JP3466734B2 - Vinylidene fluoride resin porous membrane and method for producing the same - Google Patents

Vinylidene fluoride resin porous membrane and method for producing the same

Info

Publication number
JP3466734B2
JP3466734B2 JP26142594A JP26142594A JP3466734B2 JP 3466734 B2 JP3466734 B2 JP 3466734B2 JP 26142594 A JP26142594 A JP 26142594A JP 26142594 A JP26142594 A JP 26142594A JP 3466734 B2 JP3466734 B2 JP 3466734B2
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
porous membrane
fluoride resin
average pore
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26142594A
Other languages
Japanese (ja)
Other versions
JPH07173323A (en
Inventor
和広 目黒
斌也 水野
嘉吉 寺本
宏 佐藤
Original Assignee
呉羽化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽化学工業株式会社 filed Critical 呉羽化学工業株式会社
Priority to JP26142594A priority Critical patent/JP3466734B2/en
Publication of JPH07173323A publication Critical patent/JPH07173323A/en
Application granted granted Critical
Publication of JP3466734B2 publication Critical patent/JP3466734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薬剤または細菌等の精
密ろ過膜として使用される多孔質膜、あるいは電池用セ
パレ−タ−として使用される多孔質膜に関し、さらに詳
細には両面の平均孔径の異なる非対称構造を有し、破断
点応力、破断点伸度などの機械的強度に優れ、かつ孔径
分布幅の狭いフッ化ビニリデン系樹脂多孔質膜ならびに
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous membrane used as a microfiltration membrane for drugs or bacteria, or a porous membrane used as a separator for batteries. The present invention relates to a vinylidene fluoride resin porous membrane having an asymmetric structure with different pore diameters, excellent mechanical strength such as stress at break and elongation at break, and a narrow pore diameter distribution width, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より合成樹脂系多孔質膜は気体隔膜
分離、気液分離、固液分離などの分離膜として、あるい
は絶縁材、保温材、遮音材、断熱材などとして多方面に
利用されている。これらの内、特に分離膜として使用さ
れる場合には分離機能に影響を与える以下の特性が要求
される。まず、多孔質膜の分離効率を目的とする適度な
空孔率を有すること、分離精度の向上を目的とした均一
な孔径分布を有すること、加えて分離対象物に最適な孔
径を有することが求められる。また、膜構成素材の性質
としては、分離対象物の特性に対する耐薬品性、耐候
性、耐熱性、強度等が要求される。さらに、多孔質膜使
用時における機械的強度として充分な破断点伸度、破断
点応力などが要求される。現在、フッ化ビニリデン系樹
脂は耐候性、耐薬品性、耐熱性、強度等に優れているた
め、これら分離用多孔質膜への応用が検討されている。
しかしながら、フッ化ビニリデン系樹脂は、前記した優
れた特性を有する反面、非粘着性、低相溶性であるため
成形性は必ずしもよくない。また、多孔質膜の開発とし
ては分離性能向上を目的とした高い空孔率、狭い孔径分
布を追求する余り、機械的強度において満足すべきもの
は得られていなかった。このため強度を補充するため
に、ろ過膜として使用する場合には多孔質膜にサポ−ト
する膜を重ね合わせて機械的物性を高めて使用している
のが現状である。また、電池用セパレ−タ−に使用され
る場合などには、多孔質膜が芯材に巻き付けて使用され
ることから、電池製造時の巻き付け工程に耐えうる十分
な破断点伸度、破断点応力等の機械的物性を有すること
が望まれる。加えて電池用セパレーターに使用される際
には、電極に使用される活物質の微粉末を遮断できる分
布幅の狭い貫通孔径と多孔質膜を芯材に巻き付けた後に
行われる電解液の高効率な含浸性が望まれている。また
精密濾過膜として使用される際には、長期間に亘って高
い濾過性を保持することが望まれている。特開平3−2
15535号公報には、ポリフッ化ビニリデン樹脂にフ
タル酸ジエチル等の有機液状体と無機微粉体として疎水
性シリカを混合し、溶融成形後に有機液状体と疎水性シ
リカを抽出する方法が記載されており、この方法により
得られる多孔質膜は比較的大きい機械的強度を有する。
しかしこの多孔質膜は膜の両面の平均孔径が比較的均一
であり、本発明で提供される程度の非対称構造を有する
多孔質膜ではなく、従って前記のように電池セパレータ
ーに使用する際の電解液の高効率な含浸性、または精密
濾過膜として使用する際の長期間に亘る高い透過性につ
いては期待できない。さらに、疎水性シリカを抽出する
ためにアルカリ水溶液を用いることから、フッ化ビニリ
デン系樹脂が劣化しやすい。
2. Description of the Related Art Conventionally, synthetic resin porous membranes have been used in various fields as separation membranes for gas separation, gas-liquid separation, solid-liquid separation, etc., or as insulating materials, heat insulating materials, sound insulation materials, heat insulating materials, etc. ing. Of these, the following properties that affect the separation function are required especially when used as a separation membrane. First, it has a suitable porosity for the purpose of separating the porous membrane, has a uniform pore size distribution for the purpose of improving the separation accuracy, and has an optimum pore size for the separation target. Desired. Further, as the properties of the membrane constituent material, chemical resistance, weather resistance, heat resistance, strength and the like with respect to the characteristics of the separation target are required. Furthermore, sufficient elongation at break, stress at break, etc. are required as mechanical strength when the porous membrane is used. At present, vinylidene fluoride-based resins are excellent in weather resistance, chemical resistance, heat resistance, strength, etc., and their application to these porous membranes for separation is being investigated.
However, while the vinylidene fluoride resin has the above-mentioned excellent properties, it is non-adhesive and has low compatibility, so that the moldability is not always good. Further, in the development of a porous membrane, a high porosity and a narrow pore size distribution were pursued for the purpose of improving the separation performance, and satisfactory mechanical strength was not obtained. For this reason, in order to replenish the strength, when used as a filtration membrane, the support membrane is superposed on the porous membrane to enhance the mechanical properties and used. In addition, when used in a battery separator, since the porous film is used by being wound around a core material, sufficient elongation at break and elongation at break that can withstand the winding step during battery production. It is desired to have mechanical properties such as stress. In addition, when used as a battery separator, it has a narrow distribution pore size that can block the fine powder of the active material used for the electrode and the high efficiency of the electrolytic solution that is performed after winding the porous membrane around the core material. A good impregnation property is desired. Further, when it is used as a microfiltration membrane, it is desired to maintain high filterability for a long period of time. Japanese Patent Laid-Open No. 3-2
Japanese Patent No. 15535 describes a method of mixing polyvinylidene fluoride resin with an organic liquid such as diethyl phthalate and hydrophobic silica as an inorganic fine powder, and extracting the organic liquid and the hydrophobic silica after melt molding. The porous membrane obtained by this method has relatively high mechanical strength.
However, this porous membrane has a relatively uniform average pore size on both sides of the membrane and is not a porous membrane having an asymmetric structure as provided by the present invention. Highly efficient impregnation of liquid or high permeability over a long period when used as a microfiltration membrane cannot be expected. Furthermore, since an aqueous alkali solution is used to extract the hydrophobic silica, the vinylidene fluoride resin is likely to deteriorate.

【0003】本発明の目的は、電池セパレーターに使用
する際の電解液の高効率な含浸性、精密濾過膜として使
用する際の長期間に亘る高い透過性を有し、さらに破断
点伸度や破断点応力等の機械的強度に優れた非対称構造
を有するフッ化ビニリデン系樹脂多孔質膜およびその製
造方法を提供することである。
The object of the present invention is to have a highly efficient impregnation property of an electrolytic solution when it is used in a battery separator, a high permeability for a long period of time when it is used as a microfiltration membrane, and an elongation at break and It is an object of the present invention to provide a vinylidene fluoride-based resin porous membrane having an asymmetric structure having excellent mechanical strength such as stress at break and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者は、これら実情
に鑑み鋭意研究したところ、特定のインヘレント粘度を
有するフッ化ビニリデン系樹脂と特定の可塑剤などを用
いて溶融押出成形により製膜し、特定の後処理をした場
合に、電池セパレーターに使用する際の電解液の含浸の
効率性や精密濾過膜として使用する際の長期間に亘る透
過性に優れ、さらに破断点応力ならびに破断点伸度など
の機械的物性に優れた非対称型フッ化ビニリデン系樹脂
多孔質膜が製造されることを見い出し、本発明を完成す
るに至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of these circumstances and found that a vinylidene fluoride resin having a specific inherent viscosity and a specific plasticizer are used to form a film by melt extrusion molding. , When subjected to a specific post-treatment, the efficiency of impregnation of the electrolytic solution when used in a battery separator and the long-term permeability when used as a microfiltration membrane are excellent, and further stress at break and elongation at break It was found that an asymmetric vinylidene fluoride resin porous membrane excellent in mechanical properties such as degree is produced, and the present invention has been completed.

【0005】すなわち本発明によれば、多孔質膜を構成
しているフッ化ビニリデン系樹脂のインヘレント粘度が
1.3〜15.0(dl/g)であり、次式(A)を満
し、P1が0.89μm以下であることを特徴とする
フッ化ビニリデン系樹脂多孔質膜が提供される。
[0005] That is, according to the present invention, the inherent viscosity of the vinylidene fluoride resin forming the porous membrane is 1.3~15.0 (dl / g), satisfies the following formula (A) , P1 is 0.89 μm or less, a vinylidene fluoride resin porous membrane is provided.

【数5】 (A) 4.0<P/P≦10.0 {Pは大きい平均孔径を有する片表面の電子顕微鏡で
測定した平均孔径(μm)、Pは他方の片表面の電子
顕微鏡で測定した平均孔径(μm)である。}
(A) 4.0 <P 1 / P 2 ≦ 10.0 {P 1 is a single-sided electron microscope having a large average pore size.
Measured average pore size (μm), P 2 is the electron on the other surface
It is the average pore diameter (μm) measured by a microscope . }

【0006】また本発明によれば、ハーフドライ法で測
定した孔径P3に対するバブルポイント法で測定した孔
径P4の比P4/P3が2.0以下である前記フッ化ビニ
リデン系樹脂多孔質膜が提供される。
According to the present invention, the vinylidene fluoride resin porous material has a ratio P 4 / P 3 of the pore diameter P 4 measured by the bubble point method to the pore diameter P 3 measured by the half dry method is 2.0 or less. A quality membrane is provided.

【0007】また本発明によれば、多孔質膜に関して空
孔率φを考慮して、多孔質膜の破断点応力Tb(MP
a)と破断点伸度Eb(%)の積を空孔率0%に換算し
た値が、次式(B)を満足することを特徴とする前記フ
ッ化ビニリデン系樹脂多孔質膜が提供される。
According to the invention, the porous membrane is empty.
Considering the porosity φ, the stress at break Tb (MP
Convert the product of a) and elongation at break Eb (%) to 0% porosity.
The above-mentioned vinylidene fluoride-based resin porous film is provided.

【数6】 (B) [Tb×Eb/(100−φ)]×100≧1000 {φは空孔率(体積%)、Tbは破断点応力(MP
a)、Ebは破断点伸度(%)である。}
(B) [Tb × Eb / (100−φ)] × 100 ≧ 1000 {φ is the porosity (volume%), Tb is the stress at break (MP
a) and Eb are elongation at break (%). }

【0008】また本発明によれば、インヘレント粘度が
1.4〜15.0(dl/g)であるフッ化ビニリデン
系樹脂100重量部に対し、可塑剤として脂肪族系ポリ
エステルを30〜250重量部を添加し、得られた組成
物を押し出した溶融状態のフィルムの片面を温度150
℃以下のチルロールで冷却し、他の片面を空冷して製膜
した後、フィルムから可塑剤を抽出することを特徴とす
る次式(A)を満足するフッ化ビニリデン系樹脂多孔質
膜の製造方法が提供される。
According to the present invention, 30 to 250 parts by weight of aliphatic polyester as a plasticizer is added to 100 parts by weight of vinylidene fluoride resin having an inherent viscosity of 1.4 to 15.0 (dl / g). Part was added, and the obtained composition was extruded.
Manufacture of a vinylidene fluoride-based resin porous film satisfying the following formula (A), characterized in that the film is formed by cooling with a chill roll at ℃ or below and air-cooling on the other side to form a film. A method is provided.

【数7】(A) 4.0<P1/P2≦10.0 {P1は大きい平均孔径を有する片表面の平均孔径(μ
m)、P2は他方の片表面の平均孔径(μm)であ
る。}
(A) 4.0 <P 1 / P 2 ≦ 10.0 {P 1 has a large average pore diameter The average pore diameter on one surface (μ
m) and P 2 are the average pore diameter (μm) on the other surface. }

【0009】また本発明によれば、インヘレント粘度が
1.4〜15.0(dl/g)であるフッ化ビニリデン
系樹脂100重量部に対し、可塑剤として脂肪系ポリエ
ステルを30〜250重量部およびフッ化ビニリデン系
樹脂の良溶媒を1〜50重量部を添加し、得られた組成
物を押し出した溶融状態のフィルムの片面を温度150
℃以下のチルロールで冷却し、他の片面を空冷して製膜
した後、可塑剤および良溶媒をフィルムから抽出するこ
とを特徴とする次式(A)を満足するフッ化ビニリデン
系樹脂多孔質膜の製造方法が提供される。
Further, according to the present invention, 30 to 250 parts by weight of a fatty polyester as a plasticizer is added to 100 parts by weight of a vinylidene fluoride resin having an inherent viscosity of 1.4 to 15.0 (dl / g). And 1 to 50 parts by weight of a good solvent of vinylidene fluoride resin is added, and the obtained composition is extruded.
A vinylidene fluoride-based resin porous material satisfying the following formula (A), characterized in that it is cooled with a chill roll at ℃ or below, and the other side is air-cooled to form a film, and then a plasticizer and a good solvent are extracted from the film. A method of making a membrane is provided.

【数8】(A) 4.0<P1/P2≦10.0 {P1は大きい平均孔径を有する片表面の平均孔径(μ
m)、P2は他方の片表面の平均孔径(μm)であ
る。}
(A) 4.0 <P 1 / P 2 ≦ 10.0 {P 1 has a large average pore diameter The average pore diameter on one surface (μ
m) and P 2 are the average pore diameter (μm) on the other surface. }

【0010】また本発明によれば、抽出後の多孔質膜の
乾燥を多孔質膜の収縮を防ぎながら行うことを特徴とす
る前記フッ化ビニリデン系樹脂多孔質膜の製造方法が提
供される。
Further, according to the present invention, there is provided the above-mentioned method for producing a vinylidene fluoride resin porous membrane, characterized in that the porous membrane after extraction is dried while preventing the shrinkage of the porous membrane.

【0011】さらに本発明によれば、抽出後の多孔質膜
の乾燥を多孔質膜を固定しない状態で行い、次いで延伸
することを特徴とする前記フッ化ビニリデン系樹脂多孔
質膜の製造方法が提供される。以下、詳細に本発明を説
明する。
Further, according to the present invention, there is provided the above-mentioned method for producing a vinylidene fluoride-based resin porous membrane, which comprises drying the porous membrane after extraction without fixing the porous membrane and then stretching. Provided. Hereinafter, the present invention will be described in detail.

【0012】本発明で使用するフッ化ビニリデン系樹脂
とは、フッ化ビニリデン単独重合体の他、フッ化ビニリ
デンを構成単位として70モル%以上含有する共重合
体、あるいはこれら重合体の混合物を使用することがで
きる。フッ化ビニリデンと共重合されるモノマ−として
は、四フッ化エチレン、六フッ化プロピレン、三フッ化
エチレン、三フッ化塩化エチレン、フッ化ビニル等が挙
げられ、これらの1種または2種以上を用いることがで
きる。また、原料となる前記フッ化ビニリデン系樹脂の
インヘレント粘度としては、1.4〜15.0(dl/
g)の範囲であり、好ましくは1.5〜10.0(dl
/g)、さらに好ましくは1.6〜8.0(dl/g)
である。原料のフッ化ビニリデン系樹脂のインヘレント
粘度がこの範囲にあれば、得られる多孔質膜の破断点伸
度、破断点応力等の充分な機械的強度を有する多孔質膜
が形成され、また、孔径も均一な多孔質膜が形成され
る。なお、本発明におけるインヘレント粘度は、溶媒と
してジメチルホルムアミドを用いて濃度0.4g/d
l、温度30℃の条件で測定した値である。また原料と
なるフッ化ビニリデン系樹脂のインヘレント粘度が前記
範囲にあれば、得られる本発明の多孔質膜を構成するフ
ッ化ビニリデン系樹脂のインヘレント粘度も原料のそれ
と殆ど変わらず、1.3〜15(dl/g)の範囲とな
る。なお、フッ化ビニリデン系樹脂には、酸化防止剤、
帯電防止剤、滑剤、界面活性剤などを必要に応じて適宜
配合することができる。
The vinylidene fluoride resin used in the present invention is a vinylidene fluoride homopolymer, a copolymer containing vinylidene fluoride as a constituent unit in an amount of 70 mol% or more, or a mixture of these polymers. can do. Examples of the monomer copolymerized with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trifluorochloroethylene, vinyl fluoride, and the like, and one or more of these may be used. Can be used. Further, the inherent viscosity of the vinylidene fluoride resin as a raw material is 1.4 to 15.0 (dl /
g), preferably 1.5 to 10.0 (dl
/ G), more preferably 1.6 to 8.0 (dl / g)
Is. If the inherent viscosity of the vinylidene fluoride resin as a raw material is within this range, a porous film having sufficient mechanical strength such as elongation at break, stress at break, etc. of the resulting porous film is formed, and the pore size is also reduced. A uniform porous film is formed. The inherent viscosity in the present invention is 0.4 g / d using dimethylformamide as a solvent.
It is a value measured under the conditions of 1 and temperature of 30 ° C. Further, if the inherent viscosity of the vinylidene fluoride resin as a raw material is in the above range, the inherent viscosity of the vinylidene fluoride resin constituting the obtained porous film of the present invention is almost the same as that of the raw material, and 1.3 to It is in the range of 15 (dl / g). The vinylidene fluoride resin contains an antioxidant,
An antistatic agent, a lubricant, a surfactant and the like can be appropriately added as needed.

【0013】本発明で使用する可塑剤としては、フッ化
ビニリデン系樹脂を可塑化するものであり、例えばアジ
ピン酸−プロピレングリコ−ル系、アジピン酸−1,3
−ブチレングリコ−ル系等のアジピン酸系ポリエステ
ル、セバシン酸−プロピレングリコール系、セバシン酸
−1,3−ブチレングリコール系等のセバシン酸系ポリ
エステル、アゼライン酸−プロピレングリコール系、ア
ゼライン酸−1,3−ブチレングリコール系等のアゼラ
イン酸系ポリエステル等の脂肪族の二塩基酸とグリコー
ルからなる脂肪族系ポリエステル可塑剤が例示される
が、フッ化ビニリデン系樹脂との相溶性の点から特にア
ジピン酸系ポリエステルが好ましい。また、可塑剤の配
合量は、フッ化ビニリデン系樹脂100重量部に対し3
0〜250重量部であり、好ましくは40〜170重量
部、より好ましくは50〜120重量部である。
The plasticizer used in the present invention is a plasticizer for vinylidene fluoride resins, such as adipic acid-propylene glycol, adipic acid-1,3.
-Adipic acid-based polyester such as butylene glycol-based, sebacic acid-propylene glycol-based, sebacic acid-1,3-butylene glycol-based sebacic acid-based polyester, azelaic acid-propylene glycol-based, azelaic acid-1,3 An aliphatic polyester plasticizer composed of an aliphatic dibasic acid such as an azelaic acid-based polyester such as butylene glycol-based polyester and glycol is exemplified, but particularly adipic acid-based from the viewpoint of compatibility with vinylidene fluoride-based resin. Polyester is preferred. Further, the compounding amount of the plasticizer is 3 with respect to 100 parts by weight of the vinylidene fluoride resin.
The amount is 0 to 250 parts by weight, preferably 40 to 170 parts by weight, and more preferably 50 to 120 parts by weight.

【0014】本発明では、可塑剤に加え、フッ化ビニリ
デン系樹脂の良溶媒を併用することが好ましい。これに
より、比P4/P3で表される孔径分布幅のより狭い多孔
質膜を得ることができる。フッ化ビニリデン系樹脂の良
溶媒としては、温度20〜250℃の範囲内のいずれか
の温度領域でフッ化ビニリデン系樹脂を溶解できるもの
であり、例えば、N−メチルピロリドン、ジメチルホル
ムアミド、ジメチルアセトアミド、ジメチルスルホキシ
ド、メチルエチルケトン、アセトン、テトラヒドロフラ
ン、ジオキサン、酢酸エチル、プロピレンカーボネー
ト、シクロヘキサン、メチルイソブチルケトン、ジメチ
ルフタレート等が挙げられるが、高温での安定性からN
−メチルピロリドンが好ましい。また、良溶媒の配合割
合はフッ化ビニリデン系樹脂100重量部に対して1〜
50重量部用いることが好ましく、より好ましくは10
〜35重量部の範囲である。
In the present invention, it is preferable to use a good solvent of vinylidene fluoride resin in combination with the plasticizer. This makes it possible to obtain a porous membrane having a narrower pore size distribution width represented by the ratio P 4 / P 3 . The good solvent for the vinylidene fluoride resin is a solvent capable of dissolving the vinylidene fluoride resin in any temperature range within the range of 20 to 250 ° C., for example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide. , Dimethyl sulfoxide, methyl ethyl ketone, acetone, tetrahydrofuran, dioxane, ethyl acetate, propylene carbonate, cyclohexane, methyl isobutyl ketone, dimethyl phthalate, etc.
-Methylpyrrolidone is preferred. The mixing ratio of the good solvent is 1 to 100 parts by weight of vinylidene fluoride resin.
It is preferable to use 50 parts by weight, more preferably 10 parts by weight.
˜35 parts by weight.

【0015】本発明のフッ化ビニリデン系樹脂多孔質膜
の製造方法としては、フッ化ビニリデン系樹脂に可塑
剤、あるいは更に良溶媒を添加した組成物を製膜したの
ち、可塑剤あるいはさらに良溶媒を抽出する。前記製膜
法としては、一般的なフッ化ビニリデン系樹脂の溶融押
出成形法を採用することができる。成形時の樹脂組成物
の溶融温度としては170〜250℃が好ましく、より
好ましくは180〜240℃である。押出は好ましくは
Tダイを用い、厚さ10〜300μm、より好ましくは
20〜100μmの範囲に製膜する。その際、押し出し
た溶融状態のフィルムの片面を、150℃以下、好まし
くは30〜100℃のチルロールで冷却し、他の片面を
空冷することが好ましい。その際の空冷に関しては、エ
アーナイフ等を用いて行ってもよい。このように片面を
他の片面に比べ急冷することにより、後記抽出を経て非
対称型のフッ化ビニリデン系樹脂多孔質膜が得られる。
The method for producing the vinylidene fluoride resin porous membrane of the present invention is as follows: a vinylidene fluoride resin is added with a plasticizer or a good solvent, and then a plasticizer or a good solvent is added. To extract. As the film forming method, a general melt extrusion molding method of vinylidene fluoride resin can be adopted. The melting temperature of the resin composition during molding is preferably 170 to 250 ° C, more preferably 180 to 240 ° C. For extrusion, a T-die is preferably used to form a film having a thickness of 10 to 300 μm, more preferably 20 to 100 μm. At that time, it is preferable to cool one side of the extruded film in a molten state by a chill roll at 150 ° C. or lower, preferably 30 to 100 ° C., and air-cool the other side. The air cooling at that time may be performed using an air knife or the like. By rapidly cooling one surface as compared with the other surface in this manner, an asymmetric vinylidene fluoride resin porous membrane can be obtained through extraction described later.

【0016】前記で得られたフィルムから可塑剤あるい
は更に良溶媒を抽出するための溶媒としては、フッ化ビ
ニリデン系樹脂を溶解せず、可塑剤や良溶媒を溶解でき
るものであれば特に限定されない。例えば、アルコ−ル
類ではメタノ−ル、イソプロピルアルコ−ルなど、塩素
化炭化水素類では塩化メチレン、1,1,1−トリクロ
ロエタンなどの溶媒を例示できる。
The solvent for extracting the plasticizer or the good solvent from the film obtained above is not particularly limited as long as it does not dissolve the vinylidene fluoride resin and can dissolve the plasticizer and the good solvent. . Examples include alcohols such as methanol and isopropyl alcohol, and examples of chlorinated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane.

【0017】前記の溶媒による抽出方法は温度10〜1
50℃、好ましくは15〜100℃、さらに好ましくは
20〜50℃の抽出溶媒中に放置する。また、適宜振動
を加え抽出を加速することができる。可塑剤あるいは良
溶媒抽出後は、多孔質膜の乾燥のため温度50〜150
℃で、0.5〜360分間熱処理をする。その乾燥の
際、多孔質膜の周囲を型枠等で保持し、乾燥時の収縮を
防ぐか、または、抽出と乾燥時の多孔質膜を固定しない
状態で行った後、乾燥時の収縮によるしわがとれる程度
まで一軸または二軸に延伸することが好ましい。
The above extraction method using a solvent is carried out at a temperature of 10 to 1
It is left in an extraction solvent at 50 ° C, preferably 15 to 100 ° C, more preferably 20 to 50 ° C. Moreover, it is possible to accelerate the extraction by applying appropriate vibration. After extracting the plasticizer or good solvent, the temperature is 50 to 150 for drying the porous membrane.
Heat treatment is performed at 0 ° C. for 0.5 to 360 minutes. During the drying, the periphery of the porous membrane is held by a mold or the like to prevent shrinkage during drying, or after performing the extraction and drying without fixing the porous membrane, the shrinkage during drying is performed. It is preferable to stretch the film uniaxially or biaxially to the extent that wrinkles are removed.

【0018】こうして本発明のフッ化ビニリデン系樹脂
多孔質膜が得られるが、機械的強度を向上させるために
これを更に一軸または二軸延伸してもよい。延伸は1.
5〜3倍が好ましい。この様に延伸された多孔質膜も前
記式(A)を満足し、本発明のフッ化ビニリデン系樹脂
多孔質膜である。
Thus, the vinylidene fluoride resin porous membrane of the present invention is obtained, but it may be further uniaxially or biaxially stretched in order to improve the mechanical strength. Stretching is 1.
It is preferably 5 to 3 times. The porous film stretched in this manner also satisfies the above formula (A) and is the vinylidene fluoride resin porous film of the present invention.

【0019】こうして得られる本発明の多孔質膜は通
常、空孔率が20〜80%であり、好ましくは25〜6
0%であり、膜厚10〜300μm、好ましくは10〜
100μmの範囲であり、ハーフドライ法で測定した孔
径P3が0.01〜10μmであり、バブルポイント法
で測定した孔径P4の比P4/P3は2.0以下、より好
ましくは1.8以下である。このように比P4/P3が小
さいため、すなわち孔径分布幅が狭いため、分離膜とし
て高精度の分離機能を発揮する。P4が10.0μm以
下の膜は精密ろ過膜に適し、P3が0.01〜2.0μ
mの膜は電池用セパレ−タ−などに使用できる。また前
記のようにして得られる本発明の多孔質膜は、次式
(A)を満足するものであり、特に好ましくは次式
(B)をも満足するものである。その際、さらに好まし
くは式(B)の左辺の値は5000〜50000の範囲
である。
The porous membrane of the present invention thus obtained generally has a porosity of 20 to 80%, preferably 25 to 6
0%, film thickness 10-300 μm, preferably 10-300 μm
It is in the range of 100 μm, the pore diameter P 3 measured by the half dry method is 0.01 to 10 μm, and the ratio P 4 / P 3 of the pore diameter P 4 measured by the bubble point method is 2.0 or less, more preferably 1 It is less than or equal to 8. Since the ratio P 4 / P 3 is small as described above, that is, the pore size distribution width is narrow, a highly accurate separation function is achieved as a separation membrane. Membranes with P 4 of 10.0 μm or less are suitable for microfiltration membranes, and P 3 of 0.01 to 2.0 μm.
The film of m can be used for a battery separator and the like. The porous membrane of the present invention obtained as described above satisfies the following expression (A), and particularly preferably also satisfies the following expression (B). At that time, more preferably, the value on the left side of the formula (B) is in the range of 5,000 to 50,000.

【数9】(A) 4.0<P1/P2≦10.0 {P1は大きい平均孔径を有する片表面の平均孔径(μ
m)、P2は他方の片表面の平均孔径(μm)であ
る。} (B) [Tb×Eb/(100−φ)]×100≧1
000 {φは空孔率(体積%)、Tbは破断点応力(MP
a)、Ebは破断点伸度(%)である。}
(A) 4.0 <P 1 / P 2 ≦ 10.0 {P 1 has a large average pore diameter The average pore diameter on one surface (μ
m) and P 2 are the average pore diameter (μm) on the other surface. } (B) [Tb × Eb / (100−φ)] × 100 ≧ 1
000 {φ is porosity (volume%), Tb is stress at break (MP
a) and Eb are elongation at break (%). }

【0020】従って、前記電池用セパレーターに使用さ
れる際の電極への巻き付け操作に対しても耐えうる十分
な機械的強度を有し、活物質の微粉末を遮断し得る分布
幅の狭い貫通孔径を有し、さらに片面の平均孔径が他表
面の平均孔径より大きい非対称構造であるため、巻き付
けた後の電解液が含浸しやすいという特徴を有する。ま
た精密濾過膜として使用された場合には、十分な分離機
能を有すると共に、長期間に亘って高い透過性を発揮す
る。
Therefore, the through hole diameter has a sufficient mechanical strength to withstand winding operation around the electrode when it is used for the battery separator, and has a narrow distribution width capable of blocking fine powder of the active material. And has an asymmetric structure in which the average pore diameter on one side is larger than the average pore diameter on the other surface, and therefore has the characteristic that the electrolytic solution after winding is easily impregnated. When used as a microfiltration membrane, it has a sufficient separation function and exhibits high permeability over a long period of time.

【0021】[0021]

【実施例】以下に実施例に基づき本発明を具体的に説明
するが、本発明はこれらに限定されるものではない。な
お、実施例、比較例における測定は下記方法に依った。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited thereto. The measurements in Examples and Comparative Examples were based on the following methods.

【0022】(測定方法) [1.破断点応力および破断点伸度]引張強伸度測定機
(テンシロンRTM−100型、(株)オリエンテック
社製)を用いてフッ化ビニリデン系樹脂多孔質平膜を幅
10mm×長さ100mmに切り取り試験片とした。こ
の試験片をチャック間距離50mm、引張速度25mm
/分の条件下で破断強度および破断までの伸び量を測定
し、次の式から破断点応力および破断点伸度を求めた。
(Measurement Method) [1. Stress at Break and Elongation at Break] Using a tensile strength / elongation measuring machine (Tensilon RTM-100 type, manufactured by Orientec Co., Ltd.), a vinylidene fluoride-based resin porous flat membrane was formed to have a width of 10 mm and a length of 100 mm. A cut test piece was used. This test piece has a chuck distance of 50 mm and a pulling speed of 25 mm.
The strength at break and the amount of elongation to break were measured under the condition of / min, and the stress at break and the elongation at break were determined from the following formulas.

【数10】破断点応力(MPa)=[(破断点強度Kg
f)/試験片の引張前の断面積(cm2)]×0.09
81, 破断点伸度(%)=[破断までの伸び量(変位量)(m
m)/50(mm)]×100
## EQU10 ## Stress at break (MPa) = [(strength at break Kg
f) / cross-sectional area of test piece before tension (cm 2 )] × 0.09
81, elongation at break (%) = [elongation to break (displacement) (m
m) / 50 (mm)] × 100

【0023】[2.空孔率]PMIポロシメ−タ−(P
orous Materials社製)により水銀を用
いた空孔容積を測定し、次の式から空孔率を求めた。な
お、測定時の最大圧力は20,000PSI(1,40
6kg/cm2)とした。
[2. Porosity] PMI Porosimeter (P
The pore volume using mercury was measured by using Orous Materials), and the porosity was calculated from the following formula. The maximum pressure during measurement is 20,000 PSI (1,40
6 kg / cm 2 ).

【数11】 空孔率(%)=(空孔容積/多孔質膜容積)×100[Equation 11] Porosity (%) = (pore volume / porous membrane volume) × 100

【0024】[3.孔径P3]孔径P3は、測定エリア2
0mmφの試験片を用いASTM F−316−86に
準拠したエタノ−ルによるハ−フドライ法によって求め
た。
[3. Pore diameter P 3 ] Pore diameter P 3 is measured area 2
It was determined by a half-dry method using ethanol based on ASTM F-316-86 using a 0 mmφ test piece.

【0025】[4.孔径P4]孔径P4は、測定エリア2
0mmφの試験片を用いASTM F−316−86に
準拠したエタノ−ルによるバブルポイント法によって求
めた。
[4. Pore diameter P 4 ] Pore diameter P 4 is measured area 2
It was determined by a bubble point method using an ethanol based on ASTM F-316-86 using a 0 mmφ test piece.

【0026】[5.平均孔径P1,P2]多孔質膜の表面
を走査型電子顕微鏡写真で観察し、開孔部100個の長
径と短径の平均を加重平均することにより求めた。
[5. Average pore size P 1 , P 2 ] The surface of the porous membrane was observed by a scanning electron microscope photograph, and the average of the major axis and the minor axis of 100 openings was weighted averaged.

【0027】(実施例1)インヘレント粘度が1.6
(dl/g)のポリフッ化ビニリデン樹脂「PVDF」
(呉羽化学工業株式会社製、KF#1600)100重
量部に対して、アジピン酸系ポリエステル可塑剤(旭電
化工業株式会社製,PN−640)50重量部をヘンシ
ルミキサ−で混合した後、温度240℃で溶融押し出し
しペレット化した。得られたペレットを幅350mm、
リップクリアランス1.4mmのTダイを設置した溶融
押出機で、温度240℃で厚さ50μmのフィルム状に
溶融押し出しし、一表面を温度60℃のチルロールで反
対表面をエアーナイフで冷却しながら連続したフィルム
を成形した。成形されたフィルムを200mm四方に切
り出し、塩化メチレン中に振動を与えながら室温で10
分間浸漬して可塑剤を抽出し、収縮を防ぐため型枠で四
辺を保持した状態で100℃で乾燥熱処理を30分間行
い、フッ化ビニリデン系樹脂多孔質膜を得た。得られた
フッ化ビニリデン系樹脂多孔質膜を構成しているポリフ
ッ化ビニリデン樹脂のインヘレント粘度、多孔質膜の空
孔率、平均孔径P1〜P2、孔径P3〜P4、および破断点
応力、破断点伸度を測定した。結果を表−1に示す。こ
こでP1はチルロールで冷却した面の平均孔径であり、
2はエアーナイフで冷却した面の平均孔径である。
Example 1 An inherent viscosity of 1.6
(Dl / g) polyvinylidene fluoride resin "PVDF"
After mixing 50 parts by weight of an adipic acid-based polyester plasticizer (PN-640, manufactured by Asahi Denka Kogyo Co., Ltd.) with 100 parts by weight of KF # 1600 (Kureha Chemical Industry Co., Ltd.) with a Hensyl mixer, a temperature of 240 was used. It was melt extruded at 0 ° C. and pelletized. Width of the obtained pellets 350 mm,
With a melt extruder equipped with a T die with a lip clearance of 1.4 mm, melt extrude into a film with a thickness of 50 μm at a temperature of 240 ° C., and continuously cool one surface with a chill roll at a temperature of 60 ° C. while cooling the other surface with an air knife. The formed film was molded. The formed film is cut into 200 mm squares and vibrated in methylene chloride at room temperature for 10 minutes.
It was immersed for a minute to extract the plasticizer, and dried and heat-treated at 100 ° C. for 30 minutes while holding the four sides with a mold to prevent shrinkage, to obtain a vinylidene fluoride resin porous membrane. The resulting inherent viscosity of polyvinylidene fluoride resin constituting the vinylidene fluoride resin porous membrane, the porosity of the porous membrane, the average pore diameter P 1 to P 2, pore size P 3 to P 4, and at break The stress and the elongation at break were measured. The results are shown in Table-1. Where P 1 is the average pore size of the surface cooled by the chill roll,
P 2 is the average pore diameter of the surface cooled by the air knife.

【0028】(実施例2)インヘレント粘度が1.6
(dl/g)のポリフッ化ビニリデン樹脂「PVDF」
(呉羽化学工業株式会社製、KF#1600)100重
量部に対して、アジピン酸系ポリエステル可塑剤(旭電
化工業株式会社製,PN−640)50重量部およびN
−メチルピロリドン17重量部をヘンシルミキサ−で混
合したのち、温度240℃で溶融押し出しし、ペレット
化した。得られたペレットを幅350mm、リップクリ
アランス1.4mmのTダイを設置した溶融押出機で、
温度240℃で厚さ50μmのフィルム状に溶融押し出
しし、一表面を温度60℃のチルロールで冷却し、反対
表面を室温で空冷しながら連続フィルムを成形した。成
形された連続フィルムを塩化メチレン中で、超音波を当
てながら室温で10分間浸漬して可塑剤および良溶媒を
連続抽出し、50℃の温風を当てながら得られる多孔質
膜を固定しない状態で乾燥させ巻き取った後、30℃の
金属ロール間で1m/分のライン速度で1.5倍の一軸
延伸を行い、100℃の金属ロール上で2分間熱処理を
行い、連続したフッ化ビニリデン系樹脂多孔質膜を得
た。得られたフッ化ビニリデン系樹脂多孔質膜を構成し
ているポリフッ化ビニリデン樹脂インヘレント粘度、多
孔質膜の空孔率、平均孔径P1〜P2、孔径P3〜P4、お
よび破断点応力、破断点伸度を測定した。結果を表−1
に示す。ここでP1はチルロールで冷却した面の平均孔
径であり、P2は空冷した面の平均孔径である。
Example 2 An inherent viscosity of 1.6
(Dl / g) polyvinylidene fluoride resin "PVDF"
(Kureha Chemical Industry Co., Ltd., KF # 1600) 50 parts by weight and adipic acid polyester plasticizer (Asahi Denka Co., Ltd., PN-640) 50 parts by weight and N.
After mixing 17 parts by weight of methylpyrrolidone with a Hensyl mixer, the mixture was melt extruded at a temperature of 240 ° C. and pelletized. The obtained pellets were melt-extruded with a T-die having a width of 350 mm and a lip clearance of 1.4 mm,
A film having a thickness of 50 μm was melt-extruded at a temperature of 240 ° C., one surface was cooled by a chill roll at a temperature of 60 ° C., and the other surface was air-cooled at room temperature to form a continuous film. The formed continuous film is immersed in methylene chloride at room temperature for 10 minutes while applying ultrasonic waves to continuously extract the plasticizer and good solvent, and the resulting porous film is not fixed while applying hot air at 50 ° C. After drying and winding, it was uniaxially stretched 1.5 times between metal rolls at 30 ° C at a line speed of 1 m / min, and heat-treated for 2 minutes on the metal rolls at 100 ° C to obtain continuous vinylidene fluoride. A porous resin film was obtained. Obtained polyvinylidene fluoride resin porous film constituting polyvinylidene fluoride resin inherent viscosity, porosity of the porous film, average pore diameters P 1 to P 2 , pore diameters P 3 to P 4 , and stress at break The elongation at break was measured. The results are shown in Table-1
Shown in. Here, P 1 is the average pore size of the surface cooled by the chill roll, and P 2 is the average pore size of the surface cooled by air.

【0029】(実施例3)インヘレント粘度が1.6
(dl/g)のポリフッ化ビニリデン樹脂「PVDF」
(呉羽化学工業株式会社製、KF#1600)100重
量部に対して、アジピン酸系ポリエステル可塑剤(旭電
化工業株式会社製,PN−150)117重量部および
N−メチルピロリドン17重量部をヘンシルミキサ−で
混合した後、温度200℃で溶融押し出しし、ペレット
化した。得られたペレットを幅350mm、リップクリ
アランス1.4mmのTダイを設置した溶融押出機で、
温度180℃で厚さ50μmのフィルム状に溶融押し出
しし、一表面を温度60℃のチルロールで反対面をエア
ナイフで冷却しながら連続したフィルムを成形した。可
塑剤および良溶媒の抽出、さらに乾燥熱処理は実施例1
と同様の方法で行い、フッ化ビニリデン系樹脂多孔質膜
を得た。得られたフッ化ビニリデン系樹脂多孔質膜に対
し実施例1と同様の測定方法により膜性状および機械的
物性を測定した。結果を表−1に示す。ここでP1はチ
ルロールで冷却した面の平均孔径であり、P2はエアー
ナイフで冷却した面の平均孔径である。
Example 3 An inherent viscosity of 1.6
(Dl / g) polyvinylidene fluoride resin "PVDF"
(Kureha Chemical Industry Co., Ltd., KF # 1600) 100 parts by weight, adipic acid polyester plasticizer (Asahi Denka Kogyo Co., Ltd., PN-150) 117 parts by weight and N-methylpyrrolidone 17 parts by weight are added to the hensyl mixer. After mixing at −, the mixture was melt extruded at a temperature of 200 ° C. and pelletized. The obtained pellets were melt-extruded with a T-die having a width of 350 mm and a lip clearance of 1.4 mm,
A film having a thickness of 50 μm was melt-extruded at a temperature of 180 ° C., and a continuous film was formed while cooling one surface with a chill roll at a temperature of 60 ° C. and the other surface with an air knife. The extraction of the plasticizer and the good solvent, and the heat treatment for drying were conducted in Example
A vinylidene fluoride resin porous membrane was obtained in the same manner as in. With respect to the obtained vinylidene fluoride resin porous membrane, the film properties and mechanical properties were measured by the same measurement method as in Example 1. The results are shown in Table-1. Here, P 1 is the average pore diameter of the surface cooled by the chill roll, and P 2 is the average pore diameter of the surface cooled by the air knife.

【0030】(比較例1)市販のフッ化ビニリデン系樹
脂多孔質膜 ミリポア製 デュラポアGVHP0001
0を用いて、実施例1〜3と同様の性状項目について測
定した。結果を表−1に示す。
(Comparative Example 1) Commercially available vinylidene fluoride resin porous membrane made by Millipore Durapore GVHP0001
0 was used to measure the same property items as in Examples 1 to 3. The results are shown in Table-1.

【0031】[0031]

【表1】 [Table 1]

【0032】(結果)本発明によるフッ化ビニリデン系
樹脂多孔質膜の製造方法によれば、充分な破断点応力、
破断点伸度を有する非対称型の多孔質膜が得られた。本
発明による溶融押出成形以外の方法で得られた従来品
(比較例1)と比較しても、孔径分布幅は使用上、従来
品と遜色なかった。
(Results) According to the method for producing a vinylidene fluoride resin porous membrane of the present invention, sufficient stress at break,
An asymmetric porous membrane having elongation at break was obtained. Even when compared with the conventional product (Comparative Example 1) obtained by a method other than the melt extrusion molding according to the present invention, the pore size distribution width was comparable to the conventional product in use.

【0033】[0033]

【発明の効果】本発明のフッ化ビニリデン系樹脂多孔質
膜の製造方法によれば、破断点応力、破断点伸度等の機
械的強度に優れた多孔質膜を得ることができる。しか
も、得られた多孔質膜は孔径分布幅が狭いため、より精
度の高い分離が可能となる。また、本発明によるフッ化
ビニリデン系樹脂多孔質膜は、高い機械的強度を有する
ため、補強材等による支持が不要であり、製造上ならび
に使用上極めて有用性が高い。更に両面の平均孔径の異
なる非対称型の多孔質膜であるので、高い透過性を長期
間保持することができ、電池セパレーターとして使用す
る際の電解液の含浸効率がよい。
According to the method for producing a vinylidene fluoride resin porous membrane of the present invention, a porous membrane having excellent mechanical strength such as stress at break and elongation at break can be obtained. Moreover, since the obtained porous membrane has a narrow pore size distribution width, it is possible to perform separation with higher accuracy. Further, since the vinylidene fluoride resin porous membrane according to the present invention has high mechanical strength, it does not need to be supported by a reinforcing material or the like, and is extremely useful in production and use. Further, since it is an asymmetric type porous membrane having different average pore diameters on both sides, high permeability can be maintained for a long period of time, and the impregnation efficiency of the electrolytic solution when used as a battery separator is good.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 宏 茨城県新治郡玉里村大字上玉里21番地 138 (56)参考文献 特開 昭63−296940(JP,A) 特開 昭52−51465(JP,A) 特開 平3−215535(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08J 9/00 - 9/42 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Sato 21 No. 21 Kamigamasato, Tamari-son, Shinji-gun, Ibaraki 138 (56) References JP-A-63-296940 (JP, A) JP-A-52-51465 (JP) , A) JP-A-3-215535 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08J 9/00-9/42

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質膜を構成しているフッ化ビニリデ
ン系樹脂のインヘレント粘度が1.3〜15.0(dl
/g)であり、次式(A)を満足し、P1が0.89μ
m以下であることを特徴とするフッ化ビニリデン系樹脂
多孔質膜。 【数1】 (A) 4.0<P/P≦10.0 {Pは大きい平均孔径を有する片表面の電子顕微鏡で
測定した平均孔径(μm)、Pは他方の片表面の電子
顕微鏡で測定した平均孔径(μm)である。}
1. The inherent viscosity of the vinylidene fluoride resin forming the porous film is 1.3 to 15.0 (dl).
/ G), which satisfies the following expression (A), and P1 is 0.89μ.
A vinylidene fluoride-based resin porous membrane having a thickness of m or less . (A) 4.0 <P 1 / P 2 ≦ 10.0 {P 1 is a single-sided electron microscope having a large average pore size.
Measured average pore size (μm), P 2 is the electron on the other surface
It is the average pore diameter (μm) measured by a microscope . }
【請求項2】 ハーフドライ法で測定した孔径Pに対
するバブルポイント法で測定した孔径Pの比P/P
が2.0以下である請求項1記載のフッ化ビニリデン
系樹脂多孔質膜。
2. A ratio P 4 / P of the pore diameter P 4 measured by the bubble point method to the pore diameter P 3 measured by the half dry method.
3. The vinylidene fluoride resin porous membrane according to claim 1, wherein 3 is 2.0 or less.
【請求項3】 多孔質膜に関して空孔率φを考慮して、
多孔質膜の破断点応力Tb(MPa)と破断点伸度Eb
(%)の積を空孔率0%に換算した値が、次式(B)を
満足することを特徴とする請求項1または2記載のフッ
化ビニリデン系樹脂多孔質膜。 【数2】 (B) [Tb×Eb/(100−φ)]×100≧1000 {φは空孔率(体積%)、Tbは破断点応力(MP
a)、Ebは破断点伸度(%)である。}
3. Considering the porosity φ of the porous membrane,
Stress at break Tb (MPa) and elongation at break Eb of porous film
The value obtained by converting the product of (%) into a porosity of 0% satisfies the following expression (B): The vinylidene fluoride resin porous membrane according to claim 1 or 2, wherein (B) [Tb × Eb / (100−φ)] × 100 ≧ 1000 {φ is the porosity (volume%), Tb is the stress at break (MP
a) and Eb are elongation at break (%). }
【請求項4】 インヘレント粘度が1.4〜15.0
(dl/g)であるフッ化ビニリデン系樹脂100重量
部に対し、可塑剤として脂肪族系ポリエステルを30〜
250重量部を添加し、得られた組成物を押し出した溶
融状態のフィルムの片面を温度150℃以下のチルロー
ルで冷却し、他の片面を空冷して製膜した後、フィルム
から可塑剤を抽出することを特徴とする次式(A)を満
足するフッ化ビニリデン系樹脂多孔質膜の製造方法。 【数3】 (A) 4.0<P/P≦10.0 {Pは大きい平均孔径を有する片表面の電子顕微鏡で
測定した平均孔径(μm)、Pは他方の片表面の電子
顕微鏡で測定した平均孔径(μm)である。}
4. The inherent viscosity is 1.4 to 15.0.
30 to 30 parts by weight of aliphatic polyester as a plasticizer with respect to 100 parts by weight of vinylidene fluoride resin (dl / g).
250 parts by weight of the composition obtained was extruded, and one side of the molten film extruded was cooled with a chill roll at a temperature of 150 ° C. or lower, and the other side was air-cooled to form a film, and then a plasticizer was extracted from the film. A method for producing a vinylidene fluoride-based resin porous membrane satisfying the following formula (A): ## EQU00003 ## (A) 4.0 <P 1 / P 2 ≦ 10.0 {P 1 is a single-sided electron microscope having a large average pore size.
Measured average pore size (μm), P 2 is the electron on the other surface
It is the average pore diameter (μm) measured by a microscope . }
【請求項5】 インヘレント粘度が1.4〜15.0
(dl/g)であるフッ化ビニリデン系樹脂100重量
部に対し、可塑剤として脂肪系ポリエステルを30〜2
50重量部およびフッ化ビニリデン系樹脂の良溶媒を1
〜50重量部を添加し、得られた組成物を押し出した溶
融状態のフィルムの片面を温度150℃以下のチルロー
ルで冷却し、他の片面を空冷して製膜した後、可塑剤お
よび良溶媒をフィルムから抽出することを特徴とする次
式(A)を満足するフッ化ビニリデン系樹脂多孔質膜の
製造方法。 【数4】 (A) 4.0<P/P≦10.0 {Pは大きい平均孔径を有する片表面の電子顕微鏡で
測定した平均孔径(μm)、Pは他方の片表面の電子
顕微鏡で測定した平均孔径(μm)である。}
5. The inherent viscosity is 1.4 to 15.0.
To 100 parts by weight of vinylidene fluoride resin (dl / g), 30 to 2 of fatty polyester as a plasticizer is used.
50 parts by weight and 1 of good solvent of vinylidene fluoride resin
-50 parts by weight is added, and the obtained composition is extruded, and one side of the molten film is cooled with a chill roll at a temperature of 150 ° C or lower, and the other side is air-cooled to form a film, and then a plasticizer and a good solvent are added. Is extracted from the film. A method for producing a vinylidene fluoride resin porous membrane satisfying the following formula (A): (A) 4.0 <P 1 / P 2 ≦ 10.0 {P 1 is a single-sided electron microscope having a large average pore size.
Measured average pore size (μm), P 2 is the electron on the other surface
It is the average pore diameter (μm) measured by a microscope . }
【請求項6】 抽出後の多孔質膜の乾燥を多孔質膜の収
縮を防ぎながら行うことを特徴とする請求項4または5
記載のフッ化ビニリデン系樹脂多孔質膜の製造方法。
6. The porous membrane after extraction is dried while preventing shrinkage of the porous membrane.
A method for producing a vinylidene fluoride resin porous membrane as described.
【請求項7】 抽出後の多孔質膜の乾燥を多孔質膜を固
定しない状態で行い、次いで延伸することを特徴とする
請求項4または5記載のフッ化ビニリデン系樹脂多孔質
膜の製造方法。
7. The method for producing a vinylidene fluoride resin porous membrane according to claim 4, wherein the porous membrane after extraction is dried without fixing the porous membrane, and then stretched. .
JP26142594A 1993-10-05 1994-09-30 Vinylidene fluoride resin porous membrane and method for producing the same Expired - Fee Related JP3466734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26142594A JP3466734B2 (en) 1993-10-05 1994-09-30 Vinylidene fluoride resin porous membrane and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-273045 1993-10-05
JP27304593 1993-10-05
JP26142594A JP3466734B2 (en) 1993-10-05 1994-09-30 Vinylidene fluoride resin porous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07173323A JPH07173323A (en) 1995-07-11
JP3466734B2 true JP3466734B2 (en) 2003-11-17

Family

ID=26545063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26142594A Expired - Fee Related JP3466734B2 (en) 1993-10-05 1994-09-30 Vinylidene fluoride resin porous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3466734B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322923B1 (en) 1998-01-30 2001-11-27 Celgard Inc. Separator for gel electrolyte battery
TW581709B (en) 1999-10-22 2004-04-01 Asahi Kasei Corp Heat-resistant microporous film
JP2002305030A (en) * 2001-04-06 2002-10-18 Mitsubishi Cable Ind Ltd Sheet-type lithium secondary battery
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
CN1705505B (en) 2002-10-18 2010-04-28 旭化成医疗株式会社 Microporous hydrophilic membrane
EP1621573A4 (en) * 2003-04-16 2006-08-02 Kureha Corp Porous film of vinylidene fluoride resin and method for producing same
US20050031943A1 (en) * 2003-08-07 2005-02-10 Call Ronald W. Battery separator and method of making same
CA2540471A1 (en) 2003-10-03 2005-04-14 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
CN100509124C (en) * 2004-04-14 2009-07-08 株式会社吴羽 Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
WO2005123234A1 (en) 2004-06-15 2005-12-29 Kureha Corporation Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
US20090039014A1 (en) * 2004-07-07 2009-02-12 Takumi Katsurao Porous Vinylidene Fluoride Resin Membrane for Water Treatment and Process for Producing the Same
CN100481582C (en) 2004-12-10 2009-04-22 松下电器产业株式会社 Lithium ion secondary battery and method for producing negative electrode therefor
WO2007010832A1 (en) * 2005-07-20 2007-01-25 Kureha Corporation Porous hollow-yarn membrane of vinylidene fluoride resin
JP5076320B2 (en) * 2006-01-11 2012-11-21 東洋紡績株式会社 Method for producing polyvinylidene fluoride hollow fiber type microporous membrane
KR101338730B1 (en) 2009-02-05 2013-12-06 가부시끼가이샤 구레하 Vinylidene fluoride resin porous film and manufacturing method therefor
CN102470328B (en) 2009-07-14 2014-12-31 株式会社吴羽 Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
JP5639653B2 (en) * 2009-10-07 2014-12-10 アイエスピー インヴェストメンツ インコーポレイテッドIsp Investments Inc. Plasticized polymer composition
KR20120059755A (en) 2010-12-01 2012-06-11 엘지전자 주식회사 Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
KR101364845B1 (en) * 2012-04-30 2014-02-20 웅진케미칼 주식회사 Manufacturing method of PVDF hollow fiber membrane
CN118179297A (en) * 2024-04-15 2024-06-14 迈博瑞生物膜技术(南通)有限公司 Polyether sulfone microporous sterilization filter membrane, preparation method thereof and use thereof in sterilization

Also Published As

Publication number Publication date
JPH07173323A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
JP3466734B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
US5626805A (en) Process of making vinylidene fluoride porous membrane
JP4885539B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
US7455772B2 (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
JP4987471B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP4785528B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP5036033B2 (en) Porous membrane for water treatment and method for producing the same
JP6295641B2 (en) Microporous membrane and separator using the same
JP6659755B2 (en) Wound body
JP7547844B2 (en) Porous Polyolefin Film
JPH11319522A (en) Finely porous membrane and manufacture thereof
JP4761967B2 (en) Vinylidene fluoride resin porous hollow fiber and method for producing the same
JP4781691B2 (en) Porous membrane and method for producing the same
JP6416542B2 (en) Wound body
JP2004099799A (en) Rolled item of fine porous membrane made of polyolefin
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JP4832739B2 (en) Method for producing vinylidene fluoride resin porous membrane
JPH059332A (en) Homogeneous microporous film made of ultrahigh-molecular weight polyethylene and its production
US20220355525A1 (en) A ptfe porous membrane with a high strength and small pore size
KR20070031330A (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
JP2012176998A (en) Polyolefin microporous film
JP2020111469A (en) Reel and method of manufacturing reel
JP2001002826A (en) Porous film
JP2001002813A (en) Porous film

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees