JP3468099B2 - Method for producing positive electrode active material for lithium secondary battery - Google Patents

Method for producing positive electrode active material for lithium secondary battery

Info

Publication number
JP3468099B2
JP3468099B2 JP14896398A JP14896398A JP3468099B2 JP 3468099 B2 JP3468099 B2 JP 3468099B2 JP 14896398 A JP14896398 A JP 14896398A JP 14896398 A JP14896398 A JP 14896398A JP 3468099 B2 JP3468099 B2 JP 3468099B2
Authority
JP
Japan
Prior art keywords
manganese
active material
lithium
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14896398A
Other languages
Japanese (ja)
Other versions
JPH11339803A (en
Inventor
真司 有元
秀和 平塚
彰 橋本
雅敏 永山
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP14896398A priority Critical patent/JP3468099B2/en
Publication of JPH11339803A publication Critical patent/JPH11339803A/en
Application granted granted Critical
Publication of JP3468099B2 publication Critical patent/JP3468099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池における正極活物質の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material in a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでおり、これらの駆動用電源
を担う小型・軽量で、高エネルギー密度を有する二次電
池への要望も高まっている。このような観点から、非水
系二次電池、特にリチウム二次電池は、とりわけ高電圧
・高エネルギー密度を有する電池としてその期待は大き
く、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
The cordless technology is rapidly advancing, and there is an increasing demand for a small-sized, lightweight secondary battery having a high energy density, which serves as a power source for driving these. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have great expectations as batteries having high voltage and high energy density, and their development is urgently needed.

【0003】近年、リチウム含有複合酸化物を正極活物
質とし、負極に炭素質材料を用いた電池系が高エネルギ
ー密度が得られるリチウム二次電池として注目を集めて
いる。このリチウム含有複合酸化物としてLiCoO2
を用いた電池が実用化され、さらに高容量を目指したL
iNiO2を実用化する試みも盛んに行われている。し
かしながら、LiCoO2は資源が乏しく高価であり、
またLiNiO2は熱安定性が低いという問題点を有し
ている。
In recent years, a battery system in which a lithium-containing composite oxide is used as a positive electrode active material and a carbonaceous material is used as a negative electrode has been attracting attention as a lithium secondary battery capable of obtaining high energy density. As this lithium-containing composite oxide, LiCoO 2
A battery that uses a
Many attempts have been made to put iNiO 2 into practical use. However, LiCoO 2 is scarce in resources and expensive,
Further, LiNiO 2 has a problem of low thermal stability.

【0004】これに対し、資源が豊富であるマンガンを
使用したリチウム含有複合酸化物として、LiMn24
が提案されている。この酸化物は4V付近と2.8V付
近の2段の放電電位を持っており、4V付近のプラトー
な放電領域を使用し、4.5〜3.0Vの電圧範囲で充
放電を繰り返すことで高電位、高エネルギー密度を達成
することができる。このリチウム複合マンガン酸化物の
主な製造方法としては、マンガン化合物とリチウム化合
物を所定のモル比となるように混合した後、熱処理し合
成する方法が一般的である。
On the other hand, as a lithium-containing composite oxide using manganese, which is rich in resources, LiMn 2 O 4 is used.
Is proposed. This oxide has a two-stage discharge potential near 4V and around 2.8V. By using a plateau discharge region near 4V and repeating charge and discharge in the voltage range of 4.5 to 3.0V. High potential and high energy density can be achieved. As a main manufacturing method of this lithium composite manganese oxide, a method of mixing a manganese compound and a lithium compound in a predetermined molar ratio and then heat treating them to synthesize them is generally used.

【0005】しかしながら、このようにして得られるリ
チウム複合マンガン酸化物をリチウム二次電池用正極材
料として用いた場合、得られる放電容量が小さいという
問題をかかえている。
However, when the lithium composite manganese oxide thus obtained is used as a positive electrode material for a lithium secondary battery, the obtained discharge capacity is small.

【0006】この問題点を解決する方法として、様々な
マンガン酸リチウムの製造方法が提案されている。水酸
化リチウムと酸化マンガンを混合した混合物を粉砕した
後、焼成することにより両者の反応を短時間で、均一に
進行させる方法(特開平6−76824号公報)、50
0℃以下の温度で第1の熱処理をおこなった後に、50
0℃以上850℃以下の温度で第2の熱処理をおこなう
ことでより組成が均一なスピネル構造を得る方法(特開
平8−217452号公報)、200℃以上500℃未
満で熱処理をした後、500℃以上850℃以下で再度
熱処理をおこなうことで高容量なリチウムマンガン酸化
物を得る方法(特開平9−86933号公報)、マンガ
ン酸化物をリチウム塩溶液中で処理しリチウムイオンを
均一に拡散させた後に加熱処理することで組成が均一で
かつ結晶性の良いLiMn24を得る方法(特開平6−
295724号公報)、マンガン酸化物粒子内にリチウ
ム含有処理を施す際に還元剤を添加することによりリチ
ウムを速やかにかつ均一に拡散させ、その後に加熱処理
することで均一でかつ結晶性の良いマンガン酸リチウム
を得る方法(特開平8−213019号公報)、金属元
素の塩に脂肪酸を加えpH7未満の水溶液に調整してそ
の溶液を噴霧熱分解、その後熱処理を加えることで良質
の活物質を得る方法(特開平8−329945号公報)
などがある。
As a method for solving this problem, various methods for producing lithium manganate have been proposed. A method in which a mixture of lithium hydroxide and manganese oxide is pulverized and then fired to allow the reaction of both to uniformly proceed in a short time (JP-A-6-76824), 50
After performing the first heat treatment at a temperature of 0 ° C. or less, 50
A method of obtaining a spinel structure having a more uniform composition by performing a second heat treatment at a temperature of 0 ° C. or higher and 850 ° C. or lower (Japanese Patent Laid-Open No. 8-217452). After performing heat treatment at 200 ° C. or higher and lower than 500 ° C., 500 A method of obtaining a high-capacity lithium manganese oxide by carrying out a heat treatment again at not less than 850 ° C and not more than 850 ° C (JP-A-9-86933), and treating the manganese oxide in a lithium salt solution to uniformly disperse lithium ions. And then heat treatment to obtain LiMn 2 O 4 having a uniform composition and good crystallinity (JP-A-6-
295724), a lithium is rapidly and uniformly diffused by adding a reducing agent when a lithium-containing treatment is carried out in manganese oxide particles, and then a heat treatment is performed to obtain uniform and good crystallinity of manganese. A method of obtaining lithium oxide (Japanese Patent Laid-Open No. 8-213019), a fatty acid is added to a salt of a metal element to prepare an aqueous solution having a pH of less than 7, and the solution is spray-pyrolyzed and then heat-treated to obtain a good quality active material. Method (Japanese Patent Laid-Open No. 8-329945)
and so on.

【0007】一方、充放電サイクルを良好にするためマ
ンガンの一部を他の元素に置換する方法がある。たとえ
ば、マンガンの一部をBで置換する方法(特開平4−2
37970号公報)、Alで置換する方法(特開平4−
89662号公報)、Pで置換する方法(特開平9−2
59863号公報)Co,Ni,BおよびAlで置換す
る方法(特開平10−92429号公報)などがある。
On the other hand, there is a method of substituting a part of manganese with another element in order to improve the charge / discharge cycle. For example, a method of substituting B for a part of manganese (Japanese Patent Laid-Open No. 4-2
37970), a method of substituting with Al (Japanese Patent Application Laid-Open No. Hei 4-
89662), a method of substituting with P (Japanese Patent Application Laid-Open No. 9-2
There is a method of substituting Co, Ni, B and Al (Japanese Patent Laid-Open No. 10-92429).

【0008】[0008]

【発明が解決しようとする課題】しかしながらリチウム
複合マンガン酸化物であるLiMn24は、理論的には
高電圧、高エネルギー密度という特徴は有しているが、
上記従来の合成方法で得られたLiMn24は十分な活
物質利用率を得ることができず、放電容量が大きな正極
活物質を効率よく製造することが困難であった。また、
上記従来の方法で得られたマンガンの一部を他の元素で
置換したLiMn24は充放電サイクルに伴う容量低
下、高温下におけるマンガンの溶出による容量の低下を
十分に抑制するものではないという課題も有している。
本発明はこのような課題を解決するもので、活物質利用
率の高い、優れた充放電特性を有する非水電解質二次電
池用正極活物質の製造方法を提供することを目的とす
る。
However, LiMn 2 O 4 which is a lithium composite manganese oxide is theoretically characterized by high voltage and high energy density.
LiMn 2 O 4 obtained by the above conventional synthesis method cannot obtain a sufficient utilization ratio of the active material, and it is difficult to efficiently manufacture a positive electrode active material having a large discharge capacity. Also,
LiMn 2 O 4 obtained by substituting a part of manganese obtained by the above-mentioned conventional method with another element does not sufficiently suppress the capacity decrease due to charge / discharge cycles and the capacity decrease due to elution of manganese at high temperature. There is also a problem.
The present invention solves such a problem, and an object thereof is to provide a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which has a high utilization rate of the active material and has excellent charge / discharge characteristics.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、マンガン化合物とリチウム化合物を混合、
または流動させながら合成することにより、合成反応を
均一にかつ完全に進行させ、それにより活物質利用率の
高い、優れた充放電特性を示すリチウム複合マンガン酸
化物を得るものである。さらに、マンガンの一部をC
o,Ni,Cr,B,AlあるいはPからなる群のうち
少なくとも1種類で置換するリチウム複合マンガン酸化
物を上記合成方法を用いることにより充放電サイクル特
性を向上させ、また高温下におけるマンガンの溶出によ
る容量の低下を抑制するものである。
In order to solve the above-mentioned problems, the present invention provides a mixture of a manganese compound and a lithium compound,
Alternatively, the synthesis is carried out while flowing to allow the synthesis reaction to proceed uniformly and completely, thereby obtaining a lithium composite manganese oxide having a high utilization rate of the active material and exhibiting excellent charge / discharge characteristics. Furthermore, part of manganese is C
By using the above-mentioned synthesis method, a lithium composite manganese oxide substituted with at least one kind selected from the group consisting of o, Ni, Cr, B, Al or P is used to improve charge / discharge cycle characteristics and elute manganese at high temperature. It is intended to suppress the decrease in capacity due to.

【0010】[0010]

【発明の実施の形態】本発明は、マンガン化合物とリチ
ウム化合物を混合、または流動させながら昇温し合成す
る非水電解質二次電池用正極活物質の製造方法である。
昇温の最高温度は750〜950℃が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises synthesizing a manganese compound and a lithium compound by heating them while mixing or flowing them.
The maximum temperature for raising the temperature is preferably 750 to 950 ° C.

【0011】また、本発明はマンガン化合物とリチウム
化合物を混合、または流動させながら昇温し合成する第
一の合成段階、静置して第一の合成温度より高温まで昇
温し合成する第二の合成段階を有する非水電解質二次電
池用正極活物質の製造方法である。第一の合成段階の最
高温度は500〜700℃、第二の合成段階の最高温度
が750〜950℃が好ましい。
Further, according to the present invention, the manganese compound and the lithium compound are mixed or flowed to raise the temperature while synthesizing the mixture in the first synthesis step. Is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which has the synthesis step of. The maximum temperature of the first synthesis stage is preferably 500 to 700 ° C, and the maximum temperature of the second synthesis stage is preferably 750 to 950 ° C.

【0012】さらに、前記合成方法を用いて非水電解質
二次電池用正極活物質のマンガンの一部をCo,Ni,
Cr,B,AlあるいはPからなる群のうち少なくとも
1種類で置換し、それらの原子モルの含有量の合計がマ
ンガンの原子モルに対して0.01〜5%とするもので
ある。
Further, a part of manganese of the positive electrode active material for a non-aqueous electrolyte secondary battery is converted into Co, Ni,
It is substituted with at least one kind selected from the group consisting of Cr, B, Al or P, and the total content of atomic moles thereof is 0.01 to 5% with respect to the atomic moles of manganese.

【0013】リチウム複合マンガン酸化物の合成方法と
して、出発原料であるマンガン化合物やリチウム化合物
の所定量を定比混合して高温で焼成する方法は従来から
よく知られた合成法である。しかし、通常は炉内ではこ
れらの混合物は静置状態で合成するので、炉内雰囲気を
酸化あるいは還元雰囲気のように種々調整しても固相が
気相と接する界面は概ね混合物と気相が接する部分に集
中する。このため、気相に接しにくい混合物の中心付近
は調整雰囲気の影響を受けにくいこと、またさらにマン
ガン化合物やリチウム化合物の粒子同士の接触は最初に
接した状態を反応の最終まで引きずるため均一反応場が
得られにくいことなどから、最終生成物中に未反応物質
が混入する、あるいは所望組成からずれた組成の試料と
して得られることが多い。
As a method of synthesizing the lithium composite manganese oxide, a method of mixing a predetermined amount of a starting material manganese compound or a lithium compound in a stoichiometric ratio and firing at high temperature is a well-known synthesis method. However, since these mixtures are usually synthesized in a static state in a furnace, even if the atmosphere in the furnace is variously adjusted such as an oxidizing or reducing atmosphere, the interface where the solid phase contacts the gas phase is almost the same as the mixture and the gas phase. Focus on the contact area. For this reason, the vicinity of the center of the mixture, which is difficult to contact with the gas phase, is not easily affected by the adjustment atmosphere, and the contact between particles of the manganese compound or the lithium compound drags the first contact state to the end of the reaction, so that the homogeneous reaction field In many cases, unreacted substances are mixed in the final product, or the sample is obtained as a sample having a composition deviating from the desired composition.

【0014】本発明によれば、マンガン化合物とリチウ
ム化合物の混合物を混合あるいは流動させながら昇温し
合成するので、粉体自身が粒子同士あるいは反応雰囲気
との接触などにより反応環境に変化が生じる。すなわ
ち、固相、気相の界面接触頻度が格段に増大するため、
偏りの少ない均一反応場の提供が可能となる。このた
め、調整雰囲気の影響を受けやすく、またマンガン源と
リチウム源の粉体が互いに接触する頻度は静置法より多
くなり、均一反応場が形成されやすい。このため、最終
生成物は未反応物質の混入や不定比組成部を持ちにくい
所望組成の試料を得ることが可能となる。
According to the present invention, since a mixture of a manganese compound and a lithium compound is heated while synthesizing while mixing or flowing, the powder itself causes a change in reaction environment due to contact between particles or a reaction atmosphere. That is, the frequency of interfacial contact between the solid phase and the gas phase is remarkably increased,
It is possible to provide a uniform reaction field with little bias. Therefore, it is easily affected by the adjusted atmosphere, and the powders of the manganese source and the lithium source contact each other more frequently than in the stationary method, and a uniform reaction field is easily formed. For this reason, it becomes possible to obtain a sample having a desired composition which is unlikely to have unreacted substances mixed therein and a nonstoichiometric composition part as the final product.

【0015】このときの合成時の昇温の最高温度は、7
50℃以下では結晶性が低くなるため放電容量が小さく
なり、950℃以上では比表面積が小さくなるため電池
性能が悪いということから、電池性能が良好となる75
0〜950℃が好ましい。
In this case, the maximum temperature rise during synthesis is 7
When the temperature is 50 ° C. or lower, the crystallinity is low and the discharge capacity is small, and when the temperature is 950 ° C. or higher, the specific surface area is small and the battery performance is poor, so that the battery performance is good.
0-950 degreeC is preferable.

【0016】たとえば、出発材料のマンガン化合物とし
て二酸化マンガン、リチウム化合物として炭酸リチウム
を所定比で混合した混合物を流動させながら合成を行
う。二酸化マンガンはもとより吸着水や結合水に与える
プロトンが挿入されているためマンガンの原子価は4価
ではなく若干還元された状態の価数で存在することが知
られている。本発明者等は昇温合成過程での出発材料の
化学状態の変化を検討した。まず、二酸化マンガンは常
温から昇温し始めて130℃までに付着水が離脱し、そ
の後250℃付近にかけて結合水としてのプロトンが炉
内の酸化雰囲気下で遊離し、この時点でマンガンの酸化
状態は酸化方向に推移する。この時、二酸化マンガンと
しての原子価はほぼ4価にまで酸化され、次いで炭酸リ
チウムの分解反応の促進で二酸化マンガンはリチウム挿
入反応が始まり徐々に反応が進行し、450℃以上で空
間群Fd3mの立方晶にほとんど変化する。マンガンの
価数を4価にするためには、それぞれの二酸化マンガン
粒子界面が均一に調整された酸化雰囲気と接触する必要
があり、しかもその頻度も均一であるべきである。
For example, synthesis is carried out while flowing a mixture of manganese dioxide as a starting material and manganese dioxide as a lithium compound and lithium carbonate as a lithium compound at a predetermined ratio. It is known that manganese dioxide, as well as the adsorbed water and bound water, have protons inserted therein, so that the valence of manganese is not tetravalent but exists in a slightly reduced state. The present inventors examined the change in the chemical state of the starting material during the temperature rising synthesis process. First, manganese dioxide begins to rise in temperature from room temperature and the attached water is released by 130 ° C., and then the protons as bound water are released in the oxidizing atmosphere in the furnace up to about 250 ° C. At this point, the oxidation state of manganese is Transition to oxidation. At this time, the valence as manganese dioxide is oxidized to almost tetravalent, and then the lithium insertion reaction of manganese dioxide starts and the reaction proceeds gradually due to the promotion of the decomposition reaction of lithium carbonate. Almost changed to cubic. In order to change the valence of manganese to tetravalent, it is necessary that each manganese dioxide particle interface comes into contact with a uniformly adjusted oxidizing atmosphere, and the frequency should be uniform.

【0017】この後、十分にリチウム化されたリチウム
複合マンガン酸化物前駆体を電気炉中で静置し750〜
950℃で再加熱させ最終的に目的とするリチウム複合
マンガン酸化物を得るものである。後半で再加熱すると
きには前駆体中にリチウムが十分均一に含侵されている
ので流動させる必要はなく、また750〜950℃の加
熱によりリチウム複合マンガン酸化物の結晶が成長する
ため電気炉中で静置し行うのが好ましい。
After this, the fully lithiated lithium composite manganese oxide precursor is allowed to stand in an electric furnace to stand at 750 to 750.
It is reheated at 950 ° C. to finally obtain the target lithium composite manganese oxide. When it is reheated in the latter half, it is not necessary to fluidize it because lithium is impregnated into the precursor in a sufficiently uniform manner. Also, heating at 750 to 950 ° C. causes the crystal of the lithium composite manganese oxide to grow, so that it is kept in an electric furnace. It is preferable to perform it by leaving it to stand.

【0018】上記本発明の方法に対し、前半の流動しな
がら合成する工程を仮に電気炉中で静置し行った場合、
二酸化マンガン自身の熱の受け方には変わりはないので
物理的変化に大きな差異は本来認められないはずであ
る。しかしながら、実際には炉内雰囲気に曝される二酸
化マンガン粒子は限定され、混合物の中程に存在する二
酸化マンガン粒子にまで雰囲気ガスの侵入がないため、
焼成に供したすべての二酸化マンガンが均一に4価まで
の酸化を受けることはなく、部分的に酸化が十分進行し
ない粒子が多く発生する。このため、さらに高温で進行
するリチウム化反応において基の酸化状態が異なること
により生じる反応性のばらつきが発生し、組成比がずれ
た、あるいはリチウム化が十分でない最終生成物を得る
ことになるのである。
In the case where the first half of the step of synthesizing while flowing is performed in the electric furnace for the above-mentioned method of the present invention,
There is no change in the way that manganese dioxide receives heat, so there should be essentially no significant difference in physical changes. However, actually, the manganese dioxide particles exposed to the atmosphere in the furnace are limited, and since the manganese dioxide particles existing in the middle of the mixture do not enter the atmosphere gas,
All of the manganese dioxide used for the calcination is not uniformly oxidized to tetravalent, and many particles are partially oxidized, but the oxidation does not proceed sufficiently. For this reason, in the lithiation reaction that proceeds at a higher temperature, variations in reactivity occur due to different oxidation states of the groups, resulting in a final product with a different composition ratio or insufficient lithiation. is there.

【0019】また、マンガンの一部をCo,Ni,C
r,B,Al,Pなどの元素からなる群のうち少なくと
も1種類で置換する方法においても、これらの元素を含
む化合物を流動させながら合成することにより、リチウ
ム複合マンガン酸化物前駆体中に種々の元素を均一に置
換することが可能である。これらの置換元素はリチウム
複合マンガン酸化物正極の充放電に伴う結晶相変化を緩
和する効果があり、サイクル特性の改善に寄与する。ま
た、同時にリチウム複合マンガン酸化物の比表面積への
影響、あるいは立方晶の結晶骨格の結合力を高める作用
等があると考えられ電池特性の改善をもたらす。
Further, a part of manganese is used as Co, Ni, C.
Even in the method of substituting at least one of the group consisting of elements such as r, B, Al, and P, various compounds can be added to the lithium composite manganese oxide precursor by synthesizing a compound containing these elements while flowing. It is possible to uniformly replace the element. These substituting elements have the effect of alleviating the crystal phase change associated with charge and discharge of the lithium composite manganese oxide positive electrode, and contribute to the improvement of cycle characteristics. At the same time, it is considered that there is an effect on the specific surface area of the lithium composite manganese oxide, or an effect of increasing the bonding force of the cubic crystal skeleton, which leads to improvement of battery characteristics.

【0020】これらの置換元素を本発明の流動させなが
ら合成させる方法を用いることにより、より均一に固溶
させることができ、これらの置換効果を最大限に引き出
すことが可能となる。
By using the method of synthesizing these substituting elements while flowing, a more uniform solid solution can be obtained, and the substituting effect of these elements can be maximized.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(実施例1)本実施例のリチウム複合マン
ガン酸化物の合成法について説明する。
(Example 1) A method for synthesizing the lithium composite manganese oxide of this example will be described.

【0023】電解二酸化マンガン(MnO2)と炭酸リ
チウム(Li2CO3)をMnとLiの原子モル比が1:
0.5となるようにMnO2を2309gとLi2CO3
を491g混合した。この混合物を20Lの回転式ロー
タリーキルン中で回転数2rpmで回転させ、流動させ
ながら送風10l/minの空気雰囲気下で2時間、表
1に示す650〜1000℃の温度Aまで昇温し、昇温
後10時間温度Aで保持することにより化合物1〜5の
LiMn24を合成した。得られた化合物を粉砕、分級
して電池用活物質とした。また、得られた化合物1〜5
のX線回折測定を行い、(111)面のピーク強度を比
較例1に示す従来の方法により合成されたものを100
とした時の比較値として確認した。このときのX線回折
の条件は、CuKα,40kV,40mAとした。な
お、(111)面のピーク強度はLiMn24の結晶性
を示す。
Electrolytic manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 CO 3 ) have an atomic molar ratio of Mn to Li of 1:
2309 g of MnO 2 and Li 2 CO 3 so as to be 0.5
Was mixed with 491 g. This mixture is rotated at a rotation speed of 2 rpm in a rotary rotary kiln of 20 L, and while being flown, the temperature is raised to a temperature A of 650 to 1000 ° C. shown in Table 1 for 2 hours in an air atmosphere of 10 l / min of blowing air, and the temperature is raised. the LiMn 2 O 4 compounds 1-5 were synthesized by holding for 10 hours the temperature a after. The obtained compound was pulverized and classified to obtain a battery active material. Moreover, the obtained compounds 1 to 5
X-ray diffraction measurement was performed, and the peak intensity of the (111) plane was 100 when synthesized by the conventional method shown in Comparative Example 1.
Was confirmed as a comparative value. The X-ray diffraction conditions at this time were CuKα, 40 kV, and 40 mA. The peak intensity of the (111) plane indicates the crystallinity of LiMn 2 O 4 .

【0024】次に、得られた化合物1〜5を正極活物質
として用い円筒型リチウム二次電池を構成した。図1は
本発明の実施例に用いた円筒型リチウム二次電池の縦断
面図である。図1において正極板5および負極板6がセ
パレータ7を介して複数回渦巻状に巻回し構成された極
板群4が耐有機電解液性のステンレス鋼板を加工した電
池ケース1内に収納されている。正極板5からは正極ア
ルミリード5aが引き出されて封口板2に接続され、負
極板6からは負極ニッケルリード6aが引き出されて電
池ケース1の底部に接続されている。極板群4の上下部
にそれぞれ絶縁リング8が設けられており、電池ケース
1の開口部は、安全弁を設けた封口板2および絶縁パッ
キング3により封口されている。負極板6は炭素材料
(本実施例においてはピッチ系球状黒鉛を用いた)にス
チレン−ブタジエンゴムの水性ディスパージョンを重量
比で100:3.5の割合で混合し、これをカルボキシ
メチルセルロースの水溶液に懸濁させてペースト状にし
たものを銅箔の両面に塗着し、乾燥後、圧延し所定の大
きさに切り出し負極板を作製した。なお、スチレン−ブ
タジエンゴムの水性ディスパージョンの混合比率はその
固形分で計算している。正極板5は、合成した化合物1
〜5のLiMn24にアセチレンブラックおよびポリ四
フッ化エチレンの水性ディスパージョンを重量比で10
0:2.5:7.5の割合で混合し、これをカルボキシ
メチルセルロースの水溶液に懸濁させてペースト状にす
る。次いでこのペーストをアルミ箔の両面に塗着し、乾
燥後、圧延し所定の大きさに切り出して正極板を作製し
た。なお、ポリ四フッ化エチレンの水性ディスパージョ
ンの混合比率はその固形分で計算している。
Next, a cylindrical lithium secondary battery was constructed by using the obtained compounds 1 to 5 as a positive electrode active material. FIG. 1 is a vertical sectional view of a cylindrical lithium secondary battery used in an example of the present invention. In FIG. 1, a positive electrode plate 5 and a negative electrode plate 6 are spirally wound a plurality of times with a separator 7 in between, and an electrode plate group 4 is housed in a battery case 1 formed by processing an organic electrolytic solution resistant stainless steel plate. There is. A positive electrode aluminum lead 5a is drawn out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6a is drawn out from the negative electrode plate 6 and connected to the bottom of the battery case 1. Insulating rings 8 are provided on the upper and lower portions of the electrode plate group 4, respectively, and the opening of the battery case 1 is sealed by a sealing plate 2 provided with a safety valve and an insulating packing 3. For the negative electrode plate 6, a carbon material (pitch-based spherical graphite was used in the present embodiment) was mixed with an aqueous dispersion of styrene-butadiene rubber in a weight ratio of 100: 3.5, and this was mixed with an aqueous solution of carboxymethyl cellulose. The obtained product was suspended in a paste form and applied to both sides of a copper foil, dried, and then rolled and cut into a predetermined size to prepare a negative electrode plate. The mixing ratio of the aqueous dispersion of styrene-butadiene rubber is calculated based on its solid content. The positive electrode plate 5 is the synthesized compound 1
˜5 LiMn 2 O 4 with an aqueous dispersion of acetylene black and polytetrafluoroethylene in a weight ratio of 10
Mix at a ratio of 0: 2.5: 7.5 and suspend this in an aqueous solution of carboxymethyl cellulose to form a paste. Next, this paste was applied on both sides of an aluminum foil, dried, rolled and cut into a predetermined size to prepare a positive electrode plate. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene is calculated based on its solid content.

【0025】上記方法により作製した正、負極板にそれ
ぞれリードを取付け、ポリエチレン製のセパレータを介
して渦巻き状に巻回し、電池ケースに収納した。電解液
にはエチレンカーボネートとエチルメチルカーボネート
を体積比で1:3で混合した溶媒に6フッ化リン酸リチ
ウム(LiPF6)を1.5mol/l溶解したものを
用いた。この電解液を上記の電池ケースに減圧注液後封
口し、電池1〜5とした。なお本実施例においては、正
極活物質の特性を評価するため、予め負極の容量を大き
くしたものを用いた。
Leads were attached to the positive and negative electrode plates produced by the above method, respectively, and they were spirally wound with a polyethylene separator interposed therebetween and housed in a battery case. The electrolytic solution used was a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3, and lithium hexafluorophosphate (LiPF 6 ) was dissolved therein at 1.5 mol / l. This electrolytic solution was injected into the above battery case under reduced pressure and then sealed to obtain batteries 1 to 5. In this example, in order to evaluate the characteristics of the positive electrode active material, a negative electrode having a large capacity was used in advance.

【0026】これら電池1〜5を用いて下記の条件で試
験を行った。まず、20℃で電池電圧4.2Vまで12
0mAの定電流で充電した後1時間休止を行い、その後
120mAの定電流で電池電圧3.0Vまで放電する。
この方法で充放電を3回繰り返し、3回目の放電容量を
初期容量とした。また、初期容量を電池内に含まれるL
iMn24の重量で割ることによって活物質の比容量を
算出した。
Tests were carried out using the batteries 1 to 5 under the following conditions. First, at 20 ° C, the battery voltage up to 4.2V 12
The battery is charged with a constant current of 0 mA, rested for 1 hour, and then discharged with a constant current of 120 mA to a battery voltage of 3.0 V.
By repeating this method, charging and discharging were repeated three times, and the discharge capacity at the third time was used as the initial capacity. In addition, the initial capacity is L included in the battery.
The specific capacity of the active material was calculated by dividing by the weight of iMn 2 O 4 .

【0027】(比較例1)比較例としてリチウム複合マ
ンガン酸化物を電気炉中で静置することにより作製し
た。以下、正極活物質の合成法について説明する。
Comparative Example 1 As a comparative example, a lithium composite manganese oxide was prepared by allowing it to stand in an electric furnace. Hereinafter, a method for synthesizing the positive electrode active material will be described.

【0028】電解二酸化マンガン(MnO2)と炭酸リ
チウム(Li2CO3)をMnとLiの原子モル比が1:
0.5となるようにMnO2とLi2CO3を実施例1と
同量混合した。この混合物を容器に入れ、電気炉内で静
置して、2時間で850℃まで昇温し、昇温後850℃
で10時間保持することによりLiMn24を合成し
た。得られた化合物を粉砕、分級して電池用活物質とし
た。得られた化合物を実施例1と同様の方法にてX線回
折測定を行った。
Electrolytic manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 CO 3 ) have an atomic molar ratio of Mn to Li of 1:
MnO 2 and Li 2 CO 3 were mixed in the same amount as in Example 1 so that the ratio became 0.5. This mixture was placed in a container, allowed to stand in an electric furnace, heated to 850 ° C. in 2 hours, and then heated to 850 ° C.
LiMn 2 O 4 was synthesized by holding at 10 ° C. for 10 hours. The obtained compound was pulverized and classified to obtain a battery active material. The obtained compound was subjected to X-ray diffraction measurement in the same manner as in Example 1.

【0029】得られたLiMn24を正極活物質として
用いた以外は実施例1と同様の方法で比較電池1を作成
し、試験を行った。
Comparative battery 1 was prepared and tested in the same manner as in Example 1 except that the obtained LiMn 2 O 4 was used as the positive electrode active material.

【0030】表1に電池1〜5および比較電池1の昇温
時の最高温度A、初期容量、活物質の比容量および正極
活物質の(111)面のピーク強度を示す。
Table 1 shows the maximum temperature A of the batteries 1 to 5 and the comparative battery 1 at the time of temperature rise, the initial capacity, the specific capacity of the active material, and the peak intensity of the (111) plane of the positive electrode active material.

【0031】[0031]

【表1】 [Table 1]

【0032】表1より、電池3と比較電池1を比較する
と、昇温時の最高温度が850℃と同じであるにもかか
わらず、活物質比容量は比較電池1より電池3の方が良
好な値が得られた。これは合成時に混合、流動させるこ
とにより合成反応がより完全に、均一に進行するためで
あると考えられる。このことはX線回折測定による(1
11)面のピーク強度が比較電池1よりも電池3の方が
大きいことからも裏付けられる。また、合成温度は75
0℃から950℃の範囲が最適であり、中でも温度Aが
850℃のとき活物質比容量が最高であった。
From Table 1, comparing battery 3 and comparative battery 1, battery 3 has a better active material specific capacity than comparative battery 1 even though the maximum temperature during heating is the same as 850 ° C. The value obtained was It is considered that this is because the synthesis reaction proceeds more completely and uniformly by mixing and flowing during synthesis. This is determined by X-ray diffraction measurement (1
This is also supported by the fact that the peak intensity of the 11) plane of the battery 3 is larger than that of the comparative battery 1. The synthesis temperature is 75
The optimum range is 0 ° C. to 950 ° C., and among them, the active material specific capacity was highest when the temperature A was 850 ° C.

【0033】(実施例2)本実施例のリチウム複合マン
ガン酸化物の合成法について説明する。
Example 2 A method of synthesizing the lithium composite manganese oxide of this example will be described.

【0034】電解二酸化マンガン(MnO2)と炭酸リ
チウム(Li2CO3)をLiとMnの原子モル比が1:
0.5になるように実施例1と同量を混合した。この混
合物を20Lの回転式ロータリーキルン中で回転数2r
pmで回転させ、流動させながら送風10l/minの
空気雰囲気下で2時間、表2に示す400〜800℃の
温度Bまで昇温し、温度Bで10時間保持した。その後
容器に入れ電気炉内で静置し、温度Bより高温の表2に
示す650〜1000℃の温度Cまで2時間で昇温し、
温度Cで10時間保持することにより化合物6〜14の
LiMn24を合成した。得られた化合物を粉砕、分級
して電池用活物質とした。化合物のX線回折測定、電池
構成および試験方法は実施例1と同様にした。なお、本
実施例においては、正極活物質の特性を評価するため予
め、負極の容量を大きくしたものを用いた。
Electrolytic manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 CO 3 ) are mixed at an atomic molar ratio of Li and Mn of 1:
The same amount as in Example 1 was mixed so as to be 0.5. This mixture was rotated in a 20 L rotary rotary kiln at a rotation speed of 2 r
While rotating at pm and flowing, the temperature was raised to a temperature B of 400 to 800 ° C. shown in Table 2 for 2 hours in an air atmosphere of blowing air of 10 l / min, and the temperature B was kept for 10 hours. Then, it is placed in a container and allowed to stand in an electric furnace, and the temperature is raised from a temperature B to a temperature C of 650 to 1000 ° C. shown in Table 2 in 2 hours,
By holding the temperature C for 10 hours, LiMn 2 O 4 of compounds 6 to 14 was synthesized. The obtained compound was pulverized and classified to obtain a battery active material. The X-ray diffraction measurement of the compound, the battery constitution and the test method were the same as in Example 1. In this example, in order to evaluate the characteristics of the positive electrode active material, a negative electrode having a large capacity was used in advance.

【0035】表2に電池6〜14の昇温時の最高温度B
およびC、初期容量、活物質の比容量および正極活物質
の(111)面のピーク強度を示す。
Table 2 shows the maximum temperature B when the batteries 6 to 14 are heated.
And C, the initial capacity, the specific capacity of the active material, and the peak intensity of the (111) plane of the positive electrode active material are shown.

【0036】[0036]

【表2】 [Table 2]

【0037】表2より、温度Bが500〜700℃の範
囲であって、温度Cが温度Bよりも高い750〜950
℃の範囲において活物質比容量が良好であることがわか
った。また実施例1で得られた電池3と実施例2の電池
7〜9を比較すると、最高温度は850℃と同じである
が、第一の合成段階で流動させながら最高温度500〜
700℃で合成した後、第二の合成段階でそれよりも高
い最高温度850℃で静置し合成するほうが大きな活物
質比容量を得られることもわかった。これは500〜7
00℃で混合、流動させながら合成することにより、合
成反応が完全に、均一に進行し、その後静置して熱処理
することで結晶がさらに成長するためであると考えられ
る。このことはX線回折測定による(111)面のピー
ク強度が実施例7〜9が大きいことからも裏付けられ
る。
From Table 2, the temperature B is in the range of 500 to 700 ° C., and the temperature C is higher than the temperature B, 750 to 950.
It was found that the active material specific capacity was good in the range of ° C. Further, comparing the battery 3 obtained in Example 1 with the batteries 7 to 9 of Example 2, the maximum temperature is the same as 850 ° C., but the maximum temperature is 500 to 500 ° C. while flowing in the first synthesis stage.
It was also found that a larger active material specific capacity can be obtained by synthesizing at 700 ° C. and then allowing it to stand still at a higher maximum temperature of 850 ° C. in the second synthesis step. This is 500-7
It is considered that by synthesizing while mixing and flowing at 00 ° C., the synthesis reaction proceeded completely and uniformly, and the crystals were further grown by standing and heat-treating. This is supported by the fact that the peak intensities of the (111) plane measured by X-ray diffraction are large in Examples 7 to 9.

【0038】(実施例3)LiMn24のマンガンの一
部をCo,Ni,Cr,B,AlおよびPで置換した正
極活物質を合成した。本実施例においては、Coは四三
酸化コバルト(Co34),Niは水酸化ニッケル(N
i(OH)2),Crは三二酸化クロム(Cr23),
Bは三二酸化ホウ素(B23),Alは水酸化アルミニ
ウム(Al(OH)3)およびPは五酸化二リン(P2
5)をドーパント種として用いた。
Example 3 A positive electrode active material was synthesized in which a part of manganese of LiMn 2 O 4 was replaced with Co, Ni, Cr, B, Al and P. In this embodiment, Co is cobalt trioxide (Co 3 O 4 ), Ni is nickel hydroxide (N
i (OH) 2 ) and Cr are chromium trioxide (Cr 2 O 3 ),
B is boron trioxide (B 2 O 3 ), Al is aluminum hydroxide (Al (OH) 3 ) and P is diphosphorus pentoxide (P 2 O).
5 ) was used as the dopant species.

【0039】以下、正極活物質の合成法について説明す
る。電解二酸化マンガン(MnO2)と炭酸リチウム
(Li2CO3)と四三酸化コバルト(Co34)をLi
と、MnとCoの合計の原子モル比が0.5:1になる
ように混合した。このときのMnに対するCoの原子モ
ル比率を0.001〜20%とした。また、Coに換え
Ni,Cr,B,AlおよびPを添加する場合は、上記
ドーパント種をマンガンに対してCoと同様の所定比率
となるよう混合した。この混合物を20Lの回転式ロー
タリーキルン中で回転数2rpmで回転させ、流動させ
ながら送風10l/minの空気雰囲気下で2時間で6
00℃まで昇温し、昇温後600℃で10時間保持し
た。その後容器に入れ電気炉中で静置し、2時間で85
0℃まで昇温し、昇温後850℃で10時間保持するこ
とによりマンガンの一部をCo,Ni,Cr,B,Al
あるいはPで置換したLiMn24を合成した。得られ
た化合物を粉砕、分級して電池用活物質とした。電池構
成および初期容量の測定は実施例1と同様にした。
The method for synthesizing the positive electrode active material will be described below. Electrolytic manganese dioxide (MnO 2 ), lithium carbonate (Li 2 CO 3 ), and cobalt trioxide (Co 3 O 4 ) are mixed with Li.
And were mixed so that the total atomic mole ratio of Mn and Co was 0.5: 1. The atomic mole ratio of Co to Mn at this time was 0.001 to 20%. When Ni, Cr, B, Al and P were added instead of Co, the above dopant species were mixed with manganese in the same predetermined ratio as Co. This mixture was rotated at a rotation speed of 2 rpm in a rotary rotary kiln of 20 L, and was flowed for 6 hours in an air atmosphere of 10 l / min of blowing air for 6 hours.
The temperature was raised to 00 ° C., and after the temperature was raised, the temperature was maintained at 600 ° C. for 10 hours. After that, put it in a container and leave it in the electric furnace for 85 hours in 2 hours.
By raising the temperature to 0 ° C. and then holding the temperature at 850 ° C. for 10 hours, a part of manganese is changed to Co, Ni, Cr, B, Al
Alternatively, LiMn 2 O 4 substituted with P was synthesized. The obtained compound was pulverized and classified to obtain a battery active material. The battery configuration and the measurement of the initial capacity were the same as in Example 1.

【0040】さらに、20℃で充放電電流を120mA
とし、充電終止電圧4.2V、放電終止電圧3.0Vの
条件で定電流充放電サイクル試験を行った。初期容量に
対する300サイクル時点での放電容量を%で表したも
のを容量維持率として算出した。
Further, the charging / discharging current is 120 mA at 20 ° C.
Then, a constant current charge / discharge cycle test was performed under the conditions of a charge end voltage of 4.2V and a discharge end voltage of 3.0V. The discharge capacity at the time of 300 cycles with respect to the initial capacity was represented by% and calculated as the capacity retention rate.

【0041】また、初期容量を測定した後の電池を4.
2Vまで充電し80℃で3日間保存した。その後電池を
分解し、電解液中へのマンガンの溶出量をIPC発光分
光分析方法にて測定した。マンガン溶出量が増加すると
充放電が阻害されるため溶出量が少ないほど良好とみ
る。
The battery after the initial capacity was measured was 4.
It was charged to 2V and stored at 80 ° C for 3 days. After that, the battery was disassembled, and the amount of manganese eluted into the electrolytic solution was measured by the IPC emission spectroscopic analysis method. As the elution amount of manganese increases, the charging / discharging is hindered, so the smaller the elution amount, the better.

【0042】(比較例2)比較例としてLiMn24
マンガンの一部をCo,Ni,Cr,B,AlおよびP
で置換した正極活物質を電気炉で静置することにより作
製した。合成方法は第一の合成段階を回転式ロータリー
キルンを用いて流動させながら行うのに変え、混合物を
容器に入れ、電気炉内で静置した以外は実施例3と同様
の方法にて行った。また、電池の構成、評価方法も実施
例3と同様とした。
Comparative Example 2 As a comparative example, a part of manganese of LiMn 2 O 4 was used as Co, Ni, Cr, B, Al and P.
The positive electrode active material replaced with was left standing in an electric furnace. The synthesis method was the same as in Example 3 except that the first synthesis step was changed to a flow using a rotary rotary kiln while flowing, and the mixture was placed in a container and allowed to stand in an electric furnace. The battery configuration and evaluation method were also the same as in Example 3.

【0043】実施例3および比較例2のCo,Ni,C
r,B,AlおよびPのそれぞれのMnに対する原子モ
ル比率に対する活物質比容量を図2に、容量維持率を図
3に、マンガン溶出量を図4に示す。
Co, Ni, C of Example 3 and Comparative Example 2
FIG. 2 shows the active material specific capacities with respect to the atomic mole ratios of r, B, Al, and P with respect to Mn, FIG. 3 shows the capacity retention rate, and FIG. 4 shows the manganese elution amount.

【0044】図3より、本発明による電池の容量維持率
はCo,Ni,Cr,B,AlおよびPの含有量がマン
ガンに対し原子モル比で0.01%以上の範囲で維持率
が高く良好である。また、図4より、本発明による電池
のマンガン溶出量はCo,Ni,Cr,B,Alおよび
Pの含有量がマンガンに対し原子モル比で0.01%以
上の範囲で少なく良好である。しかしながら、図2より
5%以上の範囲で活物質比容量が低下する。以上のこと
からCo,Ni,Cr,B,AlおよびPの含有量がマ
ンガンに対し原子モル比で0.01%から5%の範囲が
活物質比容量、容量維持率、マンガン溶出量のすべてが
良好となることがわかった。
From FIG. 3, the capacity retention rate of the battery according to the present invention is high when the content of Co, Ni, Cr, B, Al and P is 0.01% or more in atomic mole ratio with respect to manganese. It is good. Further, as shown in FIG. 4, the amount of manganese eluted from the battery according to the present invention is small, and the content of Co, Ni, Cr, B, Al and P is as small as 0.01% or more by atomic mole ratio with respect to manganese. However, as shown in FIG. 2, the specific capacity of the active material decreases in the range of 5% or more. From the above, when the content of Co, Ni, Cr, B, Al and P is in the range of 0.01% to 5% in terms of atomic mole ratio with respect to manganese, the active material specific capacity, capacity retention rate and manganese elution amount are all Was found to be good.

【0045】また、実施例3と比較例2の結果を比べる
と、実施例3の方が活物質比容量、容量維持率およびマ
ンガン溶出量のどれにおいても元素および置換率を問わ
ず良好な結果を示している。
Comparing the results of Example 3 and Comparative Example 2, Example 3 showed better results regardless of the element and the substitution rate in any of the active material specific capacity, capacity retention rate and manganese elution amount. Is shown.

【0046】これは、合成時に混合、流動させることに
より合成反応がより完全に、均一に進行するため、元素
の置換がより均一に行われ、元素の置換の効果がより顕
著に現れたものと考えられる。
This is because the synthesis reaction proceeds more completely and uniformly by mixing and flowing during the synthesis, so that the element substitution is performed more uniformly, and the effect of element substitution is more prominent. Conceivable.

【0047】なお、本実施例ではLiMn24の出発材
料として電解二酸化マンガン、炭酸リチウムの組合せを
用いたが、マンガンの炭酸塩、低級酸化物、硝酸塩など
の他のマンガン化合物、また、水酸化リチウム、硝酸リ
チウム、酸化リチウムなどの他のリチウム化合物を組み
合わせて用いても同様の効果が得られる。
In this example, a combination of electrolytic manganese dioxide and lithium carbonate was used as the starting material for LiMn 2 O 4 , but other manganese compounds such as manganese carbonate, lower oxide and nitrate, and water. Similar effects can be obtained by using other lithium compounds such as lithium oxide, lithium nitrate and lithium oxide in combination.

【0048】また、マンガンと置換する元素の出発材料
として実施例に上げた物質以外に、水酸化コバルト(C
o(OH)2),硝酸コバルト(Co(NO32),炭
酸コバルト(CoCO3),三酸化クロム(CrO3),
酸化ニッケル(NiO),炭酸ニッケル(NiC
3),硝酸ニッケル(Ni(NO32),硝酸アルミ
ニウム(Al(NO33),ホウ酸(H3BO3),リン
酸(H3PO4)などを用いても同様の効果が得られる。
In addition to the substances listed in the examples as starting materials for elements substituting for manganese, cobalt hydroxide (C
o (OH) 2 ), cobalt nitrate (Co (NO 3 ) 2 ), cobalt carbonate (CoCO 3 ), chromium trioxide (CrO 3 ),
Nickel oxide (NiO), nickel carbonate (NiC
O 3), nickel nitrate (Ni (NO 3) 2) , aluminum nitrate (Al (NO 3) 3) , boric acid (H 3 BO 3), also by using a phosphoric acid (H 3 PO 4) similar The effect is obtained.

【0049】また、負極としてリチウムの吸蔵放出が可
能な種々の炭素質材、リチウム合金、インターカレーシ
ョンが可能な無機物系負極を用いた電池においても同様
の効果が見られる。さらに、電解質として本実施例で用
いたエチレンカーボネートとエチルメチルカーボネート
の混合溶媒に六フッ化リン酸リチウムを溶解したもの以
外の組合せの溶媒にリチウム塩を溶解した電解液、ポリ
マ電解質を用いた電池においても効果が見られる。
The same effect can be seen in batteries using various carbonaceous materials capable of inserting and extracting lithium, lithium alloys, and inorganic intercalable negative electrodes as the negative electrode. Further, as an electrolyte, an electrolyte solution in which a lithium salt is dissolved in a solvent of a combination other than that in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate used in this example, a battery using a polymer electrolyte is used. The effect is seen also in.

【0050】[0050]

【発明の効果】以上のように本発明によれば、LiMn
24で表されるリチウム複合マンガン酸化合物をマンガ
ン化合物とリチウム化合物を混合、または流動させなが
ら昇温し合成することで合成反応を完全にかつ均一に進
行させることができ、充放電特性に優れたリチウム二次
電池用正極活物質を得ることができる。
As described above, according to the present invention, LiMn
By synthesizing the lithium composite manganate compound represented by 2 O 4 by mixing or flowing a manganese compound and a lithium compound, the synthesis reaction can be progressed completely and uniformly, and the charge and discharge characteristics can be improved. An excellent positive electrode active material for lithium secondary batteries can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒型リチウム二次電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical lithium secondary battery of the present invention.

【図2】マンガンに対する置換金属の原子モル比率に対
する活物質比容量を示す図
FIG. 2 is a diagram showing an active material specific capacity with respect to an atomic mole ratio of a substituted metal to manganese.

【図3】マンガンに対する置換金属の原子モル比率に対
する300サイクル時点での容量維持率を示す図
FIG. 3 is a diagram showing the capacity retention ratio at the time of 300 cycles with respect to the atomic mole ratio of the substituted metal to manganese.

【図4】マンガンに対する置換金属の原子モル比率に対
する電解液中へのマンガン溶出量を示す図
FIG. 4 is a diagram showing the elution amount of manganese into the electrolytic solution with respect to the atomic mole ratio of the substituted metal to manganese.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁リング 1 battery case 2 Seal plate 3 insulating packing 4 electrode group 5 Positive plate 5a Positive lead 6 Negative plate 6a Negative electrode lead 7 separator 8 insulating ring

フロントページの続き (72)発明者 永山 雅敏 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平9−86933(JP,A) 特開 平7−101727(JP,A) 特開 平8−217452(JP,A) 特開 平11−71115(JP,A) 特開 平10−182158(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/58 C01G 45/00 Front page continuation (72) Inventor Masatoshi Nagayama 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshiaki Nitta 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 56) References JP-A-9-86933 (JP, A) JP-A-7-101727 (JP, A) JP-A-8-217452 (JP, A) JP-A-11-71115 (JP, A) Flat 10-182158 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/58 C01G 45/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式LiMn24で表される組成を有
するリチウム複合マンガン酸化物からなる非水電解質二
次電池用正極活物質の製造方法であり、マンガン化合物
とリチウム化合物とを混合または流動させながら加熱す
る第1の合成段階と、静置して加熱する第2の合成段階
とを有し、第1の合成段階の最高温度が500〜700
℃であり、第2の合成段階の最高温度が750〜950
℃である非水電解質二次電池用正極活物質の製造方法。
1. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises a lithium composite manganese oxide having a composition represented by the general formula LiMn 2 O 4 , wherein a manganese compound and a lithium compound are mixed or mixed. first and synthetic steps Ru which Nessu pressurized fluidization while <br/>, and a second synthesis step that Nessu pressurized to stand, the maximum temperature of the first synthesis stage is 500 to 700
℃, the maximum temperature of the second synthesis step is 750 to 950
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is at 0 ° C.
【請求項2】 一般式LiMn24で表されるリチウム
複合マンガン酸化物のマンガンの一部をCo,Ni,C
r,B,AlあるいはPからなる群のうち少なくとも1
種類で置換し、前記Co,Ni,Cr,B,Alあるい
はPの含有量の合計がマンガンに対して0.01〜5原
子モル%である請求項1記載の非水電解質二次電池用正
極活物質の製造方法。
2. A part of manganese of the lithium composite manganese oxide represented by the general formula LiMn 2 O 4 is Co, Ni, C.
At least one of the group consisting of r, B, Al or P
The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the total content of Co, Ni, Cr, B, Al or P is 0.01 to 5 atomic mol% with respect to manganese. Method of manufacturing active material.
JP14896398A 1998-05-29 1998-05-29 Method for producing positive electrode active material for lithium secondary battery Expired - Fee Related JP3468099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14896398A JP3468099B2 (en) 1998-05-29 1998-05-29 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14896398A JP3468099B2 (en) 1998-05-29 1998-05-29 Method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11339803A JPH11339803A (en) 1999-12-10
JP3468099B2 true JP3468099B2 (en) 2003-11-17

Family

ID=15464586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14896398A Expired - Fee Related JP3468099B2 (en) 1998-05-29 1998-05-29 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3468099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134110A (en) * 2000-10-23 2002-05-10 Sony Corp Method of producing positive electrode active material and method of producing nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPH11339803A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
US5951919A (en) Method of preparing cathode material for lithium ion cell
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
JP2000277116A (en) Lithium secondary battery
EP1751809A1 (en) Lithium metal oxide materials and methods of synthesis and use
Nisar et al. Synthesis and electrochemical characterization of Cr-doped lithium-rich Li 1.2 Ni 0.16 Mn 0.56 Co 0.08-x Cr x O 2 cathodes
JP3446639B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
CN103098269A (en) Continuous manufacturing method for electrode material
JPWO2018169004A1 (en) Nickel-manganese composite oxide and method for producing the same
US5928622A (en) Method for preparing high capacity LiMn2 O4 secondary battery cathode compounds
JP2001023641A (en) Positive electrode active material for lithium secondary battery and manufacture of the same
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001202959A (en) Active material for positive electrode of nonaqueous electrolyte secondary battery and its producing method
CN107768628B (en) Lithium ion battery anode material and preparation method thereof
JPH10294099A (en) Non-aqueous electrolyte secondary cell
JPH09265984A (en) Nonaqueous electrolyte secondary battery
KR100354224B1 (en) Mn-based positive active material for Li-ion battery and method of preparing the same
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP3468099B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR100358799B1 (en) Method of preparing positive active material for lithium secondary battery
US5766569A (en) Lithium manganese oxide compound and method of preparation
CN115676905B (en) High-voltage lithium cobalt oxide battery positive electrode material and preparation method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees