JP3471903B2 - Chip type variable temperature attenuator - Google Patents

Chip type variable temperature attenuator

Info

Publication number
JP3471903B2
JP3471903B2 JP15991994A JP15991994A JP3471903B2 JP 3471903 B2 JP3471903 B2 JP 3471903B2 JP 15991994 A JP15991994 A JP 15991994A JP 15991994 A JP15991994 A JP 15991994A JP 3471903 B2 JP3471903 B2 JP 3471903B2
Authority
JP
Japan
Prior art keywords
electrode
temperature
metal thin
resistor
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15991994A
Other languages
Japanese (ja)
Other versions
JPH0831607A (en
Inventor
達也 武本
敏幸 長崎
圭吾 猪又
智 井上
Original Assignee
横浜電子精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜電子精工株式会社 filed Critical 横浜電子精工株式会社
Priority to JP15991994A priority Critical patent/JP3471903B2/en
Publication of JPH0831607A publication Critical patent/JPH0831607A/en
Application granted granted Critical
Publication of JP3471903B2 publication Critical patent/JP3471903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Attenuators (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、半導体を用いて電子通
信機器,計測機器等に広く使用される電力増幅器の周囲
温度の変化に追随して電力を常に調整可能にするために
使用されるもので、小型化,省資源化が進む機器の表面
に実装するチップ型温度可変減衰器に関するものであ
る。 【0002】 【従来の技術】一般には単体抵抗器を三本組み合わせて
T型またはΠ型の減衰器を構成する他に温度検知用素子
を使用し、十数点の電子部品を使用して出力調整用の電
子回路を電力増幅器に負荷させ、高周波数用の調整や温
度特性調整等を施し、ある程度の場所と人的な時間を要
して目的を達成している。 【0003】 【発明が解決しようとする課題】しかしながら、従来の
周囲温度の変化を調整して一定の出力を得ようとする回
路は部品点数が多く、特に高周波領域で使用するには特
殊の技術者を必要とし、その調整の為には多くの時間を
必要とし、更に短薄軽小が要求される機器にとっては、
回路の占める大きさも非常に厄介な問題であった。 【0004】本発明は、このような欠点を解決し機器の
特性に不安を生じることなく、容易に取り付けることが
可能なチップ型で、しかも形状は表面実装部品の基準に
準拠した非常に小型であり、機器の小型化に有効である
ばかりでなく、自社開発したチップ型の固定減衰器(実
開平4−46701号)を基盤としているため高周波領
域まで無調整で目的を達成する周囲温度追随型の出力調
整器を提供するものである。 【0005】 【課題を解決するための手段】添付図面を参照して本発
明の要旨を説明する。 【0006】方形基板1の上面のほぼ中央に金属薄膜抵
抗体2を形成し、方形基板1の一側に上面と下面とにま
たがる断面コ状にして前記金属薄膜抵抗体2の一側端部
に接触する第一電極3を形成し、この方形基板1の第一
電極3と反対側の両側角部に同様にしてそれぞれ上面と
側面と下面とにまたがる断面コ状にして前記金属薄膜抵
抗体1の他側角部にそれぞれ接触する第二電極4,第三
電極5を形成し、金属薄膜抵抗体1上に外気を遮断する
保護コート6を被覆し、第二電極4及び第三電極5間に
周囲温度の変化に応じて抵抗値の大きさが変わるブロッ
ク形状のチップ形温度可変抵抗体7を外付突設したこと
を特徴とするチップ型温度可変減衰器に係るものであ
る。 【0007】 【作用】例えば図6に示すように基盤8の取付凹部9内
に付設した接着材10並びに取付凹部8の周辺に付設した
半田10’を熱で溶かして図7のように基盤8の表面に実
装する。 【0008】第一電極3,第二電極4,第三電極5はい
ずれも方形基盤1の上面と、側面と、下面とにまたがる
断面コ字状に形成しているため確実に表面実装可能とな
る。いずれの側を入力端とするか出力端とするかは適宜
変更できるが(入力,出力の表現は説明上の区別であっ
て、機能上の差違はないとも言える)、例えば第二電極
4と第一電極3とを入力端,第三電極5と第一電極3と
を出力端とすると、本装置は等価的に図5に示すように
Π型の温度補償回路となる。 【0009】入出力のインピーダンスは薄膜抵抗体2の
抵抗値により左右し、入出力間の抵抗はこの抵抗体2の
抵抗値並びに温度可変抵抗体7により左右するため、例
えば温度可変抵抗体7は温度負特性を有するとすれば、
アッティネータとしてのマイナスゲイン(−At)は、図
8に示すようにに温度上昇に伴って減少することとなる
(アンプとしての利得(At)は温度上昇に伴なって上昇す
る。図8では縦軸に−dbにとって図示しているので、グ
ラフはマイナスゲインとして下降している。)。 【0010】また、逆に温度可変抵抗体7の温度特性を
反対に正特性に設定すれば、図8に示す点線のように利
得(At)の温度特性は逆となり、温度上昇に伴なってマ
イナスゲイン(−At)は上昇する。 【0011】従って、図8の実線で示すように利得の温
度特性が負特性を示すチップ型温度可変固定減衰器(本
器)を、図9に示すようにアンプ11に接続すると次のよ
うに作用する。 【0012】アンプ11は前述のように例えば高性能のC
aAs系の半導体素子が使用されているとすると、図9に
示すようにその利得G'は温度上昇に伴なって減少す
る。 【0013】一方、本器の利得Atは、図8で説明した
ように温度上昇に伴なって上昇する(図8では縦軸を−d
Bにとっているが、図9では+dBにとっているため、
Atのグラフは上昇する。)。 【0014】従って、トータルゲインGは、図9に示す
ようにこの本器の利得Atの温度負特性によって補償さ
れ、温度変化によって変動しない利得(トータルゲイン)
Gを得ることができるようになる。 【0015】また、同様にして仮にアンプの温度特性が
正特性の場合には、温度負特性を有する本器を接続する
ことで補償でき、トータルゲインGが温度変化に対して
同様に変動しないように安定化できることとなる。 【0016】このようなΠ型減衰回路においては、入力
から出力に伝わる電力量の減衰量を減衰器の減衰量とし
て表され、出力側に目的とするインピーダンスの回路を
接続したときに入力側で測定した抵抗値が減衰器を接続
したインピーダンスとなるが、入力から見たインピーダ
ンスは減衰器の接続有無に係わらず出力のインピーダン
スと同じになることが理想でこの値が減衰器を接続した
ことにより変化すると回路に反射が起こり特性を悪くす
る。従って、減衰器は出力のインピーダンスが入力から
見たインピーダンスと等しくなるように設計される(例
えば出力が50Ωの場合、減衰器を接続して入力から見
たときに50Ωになるようにする。)。 【0017】 【実施例】本実施例は、以下の手順により作製する。 【0018】(1) 熱伝導性,機械強度に秀れたセラミ
ック製の方形基板1の少なくとも上面に金属薄膜抵抗体
2として多層金属膜を蒸着する。 【0019】(2) 更に電極を形成する銅を重ねて全面
に蒸着する。 【0020】(3) この銅を電極に使用するため、不要
な部分をエッチングにより取り除く。 【0021】(4) (3)のエッチングにより露出した金属
薄膜抵抗体2をエッチングにより所定の減衰量,特性イ
ンピーダンスをもったパターン形状に形成した後、更に
特殊トリミングが補正を行って、例えばT型やΠ型の抵
抗体と等価な素子と成るように形成するが、第二電極4
及び第三電極5間に取り付ける温度可変抵抗体7の特
性,抵抗値等により合成された所望の抵抗値に補正す
る。 【0022】(5) 露出したこの金属薄膜抵抗体2の表
面に耐湿性に富み、高温,高絶縁性に秀れた保護コート
6を被覆する。 【0023】(6) 以上のように形成した方形基板1を
角型チップ抵抗器の標準規格値なる大きさにカッティン
グして自動実装機に装着出来るようにする。 【0024】(7) このカッティング端面の所定の位置
に銅を蒸着して第一電極3,第二電極4,第三電極5を
形成する。 【0025】(8) 第一電極3,第二電極4,第三電極
5の表面に、表面実装が確実となるようにするとともに
第二電極4,第三電極5の上に取り付ける温度可変抵抗
体7を確実にハンダ付する為にハンダ被覆をする。 【0026】(9) チップ形状の方形基板の本発明品を
チップ抵抗器の表面実装技術を利用して自動実装機など
により基盤に確実に表面実装するものである。 【0027】 【発明の効果】本発明は、上述のように構成したから、
極めて小型で製作が容易で量産性に適したチップ型の周
囲温度追随型の減衰器となり、しかもチップ抵抗器の表
面実装技術を利用して極めて簡単に表面実装することが
出来、しかも本案品は電極を上面と側面と下面とのまた
がるコ字状に形成したため接触の信頼性が高い。 【0028】また、使用する半導体の出力特性に合わせ
て容易に本案品を製作することができ、出力素子の周囲
温度による増減を補正し、一定した出力を得られる極め
て実用性に秀れたチップ型温度可変減衰器である。 【0029】また、しかも周囲温度の変化に応じて減衰
量が大きくなるように構成する手段として、単に所定の
チップ型減衰器にチップ型の可変抵抗体を外付するだけ
で良く、製作が簡単であると共に、小型に設計できると
共に容易に表面実装可能な構成となり極めて実用性に秀
れたチップ型温度可変減衰器となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the use of semiconductors to control the power following changes in the ambient temperature of power amplifiers widely used in electronic communication equipment and measurement equipment. The present invention relates to a chip-type variable temperature attenuator mounted on a surface of a device which is used for making it possible to always adjust the size and which is being reduced in size and resource saving. 2. Description of the Related Art Generally, in addition to forming a T-type or a 減 衰 -type attenuator by combining three single resistors, a temperature detecting element is used, and an output is made using more than ten electronic parts. An electronic circuit for adjustment is loaded on the power amplifier, and adjustment for high frequency, temperature characteristic adjustment, and the like are performed, and a certain place and human time are required to achieve the purpose. [0003] However, a conventional circuit for adjusting a change in ambient temperature to obtain a constant output has a large number of parts, and a special technique is required especially for use in a high frequency region. Equipment, which requires a lot of time for adjustment, and for devices that require short, thin and light,
The size occupied by the circuit was also a very troublesome problem. [0004] The present invention is a chip type which can be easily mounted without solving the above-mentioned drawbacks and does not cause anxiety in the characteristics of the device, and has a very small size conforming to the standards of surface mount parts. Not only is it effective for miniaturization of equipment, but also based on a chip-type fixed attenuator developed in-house (Japanese Utility Model Application No. 4-46701). Is provided. [0005] The gist of the present invention will be described with reference to the accompanying drawings. A metal thin-film resistor 2 is formed substantially at the center of the upper surface of a rectangular substrate 1, and one side end of the metal thin-film resistor 2 is formed on one side of the rectangular substrate 1 so as to have a U-shaped cross section extending over the upper surface and the lower surface. A first electrode 3 is formed in contact with the metal thin film resistor. The second electrode 4 and the third electrode 5 are formed so as to be in contact with the other corners of the first electrode 1 respectively, and the metal thin film resistor 1 is covered with a protective coat 6 for shutting off outside air. The present invention relates to a chip-type variable temperature attenuator in which a block-shaped chip-type temperature variable resistor 7 whose resistance value changes according to a change in ambient temperature is externally provided. For example, as shown in FIG. 6, an adhesive material 10 provided in the mounting recess 9 of the base 8 and a solder 10 'provided in the periphery of the mounting recess 8 are melted by heat, and as shown in FIG. Mount on the surface of The first electrode 3, the second electrode 4, and the third electrode 5 are all formed in a U-shaped cross-section extending over the upper surface, the side surface, and the lower surface of the rectangular base 1, so that the surface mounting can be performed reliably. Become. Which side is used as an input terminal or an output terminal can be changed as appropriate (input and output expressions are distinctions for explanation, and it can be said that there is no functional difference). Assuming that the first electrode 3 is an input terminal and the third electrode 5 and the first electrode 3 are output terminals, the present device equivalently becomes a Π-type temperature compensation circuit as shown in FIG. The input / output impedance depends on the resistance of the thin-film resistor 2, and the resistance between the input and output depends on the resistance of the resistor 2 and the temperature variable resistor 7. For example, the temperature variable resistor 7 Assuming that it has temperature negative characteristics,
The negative gain (-At) as the attenuator decreases as the temperature rises as shown in FIG.
(The gain (At) of the amplifier rises as the temperature rises. In FIG. 8, since the vertical axis indicates −db, the graph falls as a negative gain.) Conversely, if the temperature characteristic of the temperature variable resistor 7 is set to the positive characteristic, the temperature characteristic of the gain (At) is reversed as shown by the dotted line in FIG. The negative gain (-At) increases. Therefore, when a chip-type variable temperature fixed attenuator (this device) having a negative gain temperature characteristic as shown by a solid line in FIG. 8 is connected to the amplifier 11 as shown in FIG. Works. As described above, the amplifier 11 is, for example, a high-performance C
Assuming that an aAs-based semiconductor element is used, the gain G ′ thereof decreases as the temperature rises, as shown in FIG. On the other hand, the gain At of the device increases as the temperature rises as described with reference to FIG.
B, but in Figure 9 it is + dB, so
The graph of At rises. ). Accordingly, the total gain G is compensated by the negative temperature characteristic of the gain At of the present apparatus and does not vary with temperature change (total gain), as shown in FIG.
G can be obtained. Similarly, if the temperature characteristic of the amplifier is a positive characteristic, it can be compensated by connecting a main unit having a negative temperature characteristic so that the total gain G does not fluctuate in response to a temperature change. Can be stabilized. In such a 減 衰 -type attenuation circuit, the attenuation of the amount of power transmitted from the input to the output is represented as the attenuation of the attenuator. The measured resistance value is the impedance with the attenuator connected, but the impedance seen from the input is ideally the same as the output impedance regardless of whether the attenuator is connected or not. If it changes, reflection will occur in the circuit, degrading the characteristics. Therefore, the attenuator is designed so that the impedance of the output is equal to the impedance seen from the input (for example, if the output is 50Ω, the attenuator is connected so as to be 50Ω when seen from the input). . EXAMPLE This example is manufactured by the following procedure. (1) A multilayer metal film is deposited as a metal thin film resistor 2 on at least the upper surface of a ceramic rectangular substrate 1 having excellent thermal conductivity and mechanical strength. (2) Further, copper for forming an electrode is overlaid and vapor-deposited on the entire surface. (3) Unnecessary portions are removed by etching in order to use the copper for the electrodes. (4) After the metal thin film resistor 2 exposed by the etching of (3) is formed into a pattern shape having a predetermined attenuation and characteristic impedance by etching, special trimming further corrects it, and The second electrode 4 is formed so as to be an element equivalent to a type or Π type resistor.
In addition, the resistance is corrected to a desired resistance value synthesized by the characteristics, resistance value, and the like of the temperature variable resistor 7 attached between the third electrodes 5. (5) The exposed surface of the metal thin film resistor 2 is coated with a protective coat 6 which is rich in moisture resistance, high in temperature and excellent in insulation. (6) The rectangular substrate 1 formed as described above is cut to a size of a standard value of a square chip resistor so that it can be mounted on an automatic mounting machine. (7) Copper is vapor-deposited at a predetermined position on the cutting end surface to form the first electrode 3, the second electrode 4, and the third electrode 5. (8) A variable temperature resistor mounted on the surfaces of the first electrode 3, the second electrode 4 and the third electrode 5 to ensure surface mounting and to be mounted on the second electrode 4 and the third electrode 5. Solder coating is applied to ensure that the body 7 is soldered. (9) The present invention, which is a chip-shaped rectangular substrate, is securely surface-mounted on a substrate by an automatic mounting machine or the like utilizing the surface mounting technology of a chip resistor. The present invention is constructed as described above.
It is a chip-type attenuator that is extremely compact, easy to manufacture and suitable for mass production, and can be surface-mounted very easily using the surface-mounting technology of chip resistors. Since the electrodes are formed in a U-shape extending over the upper surface, the side surface, and the lower surface, contact reliability is high. Further, the present invention can be easily manufactured in accordance with the output characteristics of the semiconductor used, and a highly practical chip capable of obtaining a constant output by compensating for an increase or decrease due to the ambient temperature of the output element. Type temperature variable attenuator. Further, as a means for increasing the amount of attenuation in accordance with a change in the ambient temperature, it is only necessary to externally attach a chip-type variable resistor to a predetermined chip-type attenuator. In addition, a chip-type variable temperature attenuator which can be designed to be small in size and can be easily mounted on a surface becomes extremely practical.

【図面の簡単な説明】 【図1】本実施例の正面側から見た斜視図である。 【図2】本実施例の背面側から見た斜視図である。 【図3】本実施例の平面図である。 【図4】本実施例の底面図である。 【図5】本実施例の等価回路図である。 【図6】本実施例の基盤に表面実装する実装前の説明図
である。 【図7】本実施例の基盤に表面実装する実装後の説明図
である。 【図8】本実施例のマイナスゲインを示す特性グラフで
ある。 【図9】本実施例の利得の温度補償を示す作動説明図並
びに特性グラフである。 【符号の説明】 1 方形基板 2 金属薄膜抵抗体 3 第一電極 4 第二電極 5 第三電極 6 保護コート 7 チップ型温度可変抵抗体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the present embodiment as viewed from the front side. FIG. 2 is a perspective view of the embodiment as viewed from the rear side. FIG. 3 is a plan view of the present embodiment. FIG. 4 is a bottom view of the present embodiment. FIG. 5 is an equivalent circuit diagram of the present embodiment. FIG. 6 is an explanatory diagram before surface mounting on a substrate of the present embodiment. FIG. 7 is an explanatory diagram after mounting, which is surface-mounted on a substrate according to the present embodiment. FIG. 8 is a characteristic graph showing a negative gain according to the present embodiment. FIG. 9 is an operation explanatory diagram and a characteristic graph showing the temperature compensation of the gain of the present embodiment. [Description of Signs] 1 Rectangular substrate 2 Metal thin film resistor 3 First electrode 4 Second electrode 5 Third electrode 6 Protective coat 7 Chip type temperature variable resistor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 智 新潟県西頸城郡青海町須沢537番地 横 浜電子精工株式会社新潟工場内 (56)参考文献 特開 平4−172706(JP,A) 特開 平5−258924(JP,A) 特開 平4−117013(JP,A) 実開 平3−115405(JP,U) 実開 平4−29227(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01C 7/04 H01C 1/02 H01C 7/00 H01C 13/02 H03H 7/24 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Satoshi Inoue 537 Suzawa, Aomi-cho, Nishikubiki-gun, Niigata Pref. JP-A-5-258924 (JP, A) JP-A-4-117013 (JP, A) JP-A-3-115405 (JP, U) JP-A-4-29227 (JP, U) (58) Fields investigated (Int) .Cl. 7 , DB name) H01C 7/04 H01C 1/02 H01C 7/00 H01C 13/02 H03H 7/24

Claims (1)

(57)【特許請求の範囲】 【請求項1】 方形基板の上面のほぼ中央に金属薄膜抵
抗体を形成し、方形基板の一側に上面と下面とにまたが
る断面コ状にして前記金属薄膜抵抗体の一側端部に接触
する第一電極を形成し、この方形基板の第一電極と反対
側の両側角部に同様にしてそれぞれ上面と側面と下面と
にまたがる断面コ状にして前記金属薄膜抵抗体の他側角
部にそれぞれ接触する第二電極,第三電極を形成し、金
属薄膜抵抗体上に外気を遮断する保護コートを被覆し、
第二電極及び第三電極間に周囲温度の変化に応じて抵抗
値の大きさが変わるブロック形状のチップ形温度可変抵
抗体を外付突設したことを特徴とするチップ型温度可変
減衰器。
(57) [Claim 1] A metal thin film resistor is formed substantially at the center of the upper surface of a rectangular substrate, and the metal thin film is formed on one side of the rectangular substrate so as to have a U-shaped cross section extending over the upper and lower surfaces. Forming a first electrode in contact with one end of the resistor body, the cross-sectional U-shaped cross over the upper surface, the side surface, and the lower surface in the same manner on both side corners opposite to the first electrode of this rectangular substrate, and Forming a second electrode and a third electrode that are in contact with the other corners of the metal thin-film resistor, respectively, and covering the metal thin-film resistor with a protective coat for blocking outside air;
A chip-type variable temperature attenuator, wherein a block-shaped chip-type variable temperature resistor whose external resistance changes according to a change in ambient temperature is externally provided between the second electrode and the third electrode.
JP15991994A 1994-07-12 1994-07-12 Chip type variable temperature attenuator Expired - Lifetime JP3471903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15991994A JP3471903B2 (en) 1994-07-12 1994-07-12 Chip type variable temperature attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15991994A JP3471903B2 (en) 1994-07-12 1994-07-12 Chip type variable temperature attenuator

Publications (2)

Publication Number Publication Date
JPH0831607A JPH0831607A (en) 1996-02-02
JP3471903B2 true JP3471903B2 (en) 2003-12-02

Family

ID=15704027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15991994A Expired - Lifetime JP3471903B2 (en) 1994-07-12 1994-07-12 Chip type variable temperature attenuator

Country Status (1)

Country Link
JP (1) JP3471903B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481008B (en) * 2012-11-22 2015-04-11 Lextar Electronics Corp Light-emitting device

Also Published As

Publication number Publication date
JPH0831607A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
KR100956103B1 (en) Temperature compensation attenuator
US5351026A (en) Thermistor as electronic part
JP3058097B2 (en) Thermistor chip and manufacturing method thereof
US4439754A (en) Apertured electronic circuit package
JP3471903B2 (en) Chip type variable temperature attenuator
US4260965A (en) Fixed microwave attenuator having mounting hole passing through alumina porcelain substrate
JP2544438Y2 (en) Chip type variable temperature fixed attenuator
US7990230B2 (en) Temperature compensation attenuator
US7271682B1 (en) Wideband temperature-variable attenuator
JPH0963805A (en) Square chip resistor
CN115764216A (en) Temperature compensation attenuator and electronic equipment
JPH0653007A (en) Chip type thermistor and its manufacture
KR200393925Y1 (en) Ceramic Package of RF AMP circuit for compensating temperature
KR100467200B1 (en) A method of manufacturing for a ceramic microwave power divider used in a telecommunication device
JPH0156556B2 (en)
JPH11307309A (en) Chip thermister
JP2867711B2 (en) Square chip resistor for function correction, method of manufacturing the same, and method of trimming the same
JP2867723B2 (en) Chip type three-terminal capacitor
JPH11177370A (en) Microwave attenuator
JPH04192303A (en) Chip type thermister
JPS639726B2 (en)
JPS6043022B2 (en) Microwave device module
JPH05182809A (en) Trimming resistance structure
JP2541336B2 (en) Method of connecting integrated circuit device
JPH05283201A (en) Resistor electronic component

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term