付着させた固体吸着剤5に冷媒を吸脱着させると共
に、凝縮器2で凝縮した冷媒を凝縮水配管6を通じて蒸
発器3へ導き、被冷却コイル7の表面で蒸発させること
により負荷冷水を冷却するようにし、蒸発器3内の冷媒
蒸発温度センサ8で検出される蒸発温度が予め設定され
ている下限値(例えば−0.5℃)よりも低下した時
は、直ちに吸着側熱交換器1bの冷却水を停止して、蒸
発温度が一定値(例えば2.5℃)まで上昇した時に冷
却水の供給を再開させるようにした吸着式冷凍機におい
て、図2のフローチャートに示すように、起動後サイク
ル運転開始前に、まず冷却水温度CTのサンプリングを
行い、冷却水温度CTのレベル(例えば26℃以上,2
6℃>CT>22℃,22℃以下の3段階)に応じて予
めサイクル時間(例えば11分)又はサイクル時間より
も短く設定されている複数の脱着時間(例えば11分,
6分,4分)の一つを選択し、サイクル運転開始後は全
サイクル期間に亙って吸着を行わせると共に、脱着は上
記脱着時間だけ行わせるようにしたものである。また請
求項2の発明は、同じく図2のフローチャートに示すよ
うに、各サイクル期間(例えば11分)の最初に蒸発温
度CCを計測し、この温度CCが所定の範囲内(例えば
−0.5℃から+0.5℃までの間)にあれば、予め設
定されている脱着時間(例えば6分)を維持せしめると
共に、この温度CCが所定範囲よりも低下した場合に
は、脱着時間を一定時間(例えば1分)だけ短縮するよ
うに設定変更し、この温度CCが上記所定範囲よりも上
昇した場合には、脱着時間をサイクル時間(11分)を
限度として上記一定時間(1分)だけ延長するように設
定変更せしめるようにしたものである。
As shown in FIG. 1, a temperature control method for an adsorption refrigerator according to claim 1 of the present invention includes two heat exchangers used alternately as a regenerator 1a and an adsorber 1b. , A condenser 2 and an evaporator 3, and both heat exchangers 1
Cooling water and hot water supplied to the coils 4 in a and 1b are switched every predetermined cycle time to adsorb and desorb the refrigerant to and from the solid adsorbent 5 attached to the periphery of each coil 4, and the condenser 2 The condensed refrigerant is guided to the evaporator 3 through the condensed water pipe 6, and the load cold water is cooled by evaporating on the surface of the cooled coil 7, and the evaporation temperature detected by the refrigerant evaporation temperature sensor 8 in the evaporator 3 Is lower than a preset lower limit value (for example, -0.5 ° C), the cooling water of the adsorption side heat exchanger 1b is immediately stopped and the evaporation temperature is kept at a constant value (for example, 2.5 ° C). In the adsorption type refrigerator that restarts the supply of the cooling water when the temperature rises, the cooling water temperature CT is sampled first after the startup and before the start of the cycle operation, as shown in the flowchart of FIG. C Level (e.g., 26 ° C. or higher, 2
Depending on 6 ° C>CT> 22 ° C, three stages of 22 ° C or less), a cycle time (for example, 11 minutes) or a plurality of desorption times (for example, 11 minutes, which are set shorter than the cycle time in advance)
6 minutes, 4 minutes) is selected, and after the start of the cycle operation, adsorption is performed over the entire cycle period, and desorption is performed only during the desorption time. Further, as shown in the flowchart of FIG. 2, the invention of claim 2 measures the evaporation temperature CC at the beginning of each cycle period (for example, 11 minutes), and this temperature CC is within a predetermined range (for example, -0.5). If the temperature is between 0 ° C and + 0.5 ° C), the desorption time set in advance (for example, 6 minutes) is maintained, and if the temperature CC falls below the predetermined range, the desorption time is kept constant. If the setting is changed so as to be shortened (for example, 1 minute) and the temperature CC rises above the predetermined range, the desorption time is extended by the fixed time (1 minute) within the cycle time (11 minutes). It is designed so that the settings can be changed.

【0006】[0006]

【作用】冷却水温度を低くすると、冷媒蒸発温度の1サ
イクル期間中の下向きのピークが急峻になるが、これは
脱着サイクルから吸着サイクルに切り換えられた際に吸
着剤が急激に冷却されるために、吸着力の増加割合が大
きくなるからである。一方サイクル期間中の脱着時間を
短くすると、固体吸着剤5に吸着されていた冷媒が完全
放出されずに残存したまま吸着サイクルに切り換えられ
るので、次サイクルで冷却水により冷却されても吸着力
があまり増加せず、従って冷却水温度が一定であれば冷
媒蒸発温度が高くなる。そこで請求項1は、特に季節的
な冷却水温度の変化を考慮して、1サイクル期間中に脱
着を中断するようにし、この脱着時間の設定を起動時の
初回動作で行うようにしたものである。また請求項2
は、起動後の負荷の変動、あるいは昼夜や天候による冷
却水温度の変化に追従して、上記脱着時間を時々刻々と
設定変更できるようにしたものである。
When the cooling water temperature is lowered, the downward peak of the refrigerant evaporation temperature during one cycle becomes steep. This is because the adsorbent is rapidly cooled when the desorption cycle is switched to the adsorption cycle. In addition, the rate of increase of the suction force becomes large. On the other hand, if the desorption time during the cycle period is shortened, the refrigerant adsorbed on the solid adsorbent 5 is switched to the adsorption cycle without being completely released, so that the adsorbing power is reduced even if cooled by the cooling water in the next cycle. It does not increase so much, so if the cooling water temperature is constant, the refrigerant evaporation temperature increases. In view of this, the first aspect of the present invention is such that the desorption is interrupted during one cycle period and the desorption time is set in the first operation at the time of startup, in consideration of the seasonal change of the cooling water temperature. is there. Claim 2
Is a system in which the setting of the desorption time can be changed momentarily by following changes in load after startup or changes in cooling water temperature due to day or night or weather.

【0007】[0007]

【実施例】図1は本発明の対象とする吸着式冷凍機の概
略図を示したもので、その構造及び動作は従来例で説明
した通りであるから省略する。冷媒蒸発温度センサ8
は、蒸発器3の側壁面に取り付けられ、被冷却コイル7
の表面の蒸発温度を正確に検知できるように構成されて
いる。冷媒蒸発温度が予め設定されている下限値(例え
ば−1℃)よりも低下した時は、直ちに吸着側熱交換器
1bの冷却水を停止するか、あるいは冷却水供給量を例
えば50%に減少し、蒸発温度が復帰温度(通常2.5
℃程度に設定される)まで上昇した時に冷却水の供給を
復帰させるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of an adsorption type refrigerating machine to which the present invention is applied, and the structure and operation thereof are the same as those described in the conventional example, and therefore will be omitted. Refrigerant evaporation temperature sensor 8
Is attached to the side wall surface of the evaporator 3, and the cooled coil 7
It is configured to be able to accurately detect the evaporation temperature of the surface of. When the refrigerant evaporation temperature falls below a preset lower limit value (for example, -1 ° C), immediately stop the cooling water of the adsorption side heat exchanger 1b or reduce the cooling water supply amount to 50%, for example. However, the evaporating temperature is the recovery temperature (usually 2.5
The supply of cooling water is restored when the temperature rises up to about ℃).

【0008】図2は、本発明による温度制御方法の一実
施例をフローチャートで示したもので、運転サイクル時
間は11分に設定されている。同図において、まず冷凍
機を起動したのち、サイクル運転を開始する前に冷却水
温度CTのサンプリングを行い、冷却水温度CTが26
℃以上であれば、脱着時間を全サイクル時間すなわち1
1分に、26℃から22℃の範囲内であれば6分に、2
2℃以下であれば4分にそれぞれ設定し、しかる後にサ
イクル運転を開始する。
FIG. 2 is a flow chart showing an embodiment of the temperature control method according to the present invention. The operation cycle time is set to 11 minutes. In the figure, first, after the refrigerator is started, the cooling water temperature CT is sampled before the cycle operation is started, and the cooling water temperature CT is 26
If it is ℃ or more, the desorption time is the whole cycle time, that is, 1
1 minute, 2 minutes to 6 minutes within the range of 26 ℃ to 22 ℃
If the temperature is 2 ° C or lower, set each to 4 minutes, and then start the cycle operation.

【0009】運転サイクルにおいては、図1に示すよう
に、再生側熱交換器1aに約85℃の温水(通常コージ
ェネレーションの廃熱が利用される)が供給され、吸着
側熱交換器1bにはほぼ外気温より若干高い温度の冷却
水が供給されて、それぞれバルブV1 〜V4 により凝縮
器2又は蒸発器3と連通される。いま起動時に脱着時間
が6分に設定されたものとすると、11分のサイクル期
間の最初の3分以内に蒸発温度センサ8により検出され
る蒸発器3内の冷媒蒸発温度CCが所定の範囲(−0.
5℃から+0.5℃まで)内に留まっておれば、脱着時
間の設定変更はなく、従って当初の6分を維持するよう
に制御され、また最初の3分以内に蒸発温度CCが上記
所定範囲よりも低下した場合には、脱着時間を1分だけ
短縮して5分に設定変更し、全サイクル期間中の残り6
分間は脱着を行わず、再生側熱交換器1aへの温水の供
給を停止する。
In the operation cycle, as shown in FIG. 1, hot water of about 85 ° C. (usually the waste heat of cogeneration is used) is supplied to the heat exchanger 1a on the regeneration side, and the heat exchanger 1b on the adsorption side is supplied. Is supplied with cooling water having a temperature slightly higher than the ambient temperature, and is communicated with the condenser 2 or the evaporator 3 by valves V1 to V4, respectively. Assuming that the desorption time is set to 6 minutes at startup, the refrigerant evaporation temperature CC in the evaporator 3 detected by the evaporation temperature sensor 8 within the first 3 minutes of the 11-minute cycle period is within a predetermined range ( -0.
If it stays within 5 ° C to + 0.5 ° C), there is no change in the desorption time setting, so it is controlled to maintain the initial 6 minutes, and within the first 3 minutes, the evaporation temperature CC is set to the above predetermined value. If it falls below the range, the desorption time is shortened by 1 minute and the setting is changed to 5 minutes.
Desorption is not performed for a minute, and the supply of hot water to the regeneration side heat exchanger 1a is stopped.

【0009】なおこの間に蒸発温度CCが更に低下して
−1℃に達した場合には、直ちに吸着側熱交換器1bへ
の冷却水の供給を停止するが、通常冷却水停止後10〜
20秒程度で蒸発温度は復帰温度まで回復し、冷却水の
供給が再開される。また蒸発温度CCが、サイクル期間
の最初の3分以内に上記所定範囲よりも上昇した場合に
は、逆に脱着時間を1分延長して7分とする。なお脱着
時間がサイクル時間と等しい場合には、それ以上延長さ
れることはない。
When the evaporation temperature CC further decreases to -1 ° C during this period, the supply of the cooling water to the adsorption side heat exchanger 1b is immediately stopped, but usually 10 to 10 seconds after the cooling water is stopped.
The evaporation temperature recovers to the return temperature in about 20 seconds, and the supply of cooling water is restarted. On the contrary, when the evaporation temperature CC rises above the predetermined range within the first 3 minutes of the cycle period, the desorption time is extended by 1 minute to 7 minutes. If the desorption time is equal to the cycle time, it will not be extended any further.

【0010】[0010]

【発明の効果】請求項1の発明によれば、運転サイクル
期間中の適当な時期に脱着を中断することにより、次の
吸着サイクル中の吸着力のピークの傾斜を適正なものと
し、起動時の初回の動作でこの脱着時間の設定を行うよ
うにしたので、冷却水温度の広範囲の変化に応じて、蒸
発器内の冷媒蒸発温度を的確に制御することができると
いう利点があり、また請求項2の発明によれば、起動後
の負荷の変動や冷却水温度の変化にも高精度に追従でき
るという利点があり、従っていずれの場合にも、被冷却
コイル表面の凍結を回避しながら低温での負荷冷水の取
り出しが可能となり、この種の冷凍機の用途を食品の冷
却や保存等広い範囲に拡大し得るという利点がある。な
お上記実施例では、冷水出力の温度の制御を、蒸発器内
の冷媒蒸発温度によって行ったが、冷媒蒸発温度の代わ
りに負荷冷水の出口温度を検出することによって行って
もよい。
According to the invention of claim 1, by suspending the desorption at an appropriate time during the operation cycle, the inclination of the peak of the adsorption force in the next adsorption cycle is made proper, and at the time of start-up. Since the desorption time is set in the first operation of, there is an advantage that the refrigerant evaporation temperature in the evaporator can be accurately controlled according to a wide range change of the cooling water temperature. According to the invention of Item 2, there is an advantage that it is possible to follow the fluctuation of the load and the change of the cooling water temperature after the start with high accuracy. Therefore, in any case, the low temperature is avoided while avoiding the freezing of the cooled coil surface. It is possible to take out the loaded cold water at the time, and there is an advantage that the use of this type of refrigerator can be expanded to a wide range such as food cooling and storage. In the above embodiment, the temperature of the cold water output is controlled by the refrigerant evaporation temperature in the evaporator, but it may be controlled by detecting the outlet temperature of the load cold water instead of the refrigerant evaporation temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷凍機の概略縦断面
図。
FIG. 1 is a schematic vertical sectional view of a refrigerator showing an embodiment of the present invention.

【図2】同上の動作を示すフローチャート。FIG. 2 is a flowchart showing an operation of the above.

【符号の説明】[Explanation of symbols]

1a 再生器 1b 吸着器 2 凝縮器 3 蒸発器 4 コイル 5 固体吸着剤 6 凝縮水配管 7 被冷却コイル 8 蒸発温度センサ 1a regenerator 1b Adsorber 2 condenser 3 evaporator 4 coils 5 Solid adsorbent 6 Condensed water piping 7 Cooled coil 8 Evaporation temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 尚二 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (72)発明者 米澤 泰夫 大阪市西淀川区姫里1丁目15番10号 西 淀空調機株式会社内 (72)発明者 中野 博樹 大阪市西淀川区姫里1丁目15番10号 西 淀空調機株式会社内 (56)参考文献 特開 昭60−11072(JP,A) 特開 平5−272833(JP,A) 特開 平3−7859(JP,A) 特開 平6−257885(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 17/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shoji Yamaguchi 4-1-2, Hirano-cho, Chuo-ku, Osaka City Osaka Osaka Gas Co., Ltd. (72) Yasuo Yonezawa, 1-15-10 Himesato, Nishiyodogawa-ku, Osaka No. Nishi Yodo Air Conditioner Co., Ltd. (72) Inventor Hiroki Nakano 1-15-10 Himezato, Nishi Yodogawa-ku, Osaka City Nishi Yodo Air Conditioner Co., Ltd. (56) Reference JP-A-60-11072 (JP, A) Kaihei 5-272833 (JP, A) JP 3-7859 (JP, A) JP 6-257885 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 17 / 08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 再生器及び吸着器として交互に用いる2
つの熱交換器と、凝縮器及び蒸発器を備え、両熱交換器
内のコイルに供給する冷却水と温水を所定のサイクル時
間毎に切り換えて、それぞれのコイルの周囲に付着させ
た固体吸着剤に冷媒を吸脱着させると共に、凝縮器で凝
縮した冷媒を蒸発器へ導き、被冷却コイルの表面で蒸発
させることにより負荷冷水を冷却するようにし、蒸発器
内の冷媒蒸発温度又は負荷冷水の出口温度が予め設定さ
れている下限値よりも低下した時は、直ちに吸着側熱交
換器の冷却水を停止あるいは減量して、上記温度が一定
値まで上昇した時に冷却水の供給を復帰させるようにし
た吸着式冷凍機において、起動後サイクル運転開始前
に、まず冷却水温度のサンプリングを行い、冷却水温度
のレベルに応じて予めサイクル時間よりも短く設定され
ている複数の脱着時間の一つを選択し、サイクル運転開
始後は全サイクル期間に亙って吸着を行わせると共に、
脱着は上記脱着時間だけ行わせることを特徴とする吸収
冷凍機の温度制御方法。
1. Two used alternately as a regenerator and an adsorber
Two heat exchangers, a condenser and an evaporator, and the cooling water and hot water supplied to the coils in both heat exchangers are switched at a predetermined cycle time, and the solid adsorbent adhered to the periphery of each coil. In addition to adsorbing and desorbing the refrigerant to the condenser, it guides the refrigerant condensed in the condenser to the evaporator, and cools the load cold water by evaporating it on the surface of the coil to be cooled. When the temperature falls below the preset lower limit, the cooling water of the adsorption side heat exchanger is immediately stopped or reduced, and the supply of cooling water is restored when the temperature rises to a certain value. In the adsorption refrigerator, the cooling water temperature is first sampled after the startup and before the cycle operation is started, and a plurality of desorption times are set in advance shorter than the cycle time according to the cooling water temperature level. One select, after the start cycle operation with causing adsorption over the entire cycle period,
A temperature control method for an absorption refrigerator, wherein desorption is performed only during the desorption time.
【請求項2】 再生器及び吸着器として交互に用いる2
つの熱交換器と、凝縮器及び蒸発器を備え、両熱交換器
内のコイルに供給する冷却水と温水を所定のサイクル時
間毎に切り換えて、それぞれのコイルの周囲に付着させ
た固体吸着剤に冷媒を吸脱着させると共に、凝縮器で凝
縮した冷媒を蒸発器へ導き、被冷却コイルの表面で蒸発
させることにより負荷冷水を冷却するようにし、蒸発器
内の冷媒蒸発温度又は負荷冷水の出口温度が予め設定さ
れている下限値よりも低下した時は、直ちに吸着側熱交
換器の冷却水を停止あるいは減量して、上記温度が一定
値まで上昇した時に冷却水の供給を復帰させるようにし
た吸着式冷凍機において、各サイクル時間の最初に上記
温度を計測し、該温度が所定の範囲内にあれば予め設定
されている脱着時間を維持せしめると共に、該温度が所
定範囲よりも低下した場合には、脱着時間を一定時間だ
け短縮するように設定変更し、該温度が上記所定範囲よ
りも上昇した場合には、脱着時間をサイクル時間を限度
として上記一定時間だけ延長するように設定変更せしめ
ることを特徴とする吸着式冷凍機の温度制御方法。
2. A device used alternately as a regenerator and an adsorber.
Two heat exchangers, a condenser and an evaporator, and the cooling water and hot water supplied to the coils in both heat exchangers are switched at a predetermined cycle time, and the solid adsorbent adhered to the periphery of each coil. In addition to adsorbing and desorbing the refrigerant to the condenser, it guides the refrigerant condensed in the condenser to the evaporator, and cools the load cold water by evaporating it on the surface of the coil to be cooled. When the temperature falls below the preset lower limit value, the cooling water of the adsorption side heat exchanger is immediately stopped or reduced, and the supply of cooling water is restored when the temperature rises to a certain value. In the adsorption refrigerator, the temperature is measured at the beginning of each cycle time, and if the temperature is within the predetermined range, the desorption time set in advance is maintained and the temperature falls below the predetermined range. If the temperature rises above the above specified range, the desorption time is set to be extended by the above fixed time with the cycle time as the limit. A method for controlling the temperature of an adsorption refrigerator, which is characterized by changing the temperature.
JP15837395A 1995-05-31 1995-05-31 Temperature control method of adsorption refrigerator Expired - Fee Related JP3471976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15837395A JP3471976B2 (en) 1995-05-31 1995-05-31 Temperature control method of adsorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15837395A JP3471976B2 (en) 1995-05-31 1995-05-31 Temperature control method of adsorption refrigerator

Publications (2)

Publication Number Publication Date
JPH08327177A JPH08327177A (en) 1996-12-13
JP3471976B2 true JP3471976B2 (en) 2003-12-02

Family

ID=15670290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15837395A Expired - Fee Related JP3471976B2 (en) 1995-05-31 1995-05-31 Temperature control method of adsorption refrigerator

Country Status (1)

Country Link
JP (1) JP3471976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299087C (en) * 2005-05-26 2007-02-07 上海交通大学 Back heating type generator of heat pipe with composite adsorbent being adopted

Also Published As

Publication number Publication date
JPH08327177A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
JP2001235251A (en) Adsorbing type freezer machine
WO2000050822A1 (en) Heat pump system of combination of ammonia cycle and carbon dioxide cycle
US20090095012A1 (en) Double-effect adsorption refrigeration device
JPH11316061A (en) Air conditioning system and its operation method
JP2006329601A (en) Cooler and operation method therefor
JP3471976B2 (en) Temperature control method of adsorption refrigerator
JP2002162130A (en) Air conditioner
JP3377846B2 (en) Thermal storage type air conditioner
JP2013181666A (en) Air conditioning system
JP3353839B2 (en) Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control
JP2002250573A (en) Air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2010078298A (en) Absorption refrigerator
KR20030065970A (en) Method for driving control of low temperature of electronic refrigerator
JP2003240383A (en) Adsorption type refrigeration unit
JPH11190566A (en) Refrigerating unit
JPH08313103A (en) Absorbing type heat pump device
JP2001099474A (en) Air conditioner
JPH11223414A (en) Refrigerating device
JPH0810091B2 (en) Control method of adsorption refrigerator
JPH05296599A (en) Adsorption type heat accumulator and heat accumulation operating control method
JP3240344B2 (en) Refrigerant temperature controller for gas absorption heat source equipment
JPH11223416A (en) Refrigerating device
JPH11223415A (en) Refrigerating device
JP3316892B2 (en) Operating method of adsorption refrigeration system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030812

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees