JP3470285B2 - Manufacturing method of multilayer ceramic capacitor - Google Patents

Manufacturing method of multilayer ceramic capacitor

Info

Publication number
JP3470285B2
JP3470285B2 JP21410396A JP21410396A JP3470285B2 JP 3470285 B2 JP3470285 B2 JP 3470285B2 JP 21410396 A JP21410396 A JP 21410396A JP 21410396 A JP21410396 A JP 21410396A JP 3470285 B2 JP3470285 B2 JP 3470285B2
Authority
JP
Japan
Prior art keywords
dielectric
internal electrode
multilayer ceramic
sintered body
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21410396A
Other languages
Japanese (ja)
Other versions
JPH1041185A (en
Inventor
賢一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP21410396A priority Critical patent/JP3470285B2/en
Publication of JPH1041185A publication Critical patent/JPH1041185A/en
Application granted granted Critical
Publication of JP3470285B2 publication Critical patent/JP3470285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は積層セラミックコン
デンサの製造方法に関する。更に詳細には、本発明はN
iなどの卑金属を内部電極に使用し、高い絶縁抵抗値を
有する積層セラミックコンデンサに関する。 【0002】 【従来の技術】チタン酸バリウムなどのチタン酸塩を主
成分とする高誘電率セラミック材料を誘電体として用
い、Pt,Pd又はこれらの合金を内部電極として用い
る積層セラミックコンデンサは、小型でありながら大き
な容量を有するので、高信頼性を必要とする様々な電子
回路で広く使用されている。 【0003】積層セラミックコンデンサを製造する場
合、先ず、所定の膜厚のセラミックグリーンシートを常
用の方法で作製し、このセラミックグリーンシート上に
内部電極となるPt,Pd又はこれらの合金粉末ペース
トを印刷又は塗布し、これらを多数枚積層して加熱しな
がら圧着し、一体化させる。これを大気中で1300℃
前後の温度で焼成し、焼結体を生成する。この焼結体の
内部電極と導通する外部電極を焼結体側面に焼付形成さ
せる。 【0004】前記のような従来の製造方法において、内
部電極形成材料としてPt,Pd又はこれらの合金を使
用するのは、セラミック誘電体と内部電極とを同時に焼
成しても、これらの金属がセラミック誘電体の焼成温度
以上の融点を有するので溶融せず、酸化性雰囲気中でも
酸化されず、更に、セラミック誘電体と反応しないため
である。 【0005】しかし、Pt,Pd又はこれらの合金は非
常に高価であり、積層セラミックコンデンサのコストを
増大させる主たる原因となっていた。このため、内部電
極材料としてNiの使用が試みられてきた。しかし、電
極として印刷されるNiは表面活性の高い粉末状のもの
であり、高温の酸化性雰囲気中では容易に酸化されてし
まい、導電性を失うので、電極として機能しなくなって
しまう。従って、Niを内部電極として使用するために
は、少なくとも粉末状のNiが焼結によって板状にな
り、表面活性が下がるまでの間は、セラミック誘電体と
共に、Ni内部電極を還元性雰囲気中で焼成しなければ
ならない。しかしその反面、還元性雰囲気中でセラミッ
ク誘電体材料を焼成すると、これらの材料が還元されす
ぎ、半導体化することがある。誘電体の酸化反応と同時
に内部電極の酸化も進行するので、内部電極の導電性を
失わない範囲での誘電体の絶縁性向上には限界があっ
た。 【0006】 【発明が解決しようとする課題】従って、本発明の目的
は、Niなどの卑金属を内部電極として使用し、高い絶
縁抵抗値を有する積層セラミックコンデンサの製造方法
を提供することである。 【0007】 【課題を解決するための手段】前記課題は、複数の誘電
体セラミック層と、前記誘電体セラミック層を介して交
互に積層された複数の卑金属内部電極とからなる積層セ
ラミック焼結体を準備し、該焼結体を600〜1200
℃の範囲内の温度で、0.1MPa以上の酸素分圧の雰
囲気中で酸化処理することにより解決される。 【0008】 【発明の実施の形態】本発明によれば、Niの酸化反応
と、誘電体の酸化反応の挙動の違いを利用することによ
り、誘電体のみを選択的に酸化させ、絶縁抵抗値を向上
させることができる。 【0009】焼結体における酸化反応の速度は、Niの
場合、酸素の拡散により律速されるので、周囲の酸素分
圧には無関係である。これに対し、誘電体の場合、酸素
との化学的な結合反応により律速されるので、反応速度
は周囲の酸素分圧に比例する。従って、焼結体の酸化処
理時に、雰囲気中の酸素分圧を高くすることにより誘電
体の酸化のみを促進させることができ、誘電体の絶縁抵
抗値を高めることができる。 【0010】本発明の方法により焼結体を酸化処理する
場合、密閉可能な圧力容器を使用し、容器内の酸素分圧
を0.1MPa以上に維持することが好ましい。酸素分
圧が0.1MPa未満の場合、圧力容器は不要である
が、誘電体のみを選択的に酸化させる効果が小さい。 【0011】本発明の方法により焼結体を酸化処理する
場合、600〜1200℃の範囲内であることが好まし
い。温度が600℃未満の場合、処理時間が長くなり過
ぎ、スループットが低下する。一方、温度が1200℃
超の場合、処理時間は短くなるが、誘電体の焼成温度に
近すぎると、誘電体の電気特性に悪影響を与えるので好
ましくない。 【0012】本発明の方法が実施される誘電体セラミッ
クは一般的に、チタン酸バリウム系のセラミックが好ま
しい。この、チタン酸バリウム系セラミックの具体的組
成は特に限定されない。例えば、下記の一般式、 {Ba(1-x)CaxA{Ti(1-y)ZryB3 (但し、前記式中、1.00<A/B<1.02であ
り、0.05≦x≦0.15であり、0.01≦y≦
0.25である)で示される主成分と共に、 lL,mM及びnG (但し、前記式中、LはPmを除くランタニド元素の化
合物のうちの少なくとも1種類の化合物であり、MはM
nを主成分とする酸化物であり、GはSiを主成分とす
るガラス形成酸化物であり、0<l<5.0mol%,
0.1<m≦1.0mol%及び0<n<3.0wt%であ
る)からなる副成分を含有する耐還元性誘電体組成物を
好適に使用することができる。しかし、この組成に限定
されないことは言うまでもない。 【0013】内部電極材料はNiの他、Fe,Coなど
の卑金属類も同等に使用できる。しかし、コスト及び使
用適性などの点からNiが最も好ましい。 【0014】 【実施例】以下、実施例により本発明の効果を例証す
る。 【0015】実施例1 (Ba0.950Ca0.0501.01(Ti0.78Zr0.22)O3
+0.5mol%Gd23+0.3mol%MnCO3+0.
1wt%SiO2の組成を有する誘電体セラミック組成物
を用い、20枚の有効内部電極を有する3.2x1.6
mmタイプのグリーンチップを作製した。なお、誘電体
の厚みは焼結後で12μmであった。内部電極としては
Ni及びPdを使用した。Ni内部電極を有するグリー
ンチップは3%H2/97%N2雰囲気中で1320℃で
焼成した。Pd内部電極を有するグリーンチップは空気
中で1320℃で焼成し、誘電体の酸化処理の極限値の
目安として用いた。焼成後のNi内部電極品をN2中、
空気中、0.1〜1MPaの酸素雰囲気中で1000
℃、30分間の酸化処理を行った。研磨により端面部に
露出しているNi内部電極の表面の酸化物層を除去した
後、Ag外部電極を焼き付けた。Pd内部電極品に対し
ては、酸化処理を行わず、Ag外部電極を焼き付けた。
得られた各焼結体の絶縁抵抗値を測定した。結果を下記
の表1に示す。 【0016】 【表1】 【0017】前記の表1に示された結果から明らかなよ
うに、酸化処理時の酸素分圧を高くするほど絶縁抵抗は
高くなる。実施例1における条件では、1MPa付近で
Pd内部電極と同等の絶縁抵抗値となり、誘電体に与え
られた還元雰囲気焼成の影響が殆ど取り除かれる。 【0018】実施例2 (Ba0.950Ca0.0501.01(Ti0.78Zr0.22)O3
+0.5mol%Gd23+0.3mol%MnCO3+0.
1wt%SiO2の組成を有する誘電体セラミック組成物
を用い、20枚の有効内部電極を有する3.2x1.6
mmタイプのグリーンチップを作製した。なお、誘電体
の厚みは焼結後で12μmであった。内部電極としては
Ni及びPdを使用した。Ni内部電極を有するグリー
ンチップは3%H2/97%N2雰囲気中で1320℃で
焼成した。Pd内部電極を有するグリーンチップは空気
中で1320℃で焼成し、誘電体の酸化処理の極限値の
目安として用いた。焼成後のNi及びPd内部電極品に
Ag外部電極を焼き付けた。その後、空気中及び0.1
〜1MPaの酸素雰囲気中で800℃、2時間の酸化処
理を行った。得られた各焼結体の絶縁抵抗値を測定し
た。結果を下記の表2に示す。 【0019】 【表2】【0020】表2に示された結果から明らかなように、
Ni内部電極品の場合、酸素分圧が1.0MPaの酸化
処理でも未処理と比較して、絶縁抵抗は約10倍にな
る。しかし、Pd内部電極品と比較して、酸素分圧が
1.0MPaの酸化処理でもNi内部電極品の絶縁抵抗
値は飽和していないので、一層高い酸素分圧にすればN
i内部電極品の絶縁抵抗値は更に高くなることが予測さ
れる。 【0021】 【発明の効果】以上説明したように、本発明の方法によ
れば、Niなどの卑金属を内部電極として使用し、高い
絶縁抵抗値を有する積層セラミックコンデンサを得るこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic capacitor. More specifically, the present invention relates to N
The present invention relates to a multilayer ceramic capacitor using a base metal such as i for an internal electrode and having a high insulation resistance value. 2. Description of the Related Art A multilayer ceramic capacitor using a high dielectric constant ceramic material mainly composed of a titanate such as barium titanate as a dielectric and using Pt, Pd or an alloy thereof as an internal electrode is small in size. However, since it has a large capacitance, it is widely used in various electronic circuits requiring high reliability. When manufacturing a multilayer ceramic capacitor, first, a ceramic green sheet having a predetermined film thickness is prepared by a usual method, and Pt, Pd or an alloy powder paste of these alloys serving as internal electrodes is printed on the ceramic green sheet. Alternatively, a large number of these may be laminated, press-bonded while heating, and integrated. 1300 ° C in air
It is fired at the temperature before and after to produce a sintered body. An external electrode that is electrically connected to the internal electrode of the sintered body is formed by baking on the side surface of the sintered body. In the conventional manufacturing method as described above, Pt, Pd or an alloy thereof is used as a material for forming an internal electrode, because the metal is formed of ceramic even if the ceramic dielectric and the internal electrode are fired simultaneously. This is because it has a melting point not lower than the firing temperature of the dielectric, does not melt, is not oxidized even in an oxidizing atmosphere, and does not react with the ceramic dielectric. [0005] However, Pt, Pd or alloys thereof are very expensive, and have been a major cause for increasing the cost of the multilayer ceramic capacitor. For this reason, use of Ni as an internal electrode material has been attempted. However, Ni printed as an electrode is in the form of a powder having a high surface activity, is easily oxidized in a high-temperature oxidizing atmosphere, loses conductivity, and thus does not function as an electrode. Therefore, in order to use Ni as an internal electrode, at least until the powdered Ni becomes plate-like by sintering and the surface activity is reduced, the Ni internal electrode is placed in a reducing atmosphere together with the ceramic dielectric. Must be fired. However, on the other hand, when ceramic dielectric materials are fired in a reducing atmosphere, these materials are excessively reduced and may be converted into semiconductors. Since the oxidation of the internal electrode proceeds simultaneously with the oxidation reaction of the dielectric, there is a limit in improving the insulating property of the dielectric within a range where the conductivity of the internal electrode is not lost. Accordingly, an object of the present invention is to provide a method of manufacturing a multilayer ceramic capacitor having a high insulation resistance value using a base metal such as Ni as an internal electrode. An object of the present invention is to provide a multilayer ceramic sintered body comprising a plurality of dielectric ceramic layers and a plurality of base metal internal electrodes alternately laminated via the dielectric ceramic layers. Is prepared, and the sintered body is prepared in a range of 600 to 1200.
The problem can be solved by performing the oxidation treatment in an atmosphere having an oxygen partial pressure of 0.1 MPa or more at a temperature in the range of ° C. According to the present invention, by utilizing the difference between the oxidation reaction of Ni and the oxidation reaction of a dielectric, only the dielectric is selectively oxidized and the insulation resistance value is reduced. Can be improved. In the case of Ni, the rate of the oxidation reaction in the sintered body is determined by the diffusion of oxygen, and is independent of the surrounding oxygen partial pressure. On the other hand, in the case of a dielectric, since the rate is determined by a chemical bonding reaction with oxygen, the reaction rate is proportional to the surrounding oxygen partial pressure. Therefore, by increasing the oxygen partial pressure in the atmosphere during the oxidation treatment of the sintered body, only the oxidation of the dielectric can be promoted, and the insulation resistance value of the dielectric can be increased. When the sintered body is oxidized by the method of the present invention, it is preferable to use a sealable pressure vessel and maintain the oxygen partial pressure in the vessel at 0.1 MPa or more. When the oxygen partial pressure is less than 0.1 MPa, a pressure vessel is unnecessary, but the effect of selectively oxidizing only the dielectric is small. When the sintered body is oxidized by the method of the present invention, the temperature is preferably in the range of 600 to 1200 ° C. When the temperature is lower than 600 ° C., the processing time becomes too long, and the throughput is reduced. On the other hand, the temperature is 1200 ° C
If it is longer than the above, the processing time is shortened. However, if it is too close to the firing temperature of the dielectric, it is not preferable because the electrical properties of the dielectric are adversely affected. The dielectric ceramic on which the method of the present invention is practiced is generally preferably a barium titanate-based ceramic. The specific composition of the barium titanate-based ceramic is not particularly limited. For example, the following general formula, {Ba (1-x) Ca x} A {Ti (1-y) Zr y} B O 3 ( where, in the formula, with 1.00 <A / B <1.02 Yes, 0.05 ≦ x ≦ 0.15, 0.01 ≦ y ≦
Together with a main component represented by 0.25), and L, mM and nG (wherein L is at least one compound among lanthanide compounds except Pm, and M is M
G is an oxide containing n as a main component, G is a glass-forming oxide containing Si as a main component, and 0 <l <5.0 mol%,
0.1 <m ≦ 1.0 mol% and 0 <n <3.0 wt%) can be preferably used. However, it is needless to say that the composition is not limited to this. As the internal electrode material, in addition to Ni, base metals such as Fe and Co can be equally used. However, Ni is most preferable in terms of cost, suitability for use, and the like. The effects of the present invention will now be illustrated by examples. Example 1 (Ba 0.950 Ca 0.050 ) 1.01 (Ti 0.78 Zr 0.22 ) O 3
+0.5 mol% Gd 2 O 3 +0.3 mol% MnCO 3 +0.
3.2 × 1.6 with 20 effective internal electrodes using a dielectric ceramic composition having a composition of 1 wt% SiO 2
mm type green chips were produced. The thickness of the dielectric was 12 μm after sintering. Ni and Pd were used as internal electrodes. The green chip having Ni internal electrodes was fired at 1320 ° C. in a 3% H 2 /97% N 2 atmosphere. The green chip having a Pd internal electrode was fired at 1320 ° C. in air and used as a reference for the limit value of the dielectric oxidation treatment. The fired Ni internal electrode product was placed in N 2 ,
1000 in air, 0.1 to 1 MPa oxygen atmosphere
An oxidation treatment was performed at 30 ° C. for 30 minutes. After the oxide layer on the surface of the Ni internal electrode exposed at the end face was removed by polishing, the Ag external electrode was baked. The Ag external electrode was baked on the Pd internal electrode product without performing the oxidation treatment.
The insulation resistance value of each of the obtained sintered bodies was measured. The results are shown in Table 1 below. [Table 1] As is apparent from the results shown in Table 1, the insulation resistance increases as the oxygen partial pressure during the oxidation treatment increases. Under the conditions of the first embodiment, the insulation resistance value becomes equal to that of the Pd internal electrode near 1 MPa, and the effect of the firing in the reducing atmosphere given to the dielectric is almost eliminated. Example 2 (Ba 0.950 Ca 0.050 ) 1.01 (Ti 0.78 Zr 0.22 ) O 3
+0.5 mol% Gd 2 O 3 +0.3 mol% MnCO 3 +0.
3.2 × 1.6 with 20 effective internal electrodes using a dielectric ceramic composition having a composition of 1 wt% SiO 2
mm type green chips were produced. The thickness of the dielectric was 12 μm after sintering. Ni and Pd were used as internal electrodes. A green chip having Ni internal electrodes was fired at 1320 ° C. in a 3% H 2 /97% N 2 atmosphere. The green chip having a Pd internal electrode was fired at 1320 ° C. in air and used as a reference for the limit value of the dielectric oxidation treatment. Ag external electrodes were baked on the baked Ni and Pd internal electrode products. Then in air and 0.1
The oxidation treatment was performed at 800 ° C. for 2 hours in an oxygen atmosphere of 11 MPa. The insulation resistance value of each of the obtained sintered bodies was measured. The results are shown in Table 2 below. [Table 2] As is clear from the results shown in Table 2,
In the case of the Ni internal electrode product, the insulation resistance is about 10 times as large as that of the untreated one even if the oxidation treatment is performed at an oxygen partial pressure of 1.0 MPa. However, as compared with the Pd internal electrode product, the insulation resistance value of the Ni internal electrode product is not saturated even with the oxidation treatment at an oxygen partial pressure of 1.0 MPa.
It is expected that the insulation resistance value of the i internal electrode product will be even higher. As described above, according to the method of the present invention, a multilayer ceramic capacitor having a high insulation resistance can be obtained using a base metal such as Ni as an internal electrode.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 卑金属を内部電極とする積層セラミック
コンデンサの製造方法において、(a) 複数の誘電体セラミック層と、前記誘電体セラミッ
ク層を介して交互に積層された複数の卑金属内部電極と
からなる積層セラミック焼結体を準備するステップと、 (b) 該焼結体を600〜1200℃の範囲内の温度で、
0.1MPa以上の酸素分圧の雰囲気中で酸化処理する
ステップとからなり、 前記誘電体セラミック層はチタン酸バリウムを主成分と
する組成物からなり、前記内部電極はNiからなる、
とを特徴とする積層セラミックコンデンサの製造方法。
(57) [Claim 1] In a method of manufacturing a multilayer ceramic capacitor using a base metal as an internal electrode, (a) a plurality of dielectric ceramic layers and alternately laminated via the dielectric ceramic layers Preparing a multilayer ceramic sintered body comprising a plurality of base metal internal electrodes, and (b) subjecting the sintered body to a temperature in a range of 600 to 1200 ° C.
Oxidation treatment in an atmosphere with an oxygen partial pressure of 0.1 MPa or more
And wherein the dielectric ceramic layer contains barium titanate as a main component.
Wherein the internal electrode is made of Ni .
JP21410396A 1996-07-26 1996-07-26 Manufacturing method of multilayer ceramic capacitor Expired - Fee Related JP3470285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21410396A JP3470285B2 (en) 1996-07-26 1996-07-26 Manufacturing method of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21410396A JP3470285B2 (en) 1996-07-26 1996-07-26 Manufacturing method of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH1041185A JPH1041185A (en) 1998-02-13
JP3470285B2 true JP3470285B2 (en) 2003-11-25

Family

ID=16650291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21410396A Expired - Fee Related JP3470285B2 (en) 1996-07-26 1996-07-26 Manufacturing method of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3470285B2 (en)

Also Published As

Publication number Publication date
JPH1041185A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
TW529047B (en) Multilayer ceramic capacitor and method for the manufacture thereof
US5036424A (en) Multilayer ceramic capacitive element
JPH113834A (en) Multilayer ceramic capacitor and its manufacture
JP7506467B2 (en) Manufacturing method for ceramic electronic components
JP3642282B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
TW200411680A (en) Manufacturing method of laminated PTC (positive temperature coefficient) thermistor
JP2004504712A (en) Ceramic material and capacitor having the ceramic material
JP2757587B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP3470285B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3287980B2 (en) Multilayer capacitors
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPS62250626A (en) Thick film capacitor and manufacture of the same
JPH07122456A (en) Manufacture of multilayered ceramic capacitor
JP2990819B2 (en) Grain boundary insulated semiconductor ceramic multilayer capacitor
JP2949296B2 (en) Aluminum nitride substrate
JP4231653B2 (en) Manufacturing method of laminated piezoelectric actuator
JP2019067827A (en) Laminate electronic component
JPH07192528A (en) Conductive paste
JPH03129810A (en) Laminated type ceramic chip capacitor and manufacture thereof
JPH11233364A (en) Laminated ceramics capacitor and manufacture of the same
JP4144080B2 (en) Multilayer semiconductor ceramic element
JPH07201637A (en) Multilayer ceramic electronic device
JP2956791B2 (en) Reduction resistant high dielectric constant ceramic composition
JP2872454B2 (en) Manufacturing method of grain boundary insulated semiconductor laminated ceramic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees