JP3469643B2 - Injection molding method for synthetic resin molded products - Google Patents

Injection molding method for synthetic resin molded products

Info

Publication number
JP3469643B2
JP3469643B2 JP20494094A JP20494094A JP3469643B2 JP 3469643 B2 JP3469643 B2 JP 3469643B2 JP 20494094 A JP20494094 A JP 20494094A JP 20494094 A JP20494094 A JP 20494094A JP 3469643 B2 JP3469643 B2 JP 3469643B2
Authority
JP
Japan
Prior art keywords
cavity
pressure
molded product
resin
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20494094A
Other languages
Japanese (ja)
Other versions
JPH0866948A (en
Inventor
隆義 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP20494094A priority Critical patent/JP3469643B2/en
Publication of JPH0866948A publication Critical patent/JPH0866948A/en
Application granted granted Critical
Publication of JP3469643B2 publication Critical patent/JP3469643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、合成樹脂成形品の射出
成形法に係り、特にボスやリブを有して成形品表面にひ
けが生じやすい合成樹脂成形品、例えば自動車のダッシ
ュボード、ドアハンドルカバー等の内外装品や、家電製
品のケーシング等の成形に利用できる。 【0002】 【背景技術】射出成形による合成樹脂成形品には、固有
の成形収縮があるため、特にボスやリブの中心部や厚肉
部など冷却が遅れた部分(冷却遅れ部)の収縮によって
成形品の表面にはひけが生じていた。このため、従来の
射出成形では、金型のキャビティ内に射出した樹脂に、
過大な保持圧力を加えてひけを防止することが行われて
いたが、ひけを完全に無くすことは難しく、むしろボ
ス、リブ、厚肉部以外の面に過大な保持圧力が加わるこ
とで反り変形が生じるという問題があった。 【0003】一方、このような過大な保持圧力を加えず
にひけを防止する方法として、特開昭50−75247
号公報や特開昭59−220337号公報に示すよう
に、圧縮空気等の圧力流体をキャビティ内に圧入して樹
脂をキャビティ内面に押しつけてひけを防止する射出成
型法が知られている。 【0004】 【発明が解決しようとする課題】しかしながら、このよ
うな圧力流体をキャビティ内に圧入すると、前記冷却遅
れ部分の収縮によるひけは、樹脂の表面側ではなく、圧
力流体が注入される樹脂の裏面側に発生し、特にボスや
リブの基部に大きな欠肉部を生じさせていた。例えば、
図7(A)に示すように、固定金型4および可動金型5
で形成されるキャビティ8の金型5側の面に、成形品9
0のリブ91を形成するための凹溝(凹部)19を形成
し、このキャビティ8内に溶融樹脂を射出した後、樹脂
と金型5間に圧力流体を注入すると、図7(B)に示す
ように、リブ91の基部91Aに大きな欠肉部94が生
じた。 【0005】同様に図8(A)に示すように、キャビテ
ィ8の金型5側の面に、成形品90のボス93を形成す
るためのリング状の凹溝(凹部)19を形成した場合
も、図8(B)に示すように、ボス93の基部93Aに
大きな欠肉部94が生じた。このような欠肉部94は、
成形品90の裏面側に生じるため、成形品90の外観低
下等の問題は生じないが、その欠肉量が大きくなるとリ
ブ91やボス93部分の強度が低下するという問題があ
った。 【0006】本発明の目的は、リブやボス等を有する合
成樹脂射出成形品の表面側のひけを防止でき、かつリブ
やボス部の欠肉を抑えて強度低下を防止できる合成樹脂
成形品の射出成形法を提供することにある。 【0007】 【課題を解決するための手段】本発明の合成樹脂成形品
の射出成型法は、ボス・リブ等を有する合成樹脂成形品
を成形する射出成型法において、金型のキャビティ内に
溶融樹脂を充填して前記ボス・リブ等の基部に加肉部を
設けた後、溶融樹脂の充填が終了して充填された溶融樹
脂が冷却固化されつつあるときに、キャビティ内の成形
品の裏面側(キャビティ面と射出樹脂による成形品との
間)に圧縮流体を注入し、溶融樹脂が冷却固化したら、
金型を離型して成形品を取り出すことを特徴とする。 【0008】 【作用】このような本発明においては、キャビティ内に
射出された溶融樹脂が冷却固化しつつ状態にあるとき
に、成形品の裏面側に圧縮流体を注入しているため、キ
ャビティ内の溶融樹脂(成形品)は、その表面側がキャ
ビティ内面に押圧された状態で冷却固化されて、リブや
ボスを有する場合であっても成形品表面側のひけが防止
される。また、成形品裏面側の欠肉が生じやすいリブや
ボスの基部には、射出充填時においては加肉部が設けら
れているので、リブやボス部の冷却遅れ部分が収縮して
もその収縮分は加肉部によって補充され、必要な肉厚が
確保されて強度低下が防止される。 【0009】さらに、圧縮流体の注入によってひけを防
止しているため、キャビティ内に射出される溶融樹脂に
過大な保持圧力を加える必要が無く、低圧力の射出成形
が行えて成形品の反りや歪みも防止されるとともに、生
産性も向上される。 【0010】 【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1には、本発明の射出成形法に用いられる射
出成形装置1の概略構成図が示されている。射出成形装
置1は、スクリュー2を有して樹脂を溶融混練する射出
装置3と、固定金型4および可動金型5が取り付けられ
た型締装置6とを備えている。可動金型5には、突き出
し板7を介して押されてその先端がキャビティ8内に突
出することで成形品を取り出す突き出しピン9が、可動
金型5の貫通孔10を通して設けられている。 【0011】可動金型5には、前記貫通孔10にそれぞ
れ連通されたガス供給路11が形成され、このガス供給
路11はガス注入制御装置12に接続されている。ガス
注入制御装置12は、コンプレッサからの駆動エアによ
って駆動されて注入用の窒素ガスを増圧して圧縮流体と
する増圧器13と、射出装置3からの信号によって、つ
まり射出タイミングによって、ガス供給路11への窒素
ガス供給を制御する開閉バルブ14や増圧器13の動作
を制御する制御装置15を備えている。従って、これら
ガス供給路11およびガス注入制御装置12によって圧
縮流体供給手段が構成されている。 【0012】開閉バルブ14は、窒素ガスの供給を制御
する供給用電磁バルブ16と、注入した窒素ガスを排気
するための排気用電磁バルブ17と、供給する窒素ガス
の圧力制御用電磁バルブ18との3つのバルブを備えて
おり、これらの各バルブ16,17,18は、前記制御
装置15によって個別に開閉制御されている。 【0013】本実施例のキャビティ8は、図2,3に示
すように、2本のリブ91を備える板状の成形品90を
形成するものであり、可動金型5にはリブ形成用の2条
の凹溝19が形成されている。凹溝19のキャビティ8
側の縁部には、コーナー部を斜めに切り欠いた形状の切
り欠き部19Aが形成されている。また、図3に示すよ
うに、可動金型5のキャビティ8内面における凹溝19
の外側には成形品90に防壁92を形成するための断面
三角形状の溝20が凹溝19に沿って形成されている。
なお、溝20の形状としては、断面三角形状のみでな
く、たとえば凹溝19と同様な断面長方形であってもよ
い。溝20の深さ寸法(防壁92の高さ寸法)は、後述
する窒素ガスの保持能力および使用樹脂の増加量を考慮
して約2〜10mm程度に設定されている。 【0014】可動金型5の貫通孔10は、前記凹溝19
間と凹溝19および溝20間とに形成され、図2,3に
示すように、キャビティ8側先端部は小径とされて突き
出しピン9とのクリアランスAが1/100 〜8/100 mm(10
〜80μm)となるように設定されている。また、貫通孔
10の突き出し板7側(キャビティ8とは反対側)に
は、突き出しピン9との隙間をシールするOリング等の
シール材21が設けられている。 【0015】次に、本実施例における射出成形の手順に
ついて説明する。まず、型締装置6を利用して金型4,
5を閉じ、射出装置3により溶融樹脂をキャビティ8内
に所定量射出する。この際、樹脂充填に従って突き出し
ピン9に加わる樹脂圧力は上昇するが、貫通孔10のキ
ャビティ8側先端部のクリアランスAが1/100 〜8/100
mmと狭くされているので、貫通孔10内への樹脂流入は
防止され、クリアランスに詰まることなく樹脂充填が行
われる。 【0016】なお、図4(A)に示すように、切り欠き
部19A部分にも樹脂が充填されるため、リブ91の基
部91Aには、樹脂充填時においては加肉部96が形成
される。この加肉部96は、リブ91の両側面部分にリ
ブ91に沿って形成され、その各加肉部96を合わせた
容積は、リブ91が設けられて厚肉とされた成形品90
の中心部に生じる冷却遅れ部97の容積の20〜70%
となるように、前記切り欠き部19Aの大きさが設定さ
れている。 【0017】溶融樹脂が所定量充填され、充填終了を知
らせる信号が射出装置3からガス注入制御装置12に送
られると、増圧器13が作動されるとともに、供給用バ
ルブ16が開かれてガス供給路11を通して貫通孔10
に窒素ガスが注入される。この際、溶融樹脂は冷却固化
されつつあってキャビティ8との間に隙間が生じている
とともに、貫通孔10の突き出し板7側はシール材21
でシールされているため、貫通孔10に注入された窒素
ガスは、突き出しピン9のクリアランスを通してキャビ
ティ8内に注入される。 【0018】この際、窒素ガス(圧縮流体)の注入初期
は、圧力制御用バルブ18を開いて窒素ガスの一部を排
気することで圧力が下げられて低圧(例えば増圧器13
における圧力が0.5〜3MPa)とされた窒素ガスを
所定時間(例えば0.2〜3秒)注入し、その後にバル
ブ18を閉じて高圧(例えば3.5〜20MPa)とさ
れた窒素ガスを所定時間(例えば2秒以上)注入するよ
うに、制御装置15で開閉バルブ14が制御されてい
る。 【0019】キャビティ8内に低圧の窒素ガスを注入す
ると、可動金型5のキャビティ8内面とこれに接してい
る成形品90の裏面側との間に窒素ガスが注入され、成
形品90と可動金型5との間に空間が形成される。さら
に、高圧の窒素ガスを注入すると、この空間に高圧窒素
ガスが充填されて成形品90に十分な保持圧力が加わ
り、成形品90の表面側が固定金型4のキャビティ8内
面に押圧され、ひけ発生が防止される。 【0020】一方、成形品90の裏面側は、冷却遅れ部
97の収縮によってその表面がひけて従来であれば欠肉
部94が生じるが、本実施例においては、図4(B)に
示すように、加肉部96として充填された部分の樹脂が
欠肉部分に補充されるため、欠肉(ひけ)量は小さくな
る。従って、加肉部96は、キャビティ8内への樹脂の
充填初期のみに形成されるものであり、樹脂の冷却固化
が進んで成形品90が収縮すればその収縮分に補充され
て無くなるものである。 【0021】また、窒素ガスは、図2,3に示すよう
に、凹溝19間(成形品90のリブ91間)や、凹溝1
9および溝20間(成形品90のリブ91および防壁9
2間)に注入されるため、ひけが生じやすいリブ91部
分から窒素ガスが漏れ出すことが無く、リブ91部分へ
の十分な保持圧力が維持される。 【0022】そして、溶融樹脂が冷却固化したら、排気
用バルブ17を開いてキャビティ8内のガスを抜き、金
型4,5を離型するとともに、突き出しピン9を突出さ
せて成形品90を取り出し、射出成形の1つのサイクル
を終了する。以上の成形サイクルを繰り返し、成形品9
0を順次製造する。 【0023】このような本実施例によれば、次のような
効果がある。成形品90のリブ91を形成する凹溝19
に切り欠き部19Aを形成し、リブ91の基部91Aに
加肉部96が形成されるようにしたので、ガス注入によ
って成形品90の表面側をキャビティ8内面に押圧する
ことで発生するリブ91の基部91Aの欠肉(ひけ)を
少なくあるいは全く無くすことができる。このため、リ
ブ91の基部91Aの肉厚が確保されて強度低下を防止
することができ、強度低下による不良品発生率も減少す
ることができる。 【0024】また、加肉部96の容積を、冷却遅れ部9
7の容積の20〜70%に設定したので、樹脂量を大幅
に増加させることなく、欠肉分を補充して強度低下を防
止することができる。すなわち、加肉部96が冷却遅れ
部97の20%以下の容積であると、成形品90の形状
や樹脂種類によっては、欠肉分の補充量が少なくなって
強度低下を抑えることができなくなることがあり、一方
70%以上とすると樹脂量が必要以上に増加するが、前
記実施例のように20〜70%の範囲にすれば、欠肉量
の補充と射出樹脂量とのバランスを良くすることができ
る。 【0025】また、キャビティ8内に窒素ガスを注入し
てガス保圧を行って溶融樹脂をキャビティ8内面に押圧
しているので、溶融樹脂が冷却固化するまで樹脂表面側
とキャビティ8内面との密着状態を維持することがで
き、リブ91等を有する成形品90を成形する場合でも
その表面側のひけを確実に防止することができる。 【0026】そして、キャビティ8内に窒素ガスを注入
することで成形品90のひけを防止することができるの
で、従来のようにひけ防止のために高圧射出成形を行う
必要が無く、ひけの生じない低圧射出成形を実現するこ
とができる。このため、低圧成形が可能であり、成形サ
イクルも早くできるため、成形品90の品質を低下させ
ることなく生産性を向上することができる。また、低圧
射出成形を行えるため、成形品90に過大な保持圧力が
加わることがなく、反りや歪みなどの成形歪みの分布を
減少でき、成形品90の精度を向上することができ、高
品質の成形品90を成形することができる。 【0027】可動金型5に凹溝19のほかに溝20を形
成し、成形品90にリブ91のほかに防壁92を形成し
たので、注入したガスをリブ91等のひけが発生しやす
い部分に保持しておくことができ、所定の保持圧力を樹
脂が冷却固化するまで維持することができ、成形品90
のひけを確実に防止することができる。 【0028】金型5に通常設けられている突き出しピン
9の貫通孔10とのクリアランスを通してキャビティ8
内に窒素ガスを注入しているため、ガス注入用の導孔を
形成して弁棒を設けたり、多孔部材を配置する場合に比
べて、金型5の構造を簡素化することができて安価に提
供することができる。この際、突き出しピン9周囲のク
リアランスAを1/100 〜8/100 mmとしているので、溶融
樹脂が貫通孔10内に流入することを防止できるととも
に、窒素ガスのキャビティ8への流入を妨げることが無
く、十分なガスをスムーズに供給することができ、窒素
ガスによる保持圧力を高めて成形品90のひけを確実に
防止することができる。 【0029】溶融樹脂を射出した直後の冷却固化の初期
段階つまり窒素ガスの注入初期段階では、圧力制御用バ
ルブ18を開いて窒素ガスの圧力を低圧としているの
で、冷却初期の樹脂表面の固化した層が薄い状態のとき
に、窒素ガスの圧力で固化層が破れてガスが樹脂内部に
潜ってしまうことがなく、ガスが樹脂内部に侵入するこ
とによる強度の低下がない高品質な成形品90を製造す
ることができる。 【0030】圧縮流体として不燃性の窒素ガスを用いて
いるので、キャビティ8内への注入によって膨張したり
加熱されても爆発のおそれがなく、射出成形の安全性を
確保することができる。 【0031】成形品90の裏面側と可動金型5間に窒素
ガスが注入されて隙間が形成されるため、成形品90を
容易に離型することができ、離型不良によるトラブル発
生を防止でき、効率のよい射出成形を行うことができ
る。 【0032】次に、本発明の効果を確認するために行っ
た実験例について説明する。本実験例は、図4に示され
るような、リブ91を有する成形品90を形成し、表1
に示すように、金型5の凹溝19に切り欠き部19Aを
形成して加肉部96を設けた場合と、切り欠き部19A
を形成しないで加肉部96を設けない場合とで各種条件
を変えて成形状態(成形品90のひけや欠肉の発生状態
や、射出成形がトラブル無く行えるか)を評価したもの
である。 【0033】成形品90を成形するにあたって、射出成
形機として東芝機械製IS-200を用い、樹脂としてMFR
(メルトフローレシオ)[230℃,2.16kgf]=10g/10min
のブロックPP(ポリプロピレン)を用いた。図4
(B)に部分を示すように、成形品90のリブ91以外
の一般肉厚dは2.5mmに、リブ91の基部厚み
(幅)bは2mmに設定した。また、防壁92の高さ寸
法は2mmに設定した。なお、成形品90は250mm
×250mm板に40mm間隔で4本のリブ91を形成
したものを用いた。 【0034】また、型締圧は200tに設定し、金型温
度は各例においてすべて30℃に設定し、樹脂温度は表
1のように設定した。そして、ピンクリアランスAの寸
法や、加肉量(加肉部96の冷却遅れ部97に対する容
積パーセント)を変更して実験例1〜6を行い、成形品
90のひけ状態を表面粗さ計(小坂研究所製サーフコー
ダSE−30D)を用いて検出した。さらに、欠肉部9
4の欠肉量を基部欠肉量d1、リブ欠肉量b1に分けて
測定した。なお、基部欠肉量d1は、成形品90のリブ
91の基部91A部分の一般肉厚d2を測定し、金型の
設計肉厚dに対する不足分(d1=d2−d)を算出し
て求めたものである。同様に、リブ欠肉量b1もリブ9
1の基部厚みb2を測定し、設計肉厚bに対する不足分
(b1=b2−b)を算出したものである。 【0035】一方、参考例1〜6として、加肉部96を
形成しない場合について、ピンクリアランスAやガス圧
を変更して実験した(参考例1〜6)。 【0036】 【表1】【0037】表1に示すように、加肉部96を形成すれ
ば、欠肉量が少なくなって強度低下も防止できた。特
に、加肉部96の加肉量を多くすると(パーセントを大
きくすると)、リブ側の欠肉量を少なくすることができ
た。なお、凹溝19に切り欠き部19Aを形成したの
で、リブ側の基部厚みb2は設計肉厚bよりも大きくな
る場合もあった。また、欠肉量は保圧ガス圧が大きくな
るほど大きくなった。 【0038】一方、参考例のように加肉部96を設けな
い場合には、保持圧力やピンクリアランスの大きさ等の
条件が同じであれば、加肉部96を設けた場合に比べて
欠肉量が多くなった。以上のことから、加肉部96を設
ければ欠肉量が少なくなり、成形品90の強度低下も防
止できることがわかり、本発明の有用性が確認できた。 【0039】以上、本発明について好適な実施例をあげ
て説明したが、本発明は、この実施例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲において種々
の改良並びに設計の変更が可能である。 【0040】例えば、本発明はリブ91を有する成形品
90の射出成形に限らず、図5,6に示すように、ボス
93を有する成形品90を射出成形する場合にも用いる
ことができる。すなわち、ボス93を形成する凹溝19
のキャビティ8側端縁に、切り欠き部19Aを形成し、
図6(A)に示すように、ボス93の基部93Aに加肉
部96が設けられるように構成してもよい。この加肉部
96も、前記実施例と同様に、ボス93部分に形成され
る冷却遅れ部97の20〜70%の容積となるように設
定することが好ましい。この際も、図6(B)に示すよ
うに、加肉部96を設けることでボス93部分の欠肉部
94が小さくされ、強度低下が防止される。 【0041】また、ボス93を有する成形品90を成形
する場合、ボス93部分に所定圧のガスが保圧されるよ
うに、図5に示すように、金型5に溝20を形成してボ
ス93の周囲に円周状や四角周状等の防壁92を設ける
ことが望ましい。さらに、本発明は、リブ91、ボス9
3の両方が形成された成形品、リブ91、ボス93が無
い成形品等の各種成形品の製造にも利用することができ
る。 【0042】前記実施例では、突き出しピン9のクリア
ランスから圧縮流体(窒素ガス)を注入していたが、図
5に示すように、金型5にガス供給路11に連通された
貫通孔22を形成し、そのキャビティ8側の出口22A
部分に、金属やセラミックスなどの耐熱性のある材質で
形成された多孔質部材40を配置してもよい。この多孔
質部材40は、固定ピン30および貫通孔22の段部で
移動不能に固定されている。この多孔質部材40を配置
しても、貫通孔22に供給された圧縮流体を多孔質部材
40を介してキャビティ8内に注入することができると
ともに、キャビティ8内の溶融樹脂が貫通孔22内に流
入することを防止することができる。なお、多孔質部材
40に多数形成されている貫通孔の孔径は用いる樹脂種
類等に応じて適宜設定すればよいが、例えば前記実施例
と同じ1/100 〜8/100mm 等に設定すればよい。 【0043】さらに、金型5に中ピンおよび外ピンから
なるスリーブピンを配置し、各ピン間の隙間から圧縮流
体をキャビティ8内に注入するように構成したり、金型
5に形成した注入口を開閉する弁棒を設け、この弁を開
いて圧縮流体をキャビティ8内に注入するように構成し
てもよい。要するに、圧縮流体をキャビティ8内に注入
させる構成は、実施にあたって適宜設定すればよい。 【0044】防壁92は必ずしも設ける必要はないが、
設けた方が注入した圧縮流体が漏れることがなく、特に
リブ91がない部分においても保圧効果を長期間維持す
ることができるという利点がある。さらに、圧縮流体と
しては窒素ガスに限らず、圧縮空気等の他のガスを用い
てもよい。但し、圧縮流体は溶融樹脂に接して温度が高
くなるため、窒素ガスのような不燃性のガスを用いた方
が安全性が高いという利点がある。 【0045】注入する圧縮流体の圧力は、前記実施例の
ように2段階制御する場合に限らず、3段階以上あるい
は圧力値が連続的に変化するように制御してもよいし、
さらには圧力値を一定としてもよい。この際の圧力値
は、使用する樹脂の種類等に応じて適宜設定すればよ
い。さらに、圧力制御の方法としては、前記実施例のよ
うに圧力制御用バルブ18を設けて行う方式に限らず、
減圧弁等を用いた公知の適宜な圧力制御方法を利用して
もよい。 【0046】また、本発明は、前記実施例の成形品90
を製造する場合に限らず、例えばコピー装置の紙供給部
品等に利用される格子状の多数のリブが形成された板部
材や、自動車のドアハンドルカバー等のリブやボス等を
有する各種の樹脂成形品に利用することができる。 【0047】 【発明の効果】このような本発明によれば、リブやボス
等を有する合成樹脂射出成形品の表面側のひけを防止で
き、かつリブやボスの欠肉を抑えて強度低下を防止でき
るという効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding method for a synthetic resin molded product, and more particularly, to a synthetic resin having bosses and ribs, which tends to cause sink marks on the surface of the molded product. It can be used for molding of molded products, for example, interior and exterior products such as dashboards and door handle covers of automobiles, and casings of home electric appliances. 2. Description of the Related Art Since a synthetic resin molded product obtained by injection molding has an inherent molding shrinkage, the shrinkage of a portion where cooling is delayed (cooling delay portion) such as a center portion of a boss or a rib or a thick portion is particularly caused. The surface of the molded article had sink marks. For this reason, in the conventional injection molding, the resin injected into the mold cavity is
Although excessive sink pressure was applied to prevent sink marks, it was difficult to completely eliminate sink marks, but rather warped by applying excessive holding pressure to surfaces other than bosses, ribs, and thick parts. There was a problem that occurs. On the other hand, Japanese Patent Application Laid-Open No. 50-75247 discloses a method for preventing sink marks without applying such an excessive holding pressure.
As described in Japanese Patent Application Laid-Open No. HEI 59-220337, an injection molding method is known in which a pressurized fluid such as compressed air is press-fitted into a cavity and a resin is pressed against the inner surface of the cavity to prevent sink marks. However, when such a pressure fluid is press-fitted into the cavity, the shrinkage due to the contraction of the cooling delay portion is caused not by the surface of the resin but by the resin into which the pressure fluid is injected. On the back side of the boss, and particularly a large underfill portion at the base of the boss or rib. For example,
As shown in FIG. 7A, the fixed mold 4 and the movable mold 5
A molded product 9 is provided on the surface of the cavity 8 formed by
After forming a concave groove (recess) 19 for forming a rib 91 of zero, injecting a molten resin into the cavity 8 and then injecting a pressure fluid between the resin and the mold 5, FIG. As shown, a large underfill 94 was formed at the base 91A of the rib 91. Similarly, as shown in FIG. 8A, a ring-shaped groove (recess) 19 for forming a boss 93 of a molded product 90 is formed on the surface of the cavity 8 on the mold 5 side. Also, as shown in FIG. 8B, a large underfill 94 was formed at the base 93A of the boss 93. Such a missing portion 94
Since it occurs on the back side of the molded article 90, there is no problem such as a decrease in the appearance of the molded article 90, but there is a problem that the strength of the rib 91 and the boss 93 decreases when the thickness of the underfill increases. SUMMARY OF THE INVENTION An object of the present invention is to provide a synthetic resin molded article which can prevent sink on the surface side of a synthetic resin injection molded article having ribs, bosses, etc., and can prevent a decrease in strength by suppressing underfill of the rib or boss portion. An object of the present invention is to provide an injection molding method. According to the injection molding method of the present invention, a synthetic resin molded article having a boss, a rib or the like is melted in a cavity of a mold. after the resin is filled is provided a pressurized meat portions at the base of such a boss rib, when the molten resin filled is filled by the end of the molten resin is being cooled and solidified, the back surface of the molded product in the cavity Inject the compressed fluid into the side (between the cavity surface and the molded product made of injection resin), and when the molten resin has cooled and solidified,
It is characterized in that the mold is released and the molded product is taken out. According to the present invention, when the molten resin injected into the cavity is being cooled and solidified, the compressed fluid is injected into the back surface of the molded product. The molten resin (molded product) is cooled and solidified in a state where the surface side is pressed against the inner surface of the cavity, so that sinking on the surface side of the molded product is prevented even if it has ribs or bosses. In addition, the base of the ribs or bosses on the backside of the molded product, which is likely to be underfilled, is provided with a thickened portion at the time of injection filling. The portion is replenished by the thickened portion, the required thickness is secured, and the strength is prevented from lowering. Furthermore, since sinkage is prevented by injecting the compressed fluid, it is not necessary to apply an excessive holding pressure to the molten resin injected into the cavity, so that low-pressure injection molding can be performed, and warpage of the molded article and the like can be prevented. Distortion is prevented and productivity is improved. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an injection molding apparatus 1 used in the injection molding method of the present invention. The injection molding device 1 includes an injection device 3 having a screw 2 for melting and kneading a resin, and a mold clamping device 6 to which a fixed mold 4 and a movable mold 5 are attached. The movable die 5 is provided with a push-out pin 9 which is pushed through the protrusion plate 7 and whose tip projects into the cavity 8 to take out a molded product through the through hole 10 of the movable die 5. A gas supply path 11 is formed in the movable mold 5 so as to communicate with the through hole 10. The gas supply path 11 is connected to a gas injection controller 12. The gas injection control device 12 is driven by driving air from the compressor to increase the pressure of the nitrogen gas for injection to increase the pressure of the nitrogen gas into a compressed fluid. An opening / closing valve 14 for controlling the supply of nitrogen gas to 11 and a control device 15 for controlling the operation of the pressure intensifier 13 are provided. Therefore, the gas supply path 11 and the gas injection control device 12 constitute a compressed fluid supply unit. The opening / closing valve 14 includes a supply electromagnetic valve 16 for controlling the supply of nitrogen gas, an exhaust electromagnetic valve 17 for exhausting the injected nitrogen gas, and an electromagnetic valve 18 for controlling the pressure of the supplied nitrogen gas. These valves 16, 17, and 18 are individually controlled to open and close by the control device 15. As shown in FIGS. 2 and 3, the cavity 8 of this embodiment forms a plate-like molded product 90 having two ribs 91, and the movable mold 5 has a rib forming rib. Two concave grooves 19 are formed. Cavity 8 of concave groove 19
A notch 19A having a shape in which a corner is cut obliquely is formed at the side edge. As shown in FIG. 3, a concave groove 19 on the inner surface of the cavity 8 of the movable mold 5 is provided.
A groove 20 having a triangular cross section for forming a barrier 92 in the molded product 90 is formed along the concave groove 19 on the outside of the molded product 90.
The shape of the groove 20 is not limited to a triangular cross section, but may be, for example, a rectangular cross section similar to the concave groove 19. The depth dimension of the groove 20 (the height dimension of the barrier wall 92) is set to about 2 to 10 mm in consideration of a nitrogen gas holding capacity and an increase in the amount of resin used, which will be described later. The through hole 10 of the movable mold 5 is
As shown in FIGS. 2 and 3, the front end of the cavity 8 has a small diameter and the clearance A with the protruding pin 9 is 1/100 to 8/100 mm (see FIGS. 2 and 3). Ten
8080 μm). Further, a sealing material 21 such as an O-ring for sealing a gap with the protruding pin 9 is provided on the protruding plate 7 side (the side opposite to the cavity 8) of the through hole 10. Next, the procedure of injection molding in this embodiment will be described. First, using the mold clamping device 6, the mold 4,
5 is closed, and the injection device 3 injects a predetermined amount of the molten resin into the cavity 8. At this time, the resin pressure applied to the protruding pin 9 increases with the resin filling, but the clearance A at the tip of the through hole 10 on the cavity 8 side becomes 1/100 to 8/100.
Since the width is reduced to mm, the resin is prevented from flowing into the through-hole 10, and the resin is filled without clogging the clearance. As shown in FIG. 4A, since the resin is also filled in the notch 19A, a thickened portion 96 is formed in the base 91A of the rib 91 when the resin is filled. . The thickened portion 96 is formed along the rib 91 on both side surfaces of the rib 91, and the combined volume of the thickened portions 96 is a thick molded product 90 provided with the rib 91.
20 to 70% of the volume of the cooling delay part 97 generated at the center of the
The size of the notch 19A is set such that When a predetermined amount of the molten resin is charged and a signal indicating the end of the charging is sent from the injection device 3 to the gas injection control device 12, the pressure intensifier 13 is operated and the supply valve 16 is opened to supply the gas. Through hole 10 through road 11
Is injected with nitrogen gas. At this time, the molten resin is being cooled and solidified, so that a gap is formed between the molten resin and the cavity 8.
Therefore, the nitrogen gas injected into the through-hole 10 is injected into the cavity 8 through the clearance of the protruding pin 9. At this time, in the initial stage of the injection of the nitrogen gas (compressed fluid), the pressure is reduced by opening the pressure control valve 18 and partially evacuating the nitrogen gas to reduce the pressure (for example, the pressure intensifier 13
Is injected for a predetermined time (for example, 0.2 to 3 seconds), and thereafter, the valve 18 is closed and the nitrogen gas is set to a high pressure (for example, 3.5 to 20 MPa). The opening and closing valve 14 is controlled by the control device 15 so as to inject for a predetermined time (for example, 2 seconds or more). When a low-pressure nitrogen gas is injected into the cavity 8, the nitrogen gas is injected between the inner surface of the cavity 8 of the movable mold 5 and the back surface of the molded product 90 in contact with the cavity 8. A space is formed between the mold 5. Further, when a high-pressure nitrogen gas is injected, the space is filled with the high-pressure nitrogen gas, and a sufficient holding pressure is applied to the molded product 90, and the surface side of the molded product 90 is pressed against the inner surface of the cavity 8 of the fixed mold 4, and the sink The occurrence is prevented. On the other hand, on the back side of the molded product 90, the surface thereof sinks due to the shrinkage of the cooling delay portion 97, and a thinned portion 94 occurs in the conventional case, but in this embodiment, it is shown in FIG. As described above, since the resin in the portion filled as the fill portion 96 is replenished to the missing portion, the amount of missing portion (shrinkage) decreases. Therefore, the thickened portion 96 is formed only at the initial stage of filling the cavity 8 with the resin, and if the molded product 90 shrinks due to the progress of cooling and solidification of the resin, it is replenished by the shrinkage and disappears. is there. As shown in FIGS. 2 and 3, nitrogen gas is supplied between the grooves 19 (between the ribs 91 of the molded article 90) and the grooves 1
9 and the groove 20 (the rib 91 of the molded product 90 and the barrier 9
2), the nitrogen gas does not leak from the rib 91 where the sink is likely to occur, and a sufficient holding pressure on the rib 91 is maintained. When the molten resin has cooled and solidified, the exhaust valve 17 is opened to release the gas in the cavity 8, the molds 4 and 5 are released, and the protruding pins 9 are protruded to take out the molded product 90. One cycle of injection molding is completed. By repeating the above molding cycle, molded article 9
0 are sequentially manufactured. According to this embodiment, the following effects can be obtained. The concave groove 19 forming the rib 91 of the molded product 90
A notch 19A is formed on the base 91A of the rib 91 so that a thickened portion 96 is formed on the base 91A. Of the base portion 91A can be reduced or completely eliminated. For this reason, the thickness of the base portion 91A of the rib 91 is ensured, so that a decrease in strength can be prevented, and the occurrence rate of defective products due to the decrease in strength can be reduced. Further, the volume of the thickened portion 96 is reduced by the cooling delay portion 9.
Since the volume is set to 20 to 70% of the volume of No. 7, it is possible to replenish the underfill without significantly increasing the amount of resin, thereby preventing a decrease in strength. That is, if the fill portion 96 has a volume of 20% or less of the cooling delay portion 97, depending on the shape of the molded article 90 and the type of resin, the replenishment amount of the underfill is reduced, and the reduction in strength cannot be suppressed. On the other hand, if it is 70% or more, the amount of resin increases more than necessary. However, if it is in the range of 20 to 70% as in the above embodiment, the balance between the replenishment of the underfill and the amount of injected resin is improved. can do. Further, since nitrogen gas is injected into the cavity 8 to hold the gas and pressurize the molten resin against the inner surface of the cavity 8, the resin surface side and the inner surface of the cavity 8 are not cooled until the molten resin is cooled and solidified. The close contact state can be maintained, and even when the molded article 90 having the ribs 91 and the like is molded, sink on the surface side can be reliably prevented. Since injection of nitrogen gas into the cavity 8 can prevent sinking of the molded article 90, there is no need to perform high-pressure injection molding to prevent sinking as in the prior art. No low pressure injection molding can be realized. For this reason, low-pressure molding is possible and the molding cycle can be shortened, so that the productivity can be improved without lowering the quality of the molded article 90. In addition, since low-pressure injection molding can be performed, an excessive holding pressure is not applied to the molded product 90, the distribution of molding distortion such as warpage and distortion can be reduced, and the accuracy of the molded product 90 can be improved. Can be formed. A groove 20 is formed in the movable mold 5 in addition to the concave groove 19, and a barrier wall 92 is formed in the molded product 90 in addition to the rib 91. , And a predetermined holding pressure can be maintained until the resin is cooled and solidified.
Sink can be reliably prevented. The cavity 8 is formed through a clearance between the protrusion pin 9 and the through hole 10 which are usually provided in the mold 5.
Since the nitrogen gas is injected into the inside, the structure of the mold 5 can be simplified as compared with the case where a gas injection hole is formed to provide a valve stem or a porous member is arranged. It can be provided at low cost. At this time, since the clearance A around the protruding pin 9 is 1/100 to 8/100 mm, it is possible to prevent the molten resin from flowing into the through hole 10 and to prevent the nitrogen gas from flowing into the cavity 8. Therefore, a sufficient gas can be supplied smoothly, and the holding pressure by the nitrogen gas can be increased to reliably prevent the molded product 90 from sinking. In the initial stage of cooling and solidification immediately after the injection of the molten resin, that is, in the initial stage of nitrogen gas injection, the pressure control valve 18 is opened to reduce the pressure of the nitrogen gas to a low pressure. When the layer is in a thin state, the solidified layer is not broken by the pressure of the nitrogen gas and the gas does not dive into the resin, and the high quality molded article 90 does not have a decrease in strength due to the gas entering the resin. Can be manufactured. Since non-combustible nitrogen gas is used as the compressed fluid, there is no danger of explosion even if it is expanded or heated by injection into the cavity 8, and the safety of injection molding can be ensured. Since a gap is formed by injecting nitrogen gas between the back side of the molded product 90 and the movable mold 5, the molded product 90 can be easily released, and the occurrence of trouble due to poor release is prevented. Thus, efficient injection molding can be performed. Next, a description will be given of an experimental example conducted to confirm the effects of the present invention. In this experimental example, a molded article 90 having a rib 91 as shown in FIG.
As shown in the figure, the notch 19A is formed in the concave groove 19 of the mold 5 to provide the thickened portion 96, and the notch 19A
This is an evaluation of the molding state (whether sinking or underfilling of the molded article 90 occurs or whether injection molding can be performed without any trouble) by changing various conditions in the case where the thickened part 96 is not provided without forming the solid part. In molding the molded product 90, Toshiba Machine's IS-200 is used as an injection molding machine, and MFR is used as a resin.
(Melt flow ratio) [230 ℃, 2.16kgf] = 10g / 10min
Block PP (polypropylene) was used. FIG.
As shown in (B), the general thickness d of the molded product 90 other than the ribs 91 was set to 2.5 mm, and the base thickness (width) b of the ribs 91 was set to 2 mm. The height of the barrier 92 was set to 2 mm. The molded product 90 is 250 mm
A × 250 mm plate having four ribs 91 formed at 40 mm intervals was used. The mold clamping pressure was set to 200 t, the mold temperature was set to 30 ° C. in each case, and the resin temperature was set as shown in Table 1. Then, Experimental Examples 1 to 6 were performed by changing the dimensions of the pin clearance A and the thickness of the thickened portion (volume percent of the thickened portion 96 with respect to the cooling delay portion 97), and the sinking state of the molded product 90 was measured with a surface roughness meter ( It was detected by using a surf coder SE-30D manufactured by Kosaka Laboratory. Furthermore, the missing portion 9
The underfill amount of No. 4 was measured separately for the base underfill amount d1 and the rib underfill amount b1. In addition, the base part thickness d1 is obtained by measuring the general thickness d2 of the base part 91A of the rib 91 of the molded product 90 and calculating the shortage (d1 = d2-d) with respect to the design thickness d of the mold. It is a thing. Similarly, the rib underfill amount b1 is
1 is obtained by measuring the base thickness b2 and calculating the shortage (b1 = b2-b) with respect to the design thickness b. On the other hand, as Reference Examples 1 to 6, experiments were conducted with the pin clearance A and the gas pressure changed in the case where the thickened portion 96 was not formed (Reference Examples 1 to 6). [Table 1] As shown in Table 1, when the thickened portion 96 was formed, the amount of underfill was reduced, and a decrease in strength could be prevented. In particular, when the thickness of the thickened portion 96 was increased (when the percentage was increased), the thickness of the ribs was reduced. In addition, since the notch 19A was formed in the concave groove 19, the base thickness b2 on the rib side sometimes became larger than the design thickness b. In addition, the underfill amount increased as the holding pressure gas pressure increased. On the other hand, in the case where the thickened portion 96 is not provided as in the reference example, if the conditions such as the holding pressure and the size of the pin clearance are the same, the gap is smaller than the case where the thickened portion 96 is provided. The amount of meat has increased. From the above, it can be seen that the provision of the thickened portion 96 reduces the thickness of the underfill, and also prevents the strength of the molded article 90 from being reduced, confirming the usefulness of the present invention. Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to these embodiments, and various modifications and changes in design can be made without departing from the spirit of the present invention. Is possible. For example, the present invention is not limited to the injection molding of the molded article 90 having the ribs 91, but can also be used for the injection molding of the molded article 90 having the boss 93 as shown in FIGS. That is, the concave groove 19 forming the boss 93
A notch 19A is formed at the edge of the cavity 8 side of
As shown in FIG. 6A, a configuration may be such that a thickened portion 96 is provided on the base 93 </ b> A of the boss 93. It is preferable that the fill portion 96 is set to have a volume of 20 to 70% of the cooling delay portion 97 formed in the boss 93 as in the above-described embodiment. Also in this case, as shown in FIG. 6B, by providing the thickened portion 96, the thinned portion 94 of the boss 93 is reduced, and a reduction in strength is prevented. When a molded product 90 having a boss 93 is formed, a groove 20 is formed in the mold 5 as shown in FIG. It is desirable to provide a circumferential or square circumferential barrier wall 92 around the boss 93. Further, the present invention provides the rib 91, the boss 9
It can also be used for the production of various molded products such as a molded product in which both of them are formed, a molded product without the rib 91 and the boss 93, and the like. In the above-described embodiment, the compressed fluid (nitrogen gas) is injected from the clearance of the protruding pin 9, but as shown in FIG. And the outlet 22A on the cavity 8 side
A porous member 40 formed of a heat-resistant material such as metal or ceramic may be disposed in the portion. The porous member 40 is immovably fixed at the steps of the fixing pin 30 and the through hole 22. Even if the porous member 40 is arranged, the compressed fluid supplied to the through hole 22 can be injected into the cavity 8 through the porous member 40, and the molten resin in the cavity 8 Can be prevented. The diameter of a large number of through-holes formed in the porous member 40 may be appropriately set according to the type of resin used, and may be set, for example, to 1/100 to 8/100 mm, which is the same as in the above embodiment. . Further, a sleeve pin composed of a middle pin and an outer pin is arranged in the mold 5 so that a compressed fluid is injected into the cavity 8 from a gap between the pins, or a note formed in the mold 5 is formed. A valve rod for opening and closing the inlet may be provided, and the valve may be opened to inject the compressed fluid into the cavity 8. In short, the configuration for injecting the compressed fluid into the cavity 8 may be set as appropriate for implementation. Although it is not always necessary to provide the barrier 92,
The arrangement is advantageous in that the injected compressed fluid does not leak, and the pressure-holding effect can be maintained for a long time even in a portion where the rib 91 is not provided. Further, the compressed fluid is not limited to nitrogen gas, and other gases such as compressed air may be used. However, since the temperature of the compressed fluid in contact with the molten resin increases, there is an advantage that the use of a nonflammable gas such as nitrogen gas provides higher safety. The pressure of the compressed fluid to be injected is not limited to two-stage control as in the above embodiment, but may be controlled to three or more stages or a pressure value to be changed continuously.
Further, the pressure value may be constant. The pressure value at this time may be appropriately set according to the type of the resin used and the like. Further, the pressure control method is not limited to the method in which the pressure control valve 18 is provided as in the above-described embodiment.
A known appropriate pressure control method using a pressure reducing valve or the like may be used. The present invention also relates to the molded article 90 of the above embodiment.
Not only in the case of manufacturing, for example, a plate member formed with a large number of grid-like ribs used for paper supply parts of a copying apparatus, and various resins having ribs and bosses of a door handle cover of an automobile and the like. It can be used for molded products. According to the present invention, sink of the surface side of a synthetic resin injection molded article having ribs and bosses can be prevented, and the ribs and bosses can be reduced in thickness to reduce the strength. There is an effect that it can be prevented.

【図面の簡単な説明】 【図1】本発明の一実施例を示す概略構成図である。 【図2】前記実施例の金型中央部を示す拡大断面図であ
る。 【図3】前記実施例の金型上端部を示す拡大断面図であ
る。 【図4】前記実施例のリブ部分を示す拡大断面図であ
る。 【図5】本発明の変形例の要部を示す拡大断面図であ
る。 【図6】前記変形例のボス部分を示す拡大断面図であ
る。 【図7】本発明の従来例のリブ部分を示す拡大断面図で
ある。 【図8】本発明の従来例のボス部分を示す拡大断面図で
ある。 【符号の説明】 1 射出成形装置 4 固定金型 5 可動金型 8 キャビティ 9 突き出しピン 10 貫通孔 11 ガス供給路 12 ガス注入制御装置 13 増圧器 14 開閉バルブ 15 制御装置 19 凹溝 19A 切り欠き部 20 溝 22 貫通孔 40 多孔質部材 90 成形品 91 リブ 91A 基部 92 防壁 93 ボス 93A 基部 94 欠肉部 96 加肉部 97 冷却遅れ部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention. FIG. 2 is an enlarged sectional view showing a central portion of a mold according to the embodiment. FIG. 3 is an enlarged sectional view showing an upper end portion of a mold according to the embodiment. FIG. 4 is an enlarged sectional view showing a rib portion of the embodiment. FIG. 5 is an enlarged sectional view showing a main part of a modification of the present invention. FIG. 6 is an enlarged sectional view showing a boss portion of the modified example. FIG. 7 is an enlarged sectional view showing a rib portion of a conventional example of the present invention. FIG. 8 is an enlarged sectional view showing a boss portion of a conventional example of the present invention. [Description of Signs] 1 Injection molding apparatus 4 Fixed mold 5 Movable mold 8 Cavity 9 Protruding pin 10 Through hole 11 Gas supply path 12 Gas injection control device 13 Pressure intensifier 14 Open / close valve 15 Control device 19 Depressed groove 19A Notch 20 Groove 22 Through hole 40 Porous member 90 Molded product 91 Rib 91A Base 92 Wall 93 Boss 93A Base 94 Underfill 96 Filling 97 Cooling delay

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 45/00 - 45/84 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) B29C 45/00-45/84

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ボス・リブ等を有する合成樹脂成形品を
成形する射出成形法において、金型のキャビティ内に溶
融樹脂を充填して前記ボス・リブ等の基部に加肉部を形
成した後、溶融樹脂の充填が終了して充填された溶融樹
脂が冷却固化されつつあるときに、キャビティ内の成形
品の裏面側に圧縮流体を注入し、溶融樹脂が冷却固化し
たら、金型を離型して成形品を取り出すことを特徴とす
る合成樹脂成形品の射出成形法。
(57) [Claim 1] In an injection molding method for molding a synthetic resin molded article having bosses, ribs, etc., a molten resin is filled in a cavity of a mold, and the bosses, ribs, etc. after forming the pressure-walled portion to the base, when the molten resin filled is filled by the end of the molten resin is being cooled and solidified, it injected molded article of the back side to a compressed fluid in the cavity, the molten resin An injection molding method for a synthetic resin molded product, which comprises releasing the mold after cooling and solidifying, and taking out the molded product.
JP20494094A 1994-08-30 1994-08-30 Injection molding method for synthetic resin molded products Expired - Fee Related JP3469643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20494094A JP3469643B2 (en) 1994-08-30 1994-08-30 Injection molding method for synthetic resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20494094A JP3469643B2 (en) 1994-08-30 1994-08-30 Injection molding method for synthetic resin molded products

Publications (2)

Publication Number Publication Date
JPH0866948A JPH0866948A (en) 1996-03-12
JP3469643B2 true JP3469643B2 (en) 2003-11-25

Family

ID=16498870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20494094A Expired - Fee Related JP3469643B2 (en) 1994-08-30 1994-08-30 Injection molding method for synthetic resin molded products

Country Status (1)

Country Link
JP (1) JP3469643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949539C1 (en) * 1999-10-14 2001-03-01 Battenfeld Gmbh Injection molding method to produce intersecting, reinforced wall sections avoiding collapse, effects movement of transition region plastic towards intersection point by fluid injection

Also Published As

Publication number Publication date
JPH0866948A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
KR0174805B1 (en) Method for the non-resin fluid-assisted injection molding of a resin
JP3469647B2 (en) Injection molding method and injection molding apparatus for synthetic resin molded products
JP3469643B2 (en) Injection molding method for synthetic resin molded products
JP3238830B2 (en) Injection molding method of flat plate with lattice rib
JP3410556B2 (en) Injection molding method for synthetic resin molded products
JP3469644B2 (en) Injection molding method for synthetic resin molded products
JP3423426B2 (en) Injection molding equipment for synthetic resin molded products
JP2959084B2 (en) Mold for in-mold coating
JP3831031B2 (en) Gas injection mold
JP3300531B2 (en) Injection molding method and its mold
JP3300540B2 (en) Injection molding apparatus and injection molding method for synthetic resin molded products
JP3423427B2 (en) Injection molding method for automotive door handle cover
JP3621496B2 (en) Resin molded product having boss or rib, injection molding apparatus and injection molding method thereof
JP5038021B2 (en) In-mold coating mold
JP3108871B2 (en) Gas pressure injection molding method
JP2001088170A (en) Method and mold for producing resin molded object
JPS6112312A (en) Method and apparatus for preparing resin molded product
JP5370825B2 (en) In-mold coating molding method.
JPS5924492Y2 (en) Synthetic resin injection mold
JP2002096352A (en) In-mold coating method
JPH03128158A (en) Method for applying parting agent in vacuum die casting apparatus and vacuum die casting apparatus thereof
JP3040204B2 (en) Hollow resin injection molding equipment
JPH07314483A (en) Method and mold for gas-injection molding
JPS588622A (en) Molding of precise plastics parts
JPH09104035A (en) Injection mold

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees