JP3465541B2 - Lead frame material manufacturing method - Google Patents

Lead frame material manufacturing method

Info

Publication number
JP3465541B2
JP3465541B2 JP19149997A JP19149997A JP3465541B2 JP 3465541 B2 JP3465541 B2 JP 3465541B2 JP 19149997 A JP19149997 A JP 19149997A JP 19149997 A JP19149997 A JP 19149997A JP 3465541 B2 JP3465541 B2 JP 3465541B2
Authority
JP
Japan
Prior art keywords
copper alloy
aging treatment
sample
alloy material
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19149997A
Other languages
Japanese (ja)
Other versions
JPH1136055A (en
Inventor
佳紀 山本
健 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP19149997A priority Critical patent/JP3465541B2/en
Publication of JPH1136055A publication Critical patent/JPH1136055A/en
Application granted granted Critical
Publication of JP3465541B2 publication Critical patent/JP3465541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体部品のリー
ドフレームに用いるリードフレーム材の製造方法に関す
ものである。 【0002】 【従来の技術】半導体集積回路の高集積化によって、リ
ードフレーム材の多ピン化、ピン幅・ピンピッチの縮小
化が進んでいる。こうした多ピンリードフレームには、
材料の薄板化が必要であり、これに対応できる高強度と
消費電力増に対応できる放熱性を持った銅合金が用いら
れている。 【0003】Cu−Ni−Si系の銅合金は析出硬化性
を示す合金であり、熱処理によってNiとSiの化合物
を微細な形状に析出させると、高い強度と良好な熱・電
気伝導性が得られるため、多ピンリードフレーム用の材
料に適している。 【0004】一般に、Cu−Ni−Si系のような析出
硬化性銅合金の製造方法は、銅合金インゴットに成形加
工を施して銅合金材を形成し、その銅合金材に高温加熱
(溶体化処理)を施すことにより、不均一に析出した合
金元素(析出元素)をCuマトリックス中に固溶させ、
その後、銅合金材に第1次冷間加工を施した後、所定温
度に加熱(時効処理)することにより、Cuマトリック
ス中に固溶元素を均一に析出させ、その後、第2次冷間
加工を施すものである。 【0005】例えば、結晶粒度が5μm以上になるよう
に700℃以上の温度で溶体化処理を施した後、順次、
加工度95%以下の冷間加工、350〜700℃の時効
処理、加工度20〜95%の冷間加工、および150〜
800℃の熱処理を施す方法などがある(特開昭61−
250154号公報)。 【0006】従来のCu−Ni−Si系析出硬化性銅合
金の製造方法における溶体化処理は、析出元素のマトリ
ックス中への固溶を促進させる目的から高温(900℃
程度)で施されることが多い。また、その後の冷間加工
と時効処理条件の選択については、Cu−Ni−Si系
析出硬化性銅合金の導電率や強度の向上のみを目的とす
ることも多いため、比較的高温(500〜600℃)で
時効処理することも見受けられる。 【0007】リードフレームの外形加工には、スタンピ
ング法とエッチング法が挙げられるが、200ピンを超
えるような高密多ピンフレームでは微細加工が比較的容
易なエッチング法が用いられている。 【0008】高密多ピンフレームにおいては、インナー
リードのピン幅が狭く、ワイヤボンディングに必要とさ
れるピン幅の略限界に達しており、また、ピンピッチも
狭くなるため、エッチング時にインナーリードの直線性
および寸法精度を正確にコントロールすることが重要に
なる。 【0009】 【発明が解決しようとする課題】しかしながら、インナ
ーリードの直線性および寸法精度は、エッチングの処理
条件以外にも、材料の結晶組織や析出物の形態による影
響も大きく、結晶組織における粒界部と結晶粒内部で被
エッチング性が異なることにより、結晶粒が大きく成長
した材料はエッチング面に組織模様の凹凸が生じやす
い。また、析出物の大きさもエッチング性に影響を与
え、析出物が大きい場合にはエッチング面に凹凸が生じ
やすい。このような凹凸の発生により、インナーリード
の直線性や寸法精度の悪化が生じる。 【0010】Cu−Ni−Si系析出硬化性銅合金で
は、溶体化や時効のための熱処理工程が必要であるが、
その際、結晶粒が粗大になったり、析出物が大きく成長
するおそれがあった。 【0011】すなわち、従来の製造方法においては、析
出元素のマトリックス中への固溶を促進させる目的から
溶体化処理を高温(900℃程度)で行うことが多いた
め、高温の加熱により結晶粒が成長して粗大な結晶組織
になる可能性が高い。 【0012】また、時効処理も、固溶元素の析出を十分
に進行させるために比較的高温で加熱する場合が多いた
め、結晶粒が過度に成長して粗大な結晶組織になるおそ
れがあると共に、析出物サイズが大きくなりやすい。 【0013】そこで本発明は、上記課題を解決し、エッ
チングによるリード成形性に優れ、かつ、マトリックス
中における結晶粒および析出物サイズが微細なリードフ
レーム材の製造方法を提供することにある。 【0014】上記課題を解決するために請求項1の発明
は、少なくともNiを1.0〜5.0wt%、Siを
0.2〜1.0wt%、Znを1.0〜5.0wt%、
Pを0.003〜0.3wt%を含有すると共に、Ni
/Siの重量比が4.5〜5.5である銅合金に、溶体
化処理と時効処理を施してなるリードフレーム材の製造
方法において、上記銅合金に750〜810℃の温度範
囲で上記溶体化処理を施した後、その銅合金に加工率6
0%以上の第1次冷間加工を施し、その後、その銅合金
に370〜470℃×0.5〜3hrの第1次時効処理
を施した後、その銅合金に再び加工率50%以下の第2
次冷間加工を施し、その後、その銅合金に400〜50
0℃×0.5〜3hrの第2次時効処理を施すものであ
る。 【0015】 【0016】上記数値範囲を規定した理由を以下に説明
する。 【0017】溶体化処理の温度範囲を750〜810℃
と規定したのは、溶体化処理温度が750℃よりも低い
と溶体化が十分に進行せず、後の時効処理において、固
溶しきれなかった析出元素の粗大化が生じ、高強度が得
られないと共に、エッチングのリード成形性が低下する
ためである。また、溶体化処理温度が810℃よりも高
いと析出元素の固溶は十分に進行するが、結晶粒の粗大
化が生じ、最終材において微細な結晶粒が得られないと
共に、エッチングのリード成形性が低下するためであ
る。 【0018】第1次冷間加工の加工率を60%以上と規
定したのは、加工率が60%よりも低いと結晶粒の微細
化が不十分になるおそれがあると共に、次の時効処理工
程における微細析出物の析出が不十分になるおそれがあ
るためである。 【0019】第1次時効処理を370〜470℃×0.
5〜3hrと規定したのは、時効処理温度・時間が37
0℃よりも低い又は0.5時間よりも短いと、時効によ
る固溶元素の析出が十分に進行せず、最終材において良
好な強度および導電率が得られないためである。また、
時効処理温度・時間が470℃よりも高い又は3時間よ
りも長いと、時効により粗大析出物の析出が生じ、最終
材において高強度が得られないと共に、再結晶が進行し
て結晶粒径が大きくなるためである。 【0020】第2次冷間加工の加工率を50%以下と規
定したのは、加工率が50%よりも高いと次の時効処理
によって粗大析出物が析出しやすくなると共に、最終材
での残留歪みが大きくなり、リード成形時に反りが生じ
るためである。 【0021】第2次時効処理を400〜500℃×0.
5〜3hrと規定したのは、時効処理温度・時間が40
0℃よりも低い又は0.5時間よりも短いと、新たな析
出物の析出が十分に進行しないと共に、残留歪みが大き
くなり、リード成形時に反りが生じ易くなるためであ
る。また、時効処理温度・時間が500℃よりも高い又
は3時間よりも長いと、時効により粗大析出物の析出が
生じ、最終材において高強度が得られないと共に、再結
晶が進行して結晶粒径が大きくなるためである。 【0022】NiおよびSiの添加量を、それぞれ1.
0〜5.0wt%、0.2〜1.0wt%と規定したの
は、時効処理後の固溶元素量を減少させるためであり、
添加量がそれぞれ1.0wt%、0.2wt%よりも少
ないと、析出による高強度化が十分ではなく、添加量が
それぞれ5.0wt%、1.0wt%よりも多いと、析
出しきれない固溶元素量が増加するためである。 【0023】Ni/Siの重量比を4.5〜5.5と規
定したのは、NiとSiがNi2 Siとして析出するも
のであり、余剰分として存在するNi若しくはSiの量
を少なくするためである。 【0024】Znは半田付け時の界面剥離を防ぐ効果が
あり、Znの添加量を1.0〜5.0wt%と規定した
のは、添加量が1.0wt%よりも少ないと前述した効
果が十分ではなく、添加量が5.0wt%よりも多いと
特に導電性を低下させるためである。 【0025】Pは脱酸材としての効果があると共に、鋳
造時のSiの酸化による悪影響を防止する効果があり、
Pの添加量を0.003〜0.3wt%と規定したの
は、添加量が0.003wt%よりも少ないと前述した
効果が十分ではなく、添加量が0.3wt%よりも多い
と特に導電性を低下させるためである。 【0026】以上の構成によれば、少なくともNiとS
iを含有する銅合金に、溶体化処理と時効処理を施して
なるリードフレーム材の製造方法において、上記銅合金
に750〜810℃の温度範囲で上記溶体化処理を施し
た後、その銅合金に加工率60%以上の第1次冷間加工
を施し、その後、その銅合金に370〜470℃×0.
5〜3hrの第1次時効処理を施した後、その銅合金に
再び加工率50%以下の第2次冷間加工を施し、その
後、その銅合金に400〜500℃×0.5〜3hrの
第2次時効処理を施すため、エッチングによるリード成
形性に優れ、かつ、マトリックス中における結晶粒およ
び析出物サイズが微細なリードフレーム材を得ることが
できる。 【0027】 【発明の実施の形態】以下、本発明の実施の形態を説明
する。 【0028】本発明のリードフレーム材の製造方法は、
先ず、所定の化学組成の銅合金インゴットに、成形加工
(押出加工、冷間加工など)を施して銅合金材を形成す
る。 【0029】銅合金インゴットは、少なくともNiを
1.0〜5.0wt%、Siを0.2〜1.0wt%、
Znを1.0〜5.0wt%、Pを0.003〜0.3
wt%含有するものであり、Ni/Siの重量比は4.
5〜5.5である。ここで、特に好ましい化学組成範囲
は、Niが1.5〜2.5wt%、Siが0.3〜0.
5wt%、Znが1.5〜3.0wt%、Pが0.01
〜0.05wt%である。 【0030】この銅合金材に、結晶粒の粗大化を防止す
ると共に、析出元素を十分に固溶させるべく、750〜
810℃の温度範囲で溶体化処理を施す。ここで、特に
好ましい溶体化処理の温度範囲は、780〜800℃で
ある。 【0031】その後、溶体化処理を施した銅合金材に、
加工率60%以上の第1次冷間加工を施す。この第1次
冷間加工によって、銅合金材の結晶粒を微細化させると
共に、固溶元素析出の起点となる格子欠陥を導入し、第
1次時効処理時における微細析出物の形成を促進させ
る。特に、エッチング時のリード成形性を向上させるた
めには、銅合金材の結晶粒を十分に微細化させることが
必要であり、この第1次冷間加工の加工率を高めること
により、結晶粒微細化の効果が大きくなる。 【0032】その後、第1次冷間加工後の銅合金材に、
第1次時効処理を施す。第1次時効処理においては、固
溶元素を微細な形状で多量に析出させることが重要であ
るが、本発明においては、第1次冷間加工の加工率が高
いため、固溶元素の析出が進行し易いと共に、粗大析出
物が析出し易くなっている。このため、第1次時効処理
の温度・時間条件を370〜470℃×0.5〜3hr
とし、粗大析出物の析出を抑えると共に、固溶元素を微
細な形状で多量に析出させる。ここで、特に好ましい第
1次時効処理の温度・時間条件は、440〜460℃×
1〜2hrである。 【0033】第1次時効処理のみではマトリックス中の
固溶元素が析出しきれないため、第1次時効処理後にお
いても固溶状態で残留する合金元素がある。このため、
このままでは最終材において良好な導電率を達成するこ
とが不十分となる。そこで、固溶状態で残留する合金元
素を析出させるための起点となる格子欠陥を導入すべ
く、第1次時効処理後の銅合金材に、加工率50%以下
の第2次冷間加工を施す。 【0034】その後、第2次冷間加工後の銅合金材に、
第2次時効処理を施す。第2次時効処理においては、粗
大析出物の発生を抑えると共に、結晶粒径を微細に保ち
ながら、新たな析出物を発生させ、固溶元素量を減らす
ことが重要である。このため、第2次時効処理の温度・
時間条件は400〜500℃×0.5〜3hrとする。
ここで、特に好ましい第2次時効処理の温度・時間条件
は、400〜460℃×1〜2hrである。 【0035】銅合金材に第2次時効処理を施すことによ
って、最終材である電子機器用銅合金材を得る。 【0036】すなわち、本発明のリードフレーム材の製
造方法によれば、銅合金材に対する溶体化処理温度、各
冷間加工の加工率、および各時効処理の処理温度を規定
しているため、得られるリードフレーム用の銅合金材
は、エッチングによるリード成形性に優れ、かつ、マト
リックス中における結晶粒および析出物サイズが微細に
なる。 【0037】また、マトリックス中における結晶粒およ
び析出物サイズが微細であるため、高強度および良好な
電気・熱伝導性を有している。 【0038】さらに、エッチングによるリード成形性に
優れているため、本発明の製造方法により得られた電子
機器用銅合金材を、より小型・多ピンのリードフレーム
の材料として供することができる。 【0039】 【実施例】 (実施例1)無酸素銅を高周波溶解炉で溶解すると共
に、Ni、Si、Zn、Pを適宜添加し、この溶湯を鋳
型に注入して直径30mm、長さ250mm、かつ、化
学組成が、Ni:2.5wt%、Si:0.5wt%、
Zn:1.5wt%、P:0.03wt%、Ni/Si
の重量比:5.0の銅合金インゴット(試料A)を鋳造
する。 【0040】(実施例2)実施例1と同様にして直径3
0mm、長さ250mm、かつ、化学組成が、Ni:
3.5wt%、Si:0.7wt%、Zn:3.5wt
%、P:0.03wt%、Ni/Siの重量比:5.0
の銅合金インゴット(試料B)を鋳造する。 【0041】(比較例1)実施例1と同様にして直径3
0mm、長さ250mm、かつ、化学組成が、Ni:
6.0wt%、Si:1.2wt%、Zn:1.5wt
%、P:0.03wt%、Ni/Siの重量比:5.0
の銅合金インゴット(試料C)を鋳造する。 【0042】(比較例2)実施例1と同様にして直径3
0mm、長さ250mm、かつ、化学組成が、Ni:
2.0wt%、Si:0.5wt%、Zn:1.5wt
%、P:0.03wt%、Ni/Siの重量比:4.0
の銅合金インゴット(試料D)を鋳造する。 【0043】(比較例3)実施例1と同様にして直径3
0mm、長さ250mm、かつ、化学組成が、Ni:
3.0wt%、Si:0.5wt%、Zn:1.5wt
%、P:0.03wt%、Ni/Siの重量比:6.0
の銅合金インゴット(試料E)を鋳造する。実施例1、
2および比較例1〜3の銅合金インゴットの化学組成を
表1に示す。 【0044】 【表1】 【0045】次に、試料A〜Eの銅合金インゴットを用
いて、電子機器用銅合金材を作製する。 【0046】(実施例3)実施例1の銅合金インゴット
を850℃に加熱すると共に、銅合金インゴットに押出
加工を施して、幅20mm、厚さ8mmの板状に形成す
る。この板状銅合金材に冷間圧延加工を施し、厚さ0.
7mmの薄板状銅合金材に形成する。 【0047】次に、この薄板状銅合金材を800℃に加
熱した後、水中に投入して急冷し、薄板状銅合金材に溶
体化処理を施す。溶体化後の薄板状銅合金材に加工率7
0%の第1次冷間圧延加工を施し、厚さ0.21mmに
形成する。 【0048】その後、この薄板状銅合金材に460℃×
1hrの第1次時効処理を施す。この薄板状銅合金材に
加工率約29%の第2次冷間圧延加工を施し、厚さ0.
15mmに形成する。 【0049】その後、この薄板状銅合金材に400℃×
1hrの第2次時効処理を施して、電子機器用銅合金材
(試料No.1)を作製する。 【0050】(実施例4)実施例1の銅合金インゴット
を用い、第1次時効処理を440℃×1hr、第2次時
効処理を420℃×1hrとする以外は実施例3と同様
にして電子機器用銅合金材(試料No.2)を作製す
る。 【0051】(実施例5)実施例1の銅合金インゴット
を用い、第1次時効処理を400℃×1hr、第2次時
効処理を450℃×1hrとする以外は実施例3と同様
にして電子機器用銅合金材(試料No.3)を作製す
る。 【0052】(比較例4)実施例1の銅合金インゴット
を用い、溶体化処理温度を830℃とする以外は実施例
3と同様にして電子機器用銅合金材(試料No.4)を
作製する。 【0053】(比較例5)実施例1の銅合金インゴット
を用い、溶体化処理温度を740℃とする以外は実施例
3と同様にして電子機器用銅合金材(試料No.5)を
作製する。 【0054】(比較例6)実施例1の銅合金インゴット
を用い、第1次冷間加工の加工率を50%とする以外は
実施例3と同様にして電子機器用銅合金材(試料No.
6)を作製する。 【0055】(比較例7)実施例1の銅合金インゴット
を用い、第1次時効処理を480℃×1hr、第2次時
効処理を380℃×1hrとする以外は実施例3と同様
にして電子機器用銅合金材(試料No.7)を作製す
る。 【0056】(比較例8)実施例1の銅合金インゴット
を用い、第1次時効処理を360℃×1hr、第2次時
効処理を460℃×1hrとする以外は実施例3と同様
にして電子機器用銅合金材(試料No.8)を作製す
る。 【0057】(比較例9)実施例1の銅合金インゴット
を用い、第2次冷間加工の加工率を60%とする以外は
実施例3と同様にして電子機器用銅合金材(試料No.
9)を作製する。 【0058】(比較例10)実施例1の銅合金インゴッ
トを用い、第2次時効処理を380℃×1hrとする以
外は実施例3と同様にして電子機器用銅合金材(試料N
o.10)を作製する。 【0059】(比較例11)実施例1の銅合金インゴッ
トを用い、第2次時効処理を520℃×1hrとする以
外は実施例3と同様にして電子機器用銅合金材(試料N
o.11)を作製する。 【0060】(実施例6)実施例2の銅合金インゴット
を用い、実施例3と同様にして電子機器用銅合金材(試
料No.12)を作製する。 【0061】(比較例11)比較例1の銅合金インゴッ
トを用い、実施例3と同様にして電子機器用銅合金材
(試料No.13)を作製する。 【0062】(比較例12)比較例2の銅合金インゴッ
トを用い、実施例3と同様にして電子機器用銅合金材
(試料No.14)を作製する。 【0063】(比較例13)比較例3の銅合金インゴッ
トを用い、実施例3と同様にして電子機器用銅合金材
(試料No.14)を作製する。 【0064】実施例3〜6および比較例4〜14の電子
機器用銅合金材の製造条件を表2に示す。 【0065】 【表2】 【0066】次に、試料No.1〜14について、引張
強さ(MPa)、導電率(%IACS)、結晶粒径(μ
m)を測定した。その測定結果を表3に示す。 【0067】 【表3】【0068】表3に示すように、資料No.1〜3およ
び12は、本発明のリードフレーム材の製造方法に基づ
いて作製しているため、700MPa以上の引張強さ、
40%IACS以上の導電率、微細な結晶粒が得られ
た。 【0069】これに対して、試料No.4,5は、溶体
化処理温度(830℃、740℃)が規定範囲(750
〜810℃)外であるため、溶体化処理温度が高すぎる
試料No.4においては結晶粒が粗大(200μm)に
なっており、逆に、溶体化処理温度が低すぎる試料N
o.5においては引張強さが700MPa以下(628
MPa)となると共に、導電率が40%IACS以下
(38.0%IACS)となっている。 【0070】試料No.6は、第1次冷間加工の加工率
(50%)が規定範囲(60%以上)外であるため、結
晶粒が粗大(120μm)になっている。 【0071】試料No.7,8は、第1次時効処理温度
(480℃、360℃)が規定範囲(370〜470
℃)外であるため、第1次時効処理温度が高すぎる試料
No.7においては引張強さが700MPa以下(63
6MPa)となると共に、結晶粒が粗大(120μm)
になっており、逆に、第1次時効処理温度が低すぎる試
料No.8においては引張強さが700MPa以下(6
10MPa)、導電率が40%IACS以下(39.6
%IACS)となっていると共に、結晶粒が粗大(12
0μm)になっている。 【0072】試料No.9は、第2次冷間加工の加工率
(60%)が規定範囲(50%以下)外であるため、引
張強さが700MPa以下(630MPa)となってい
る。 【0073】試料No.10,11は、第2次時効処理
温度(380℃、520℃)が規定範囲(400〜50
0℃)外であるため、第2次時効処理温度が低すぎる試
料No.10においては導電率が40%IACS以下
(39.2%IACS)となっており、逆に、第2次時
効処理温度が高すぎる試料No.11においては引張強
さが700MPa以下(580MPa)となっていると
共に、結晶粒が粗大(200μm)になっている。 【0074】試料No.13に用いた銅合金材の化学組
成において、Ni/Siの重量比(5.0)は規定範囲
(4.5〜5.5)内であるものの、NiおよびSiの
含有量(それぞれ、6.0wt%、1.2wt%)が規
定範囲(それぞれ、1.0〜5.0wt%、0.2〜
1.0wt%)外であるため、導電率が40%IACS
以下(36.4%IACS)となっている。 【0075】試料No.14に用いた銅合金材の化学組
成において、NiおよびSiの含有量(それぞれ、2.
0wt%、0.5wt%)は規定範囲(それぞれ、1.
0〜5.0wt%、0.2〜1.0wt%)内であるも
のの、Ni/Siの重量比(4.0)が規定範囲(4.
5〜5.5)外であるため、引張強さが700MPa以
下(656MPa)となっている。 【0076】試料No.15に用いた銅合金材の化学組
成において、NiおよびSiの含有量(それぞれ、3.
0wt%、0.5wt%)は規定範囲(それぞれ、1.
0〜5.0wt%、0.2〜1.0wt%)内であるも
のの、Ni/Siの重量比(6.0)が規定範囲(4.
5〜5.5)外であるため、引張強さが700MPa以
下(680MPa)となっていると共に、導電率が40
%IACS以下(38.8%IACS)となっている。 【0077】 【発明の効果】以上要するに本発明によれば、銅合金材
に対する溶体化処理温度、核冷間加工の加工率、および
各時効処理の処理温度を規定することで、得られるリー
ドフレーム材は、エッチングによるリード成形性に優
れ、かつ、マトリックス中における結晶粒および析出物
サイズが微細になるという優れた効果を発揮する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor component
The present invention relates to a method for manufacturing a lead frame material used for a lead frame . 2. Description of the Related Art As the integration density of semiconductor integrated circuits increases, the number of pins in a lead frame material and the pin width and pin pitch are reduced. These multi-pin lead frames include:
It is necessary to reduce the thickness of the material, and a copper alloy having high strength capable of coping with this and heat radiation capable of coping with increased power consumption is used. [0003] Cu-Ni-Si based copper alloys are precipitation hardening alloys. When a compound of Ni and Si is deposited in a fine shape by heat treatment, high strength and good thermal and electrical conductivity are obtained. Therefore, it is suitable as a material for a multi-pin lead frame. [0004] In general, a method for producing a precipitation-hardenable copper alloy such as a Cu-Ni-Si system is to form a copper alloy material by forming a copper alloy ingot and heat the copper alloy material to a high temperature (solution treatment). Treatment) to dissolve the alloy element (precipitated element) which is non-uniformly precipitated in the Cu matrix,
Thereafter, the copper alloy material is subjected to primary cold working, and then heated (aged) to a predetermined temperature to uniformly precipitate solid-solution elements in the Cu matrix. Is applied. For example, after performing a solution treatment at a temperature of 700 ° C. or more so that the crystal grain size is 5 μm or more,
Cold working with a working degree of 95% or less, aging treatment at 350 to 700 ° C, cold working with a working degree of 20 to 95%, and 150 to
There is a method of performing a heat treatment at 800 ° C.
No. 250154). The solution treatment in the conventional method for producing a Cu—Ni—Si precipitation hardenable copper alloy is performed at a high temperature (900 ° C.) for the purpose of promoting solid solution of the precipitated element in the matrix.
Degree). In addition, since the subsequent cold working and aging treatment conditions are often selected only for the purpose of improving the electrical conductivity and strength of the Cu—Ni—Si-based precipitation-hardening copper alloy, a relatively high temperature (500 to (600 ° C.). The external processing of the lead frame includes a stamping method and an etching method. In the case of a high-density multi-pin frame having more than 200 pins, an etching method in which fine processing is relatively easy is used. In a high-density multi-pin frame, the pin width of the inner lead is narrow, which almost reaches the limit of the pin width required for wire bonding, and the pin pitch is also narrow. It is important to precisely control the dimensional accuracy. However, the linearity and dimensional accuracy of the inner leads are greatly affected by the crystal structure and the form of precipitates of the material in addition to the etching processing conditions. Due to the difference in the etching property between the boundary portion and the inside of the crystal grain, the material in which the crystal grain has grown greatly tends to have irregularities in the texture pattern on the etched surface. Further, the size of the precipitate also affects the etching property, and when the precipitate is large, irregularities are likely to be formed on the etched surface. Due to the occurrence of such irregularities, the linearity and dimensional accuracy of the inner lead are deteriorated. A Cu—Ni—Si precipitation hardenable copper alloy requires a heat treatment step for solution and aging.
At that time, there is a possibility that the crystal grains become coarse or precipitates grow large. That is, in the conventional manufacturing method, the solution treatment is often performed at a high temperature (about 900 ° C.) for the purpose of promoting solid solution of the precipitated element in the matrix. It is likely to grow to a coarse crystal structure. In the aging treatment, heating is often performed at a relatively high temperature in order to sufficiently promote the precipitation of solid solution elements. Therefore, there is a possibility that crystal grains may grow excessively and become a coarse crystal structure. , Precipitate size tends to be large. Accordingly, the present invention solves the above-mentioned problems, and provides a lead foil having excellent lead formability by etching and having fine crystal grains and precipitates in a matrix.
An object of the present invention is to provide a method for manufacturing a frame material . [0014] In order to solve the above-mentioned problems, the invention according to claim 1 includes at least 1.0 to 5.0 wt% of Ni and at least
0.2-1.0 wt%, Zn 1.0-5.0 wt%,
P contains 0.003-0.3 wt% and Ni
A method for producing a lead frame material, comprising subjecting a copper alloy having a weight ratio of 4.5 / 5.5 to a solution treatment and an aging treatment, wherein the copper alloy is treated at a temperature range of 750-810 ° C. After the solution treatment, the copper alloy has a working rate of 6%.
First cold working of 0% or more, and then first aging treatment of the copper alloy at 370 to 470 ° C. × 0.5 to 3 hours, and then working rate of 50% or less again for the copper alloy Second
Next, cold working is performed, and then the copper alloy is subjected to 400 to 50
The second aging treatment is performed at 0 ° C. × 0.5 to 3 hours. The reason for defining the above numerical range will be described below. The temperature range of the solution treatment is 750 to 810 ° C.
The reason is that if the solution treatment temperature is lower than 750 ° C., the solution does not proceed sufficiently, and in the subsequent aging treatment, coarsening of the precipitated elements that could not be dissolved completely occurs, and high strength is obtained. This is because not only is not possible, but also the lead formability of the etching is reduced. If the solution treatment temperature is higher than 810 ° C., the solid solution of the precipitated element proceeds sufficiently, but the crystal grains become coarse, and fine crystal grains cannot be obtained in the final material, and lead forming of etching is performed. This is because the property is reduced. The reason why the working ratio of the first cold working is defined as 60% or more is that if the working ratio is lower than 60%, the crystal grains may be insufficiently refined, and the next aging treatment may be performed. This is because precipitation of fine precipitates in the process may be insufficient. The first aging treatment is performed at 370-470 ° C. × 0.
The aging treatment temperature and the time of 37 hours were specified as 5 to 3 hours.
If the temperature is lower than 0 ° C. or shorter than 0.5 hour, precipitation of solid solution elements due to aging does not sufficiently proceed, and good strength and electrical conductivity cannot be obtained in the final material. Also,
If the aging treatment temperature / time is higher than 470 ° C. or longer than 3 hours, aging causes precipitation of coarse precipitates, and high strength cannot be obtained in the final material, and recrystallization proceeds to reduce the crystal grain size. It is because it becomes big. The reason why the working ratio of the second cold working is specified to be 50% or less is that if the working ratio is higher than 50%, coarse precipitates are liable to precipitate by the next aging treatment, and the final material This is because the residual strain increases and warpage occurs during lead molding. The second aging treatment is performed at 400 to 500 ° C. × 0.
The aging treatment temperature and the time of 40 to 40 hours are specified as 5 to 3 hours.
If the temperature is lower than 0 ° C. or shorter than 0.5 hour, the precipitation of new precipitates does not sufficiently proceed, the residual strain increases, and warpage tends to occur during lead molding. If the aging treatment temperature / time is higher than 500 ° C. or longer than 3 hours, precipitation of coarse precipitates occurs due to aging, and high strength cannot be obtained in the final material, and recrystallization proceeds and crystal grains This is because the diameter increases. The added amounts of Ni and Si are set to 1.
The reason for defining the amounts to be 0 to 5.0 wt% and 0.2 to 1.0 wt% is to reduce the amount of solid solution elements after aging treatment.
If the addition amount is less than 1.0 wt% and 0.2 wt%, respectively, the high strength due to precipitation is not sufficient, and if the addition amount is more than 5.0 wt% and 1.0 wt%, respectively, precipitation cannot be completed. This is because the amount of solid solution elements increases. The reason why the weight ratio of Ni / Si is defined as 4.5 to 5.5 is that Ni and Si are precipitated as Ni 2 Si, and the amount of Ni or Si existing as excess is reduced. That's why. Zn has the effect of preventing interfacial delamination during soldering, and the addition amount of Zn is specified to be 1.0 to 5.0 wt%. The above-mentioned effect is obtained when the addition amount is less than 1.0 wt%. Is not sufficient, and if the addition amount is more than 5.0 wt%, the conductivity is particularly lowered. P has an effect as a deoxidizing material and also has an effect of preventing an adverse effect due to oxidation of Si during casting.
The reason why the addition amount of P is defined as 0.003 to 0.3 wt% is that if the addition amount is less than 0.003 wt%, the above-mentioned effect is not sufficient, and if the addition amount is more than 0.3 wt%, it is particularly large. This is for reducing the conductivity. According to the above configuration, at least Ni and S
In a method for manufacturing a lead frame material comprising subjecting a copper alloy containing i to a solution treatment and an aging treatment, the copper alloy is subjected to the solution treatment in a temperature range of 750 to 810 ° C. Is subjected to a first cold working at a working ratio of 60% or more, and then the copper alloy is subjected to 370-470 ° C. × 0.
After the first aging treatment for 5 to 3 hours, the copper alloy is again subjected to a second cold working at a working ratio of 50% or less, and then the copper alloy is 400 to 500 ° C. × 0.5 to 3 hours. By performing the second aging treatment, it is possible to obtain a lead frame material which is excellent in lead formability by etching and has a fine crystal grain and precipitate size in a matrix. Embodiments of the present invention will be described below. The method for producing a lead frame material of the present invention comprises:
First, a copper alloy ingot having a predetermined chemical composition is subjected to molding (extrusion, cold working, etc.) to form a copper alloy material. The copper alloy ingot contains at least 1.0-5.0 wt% of Ni, 0.2-1.0 wt% of Si,
1.0 to 5.0 wt% of Zn and 0.003 to 0.3 of P
wt.%, and the weight ratio of Ni / Si is 4.
5 to 5.5. Here, a particularly preferable chemical composition range is 1.5 to 2.5 wt% of Ni and 0.3 to 0.2 wt% of Si.
5 wt%, Zn is 1.5-3.0 wt%, P is 0.01
~ 0.05 wt%. In order to prevent crystal grains from being coarsened in this copper alloy material and to sufficiently dissolve the precipitated elements, 750-500
A solution treatment is performed in a temperature range of 810 ° C. Here, a particularly preferable temperature range of the solution treatment is 780 to 800 ° C. After that, the solution-treated copper alloy material is
A first cold working with a working ratio of 60% or more is performed. This primary cold working refines the crystal grains of the copper alloy material, introduces lattice defects that serve as starting points for solid solution element precipitation, and promotes the formation of fine precipitates during the first aging treatment. . In particular, in order to improve the lead formability at the time of etching, it is necessary to sufficiently refine the crystal grains of the copper alloy material. The effect of miniaturization increases. Then, the copper alloy material after the first cold working is
A first aging process is performed. In the first aging treatment, it is important to precipitate a large amount of solid solution elements in a fine shape. However, in the present invention, since the working ratio of the first cold working is high, the precipitation of the solid solution elements is high. Progresses easily, and coarse precipitates easily precipitate. For this reason, the temperature and time conditions of the first aging treatment are set to 370 to 470 ° C. × 0.5 to 3 hours.
In addition to suppressing the precipitation of coarse precipitates, a large amount of solid solution elements is precipitated in a fine shape. Here, particularly preferred temperature and time conditions for the first aging treatment are 440 to 460 ° C ×
1 to 2 hours. Since the solid solution elements in the matrix cannot be completely precipitated only by the first aging treatment, some alloying elements remain in a solid solution state even after the first aging treatment. For this reason,
As it is, it is insufficient to achieve good electrical conductivity in the final material. Therefore, in order to introduce lattice defects serving as starting points for precipitating alloying elements remaining in a solid solution state, a second cold working with a working ratio of 50% or less is performed on the copper alloy material after the first aging treatment. Apply. Then, the copper alloy material after the second cold working is
A second aging process is performed. In the second aging treatment, it is important to suppress the generation of coarse precipitates, generate new precipitates, and reduce the amount of solid solution elements while keeping the crystal grain size fine. Therefore, the temperature of the second aging treatment
The time condition is 400-500 ° C. × 0.5-3 hr.
Here, a particularly preferred temperature and time condition of the second aging treatment is 400 to 460 ° C. × 1 to 2 hours. By subjecting the copper alloy material to the second aging treatment, a copper alloy material for electronic equipment, which is the final material, is obtained. That is, according to the lead frame material manufacturing method of the present invention, the solution treatment temperature for the copper alloy material, the working ratio of each cold working, and the processing temperature of each aging treatment are specified. The resulting copper alloy material for a lead frame is excellent in lead formability by etching, and has a fine crystal grain and precipitate size in a matrix. Further, since the crystal grains and precipitates in the matrix are fine, they have high strength and good electric and thermal conductivity. Further, since the lead formability by etching is excellent, the copper alloy material for electronic equipment obtained by the manufacturing method of the present invention can be used as a material for a smaller and more multi-pin lead frame. Example 1 While oxygen-free copper was melted in a high-frequency melting furnace, Ni, Si, Zn, and P were added as appropriate, and the molten metal was poured into a mold to be 30 mm in diameter and 250 mm in length. And the chemical composition is Ni: 2.5 wt%, Si: 0.5 wt%,
Zn: 1.5 wt%, P: 0.03 wt%, Ni / Si
A copper alloy ingot (sample A) having a weight ratio of 5.0 is cast. (Example 2) In the same manner as in Example 1, the diameter 3
0 mm, length 250 mm, and the chemical composition is Ni:
3.5 wt%, Si: 0.7 wt%, Zn: 3.5 wt
%, P: 0.03 wt%, weight ratio of Ni / Si: 5.0
Is cast (sample B). (Comparative Example 1) In the same manner as in Example 1, the diameter 3
0 mm, length 250 mm, and the chemical composition is Ni:
6.0 wt%, Si: 1.2 wt%, Zn: 1.5 wt
%, P: 0.03 wt%, weight ratio of Ni / Si: 5.0
Of the copper alloy ingot (sample C). (Comparative Example 2) As in Example 1, the diameter was 3
0 mm, length 250 mm, and the chemical composition is Ni:
2.0 wt%, Si: 0.5 wt%, Zn: 1.5 wt
%, P: 0.03 wt%, weight ratio of Ni / Si: 4.0
Is cast (sample D). (Comparative example 3)
0 mm, length 250 mm, and the chemical composition is Ni:
3.0 wt%, Si: 0.5 wt%, Zn: 1.5 wt
%, P: 0.03 wt%, weight ratio of Ni / Si: 6.0
Of the copper alloy ingot (sample E). Example 1,
Table 1 shows the chemical compositions of the copper alloy ingots of Comparative Example 2 and Comparative Examples 1 to 3. [Table 1] Next, using the copper alloy ingots of Samples A to E, a copper alloy material for electronic equipment is manufactured. Example 3 The copper alloy ingot of Example 1 was heated to 850 ° C., and the copper alloy ingot was extruded to form a plate having a width of 20 mm and a thickness of 8 mm. This plate-shaped copper alloy material is cold-rolled to a thickness of 0.1 mm.
It is formed into a 7 mm thin plate copper alloy material. Next, after heating the sheet-shaped copper alloy material to 800 ° C., the sheet-shaped copper alloy material is rapidly cooled by being put into water, and the sheet-shaped copper alloy material is subjected to a solution treatment. Processing rate 7 for sheet-like copper alloy material after solution heat treatment
The first cold rolling of 0% is performed to form a thickness of 0.21 mm. Thereafter, the sheet-shaped copper alloy material was heated at 460 ° C. ×
A 1 hour primary aging process is performed. This sheet-like copper alloy material is subjected to a second cold rolling process at a processing rate of about 29% to a thickness of 0.1%.
Formed to 15 mm. Thereafter, the sheet-like copper alloy material was heated at 400 ° C. ×
A 1 hour secondary aging treatment is performed to produce a copper alloy material for electronic devices (Sample No. 1). Example 4 Using the copper alloy ingot of Example 1, the same procedure as in Example 3 was performed except that the first aging treatment was 440 ° C. × 1 hr and the second aging treatment was 420 ° C. × 1 hr. A copper alloy material for electronic equipment (sample No. 2) is manufactured. Example 5 The same procedure as in Example 3 was performed except that the first aging treatment was performed at 400 ° C. × 1 hr and the second aging treatment was performed at 450 ° C. × 1 hr using the copper alloy ingot of Example 1. A copper alloy material for electronic equipment (sample No. 3) is manufactured. Comparative Example 4 A copper alloy material for electronic equipment (sample No. 4) was produced in the same manner as in Example 3 except that the solution treatment temperature was 830 ° C. using the copper alloy ingot of Example 1. I do. Comparative Example 5 A copper alloy material for electronic equipment (sample No. 5) was prepared in the same manner as in Example 3 except that the solution heat treatment temperature was 740 ° C. using the copper alloy ingot of Example 1. I do. (Comparative Example 6) A copper alloy material for electronic equipment (sample No. 3) was prepared in the same manner as in Example 3 except that the working rate of the first cold working was changed to 50% using the copper alloy ingot of Example 1. .
6) is prepared. Comparative Example 7 Using the copper alloy ingot of Example 1, the same procedure as in Example 3 was performed except that the first aging treatment was 480 ° C. × 1 hr, and the second aging treatment was 380 ° C. × 1 hr. A copper alloy material for electronic equipment (Sample No. 7) is manufactured. Comparative Example 8 Using the copper alloy ingot of Example 1, the same procedure as in Example 3 was performed except that the first aging treatment was 360 ° C. × 1 hr and the second aging treatment was 460 ° C. × 1 hr. A copper alloy material for electronic equipment (sample No. 8) is manufactured. (Comparative Example 9) A copper alloy ingot for electronic equipment (sample No. 9) was produced in the same manner as in Example 3 except that the copper alloy ingot of Example 1 was used and the working ratio of the second cold working was set to 60%. .
9) is prepared. Comparative Example 10 A copper alloy material for electronic equipment (sample N) was prepared in the same manner as in Example 3 except that the copper alloy ingot of Example 1 was used and the secondary aging treatment was performed at 380 ° C. × 1 hr.
o. 10) is manufactured. (Comparative Example 11) A copper alloy material for electronic equipment (sample N) was prepared in the same manner as in Example 3 except that the copper alloy ingot of Example 1 was used and the secondary aging treatment was performed at 520 ° C. × 1 hr.
o. 11) is prepared. Example 6 Using the copper alloy ingot of Example 2, a copper alloy material for electronic equipment (Sample No. 12) was produced in the same manner as in Example 3. Comparative Example 11 Using the copper alloy ingot of Comparative Example 1, a copper alloy material for electronic equipment (sample No. 13) was produced in the same manner as in Example 3. Comparative Example 12 Using the copper alloy ingot of Comparative Example 2, a copper alloy material for electronic equipment (Sample No. 14) was produced in the same manner as in Example 3. Comparative Example 13 Using the copper alloy ingot of Comparative Example 3, a copper alloy material for electronic equipment (Sample No. 14) was produced in the same manner as in Example 3. Table 2 shows the manufacturing conditions of the copper alloy materials for electronic devices of Examples 3 to 6 and Comparative Examples 4 to 14. [Table 2] Next, the sample No. For 1 to 14, tensile strength (MPa), conductivity (% IACS), crystal grain size (μ
m) was measured. Table 3 shows the measurement results. [Table 3] As shown in Table 3, material No. Since 1 to 3 and 12 are manufactured based on the method for manufacturing a lead frame material of the present invention, a tensile strength of 700 MPa or more,
Conductivity of 40% IACS or more and fine crystal grains were obtained. On the other hand, the sample No. Samples 4 and 5 have a solution treatment temperature (830 ° C., 740 ° C.) within a specified range (750 ° C.).
-810 ° C), the solution temperature was too high. In Sample No. 4, the crystal grains were coarse (200 μm), and conversely, the sample N in which the solution treatment temperature was too low
o. 5, the tensile strength was 700 MPa or less (628
MPa) and the electrical conductivity is 40% IACS or less (38.0% IACS). Sample No. In No. 6, since the working ratio (50%) of the first cold working is out of the specified range (60% or more), the crystal grains are coarse (120 μm). Sample No. 7 and 8, the primary aging treatment temperature (480 ° C., 360 ° C.) is within a specified range (370 to 470).
° C), the temperature of the first aging treatment is too high. 7, the tensile strength was 700 MPa or less (63
6 MPa) and coarse crystal grains (120 μm)
On the contrary, the sample No. 1 in which the first aging treatment temperature was too low. 8, the tensile strength was 700 MPa or less (6
10 MPa), and the conductivity is 40% IACS or less (39.6
% IACS) and the crystal grains are coarse (12 IACS).
0 μm). Sample No. No. 9 has a tensile strength of 700 MPa or less (630 MPa) because the working ratio (60%) of the second cold working is out of the specified range (50% or less). Sample No. 10 and 11, the secondary aging temperature (380 ° C., 520 ° C.) is within a specified range (400 to 50 ° C.).
0 ° C.), the sample temperature is too low for the second aging treatment. In Sample No. 10, the conductivity was 40% IACS or less (39.2% IACS), and conversely, Sample No. 10 in which the secondary aging temperature was too high. In No. 11, the tensile strength is 700 MPa or less (580 MPa) and the crystal grains are coarse (200 μm). Sample No. In the chemical composition of the copper alloy material used in No. 13, the Ni / Si weight ratio (5.0) is within the specified range (4.5 to 5.5), but the contents of Ni and Si (6 respectively) 0.0 wt% and 1.2 wt%) are within specified ranges (1.0 to 5.0 wt% and 0.2 to 0.2 wt%, respectively).
1.0 wt%), the conductivity is 40% IACS.
Below (36.4% IACS). Sample No. In the chemical composition of the copper alloy used in No. 14, the contents of Ni and Si (each of 2.
0 wt% and 0.5 wt%) are within specified ranges (1.
0-5.0 wt%, 0.2-1.0 wt%), but the weight ratio of Ni / Si (4.0) is within the specified range (4.
5 to 5.5), the tensile strength is 700 MPa or less (656 MPa). Sample No. In the chemical composition of the copper alloy material used in No. 15, the contents of Ni and Si (3.
0 wt% and 0.5 wt%) are within specified ranges (1.
0-5.0 wt%, 0.2-1.0 wt%), but the Ni / Si weight ratio (6.0) is within the specified range (4.
5 to 5.5), the tensile strength is 700 MPa or less (680 MPa) and the conductivity is 40 MPa.
% IACS or less (38.8% IACS). [0077] According to the above summary the present invention, the solution treatment temperature of the copper alloy material, the working ratio of the nuclear cold working, and by defining the processing temperature of each aging treatment, obtained Lee
The frame material is excellent in lead formability by etching, and exhibits an excellent effect that crystal grains and precipitate size in the matrix are fine.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 661 C22F 1/00 661A 682 682 683 683 685 685 686 686Z 691 691B 691C 694 694A (56)参考文献 特開 昭61−250154(JP,A) 特開 平6−17209(JP,A) 特開 平5−171378(JP,A) 特開 平6−41660(JP,A) 特開 平8−296012(JP,A) 特開 平2−205645(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22F 1/08 C22C 9/00 - 9/10 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 7 identifications FI C22F 1/00 661 C22F 1/00 661A 682 682 683 683 685 685 686 686Z 691 691B 691C 694 694A (56) references JP Akira 61 -250154 (JP, A) JP-A-6-17209 (JP, A) JP-A-5-171378 (JP, A) JP-A-6-41660 (JP, A) JP-A-8-296012 (JP, A) JP-A-2-205645 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22F 1/08 C22C 9/00-9/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】少なくともNiを1.0〜5.0wt%、
Siを0.2〜1.0wt%、Znを1.0〜5.0w
t%、Pを0.003〜0.3wt%を含有すると共
に、Ni/Siの重量比が4.5〜5.5である銅合金
に、溶体化処理と時効処理を施してなるリードフレーム
材の製造方法において、上記銅合金に750〜810℃
の温度範囲で上記溶体化処理を施した後、その銅合金に
加工率60%以上の第1次冷間加工を施し、その後、そ
の銅合金に370〜470℃×0.5〜3hrの第1次
時効処理を施した後、その銅合金に再び加工率50%以
下の第2次冷間加工を施し、その後、その銅合金に40
0〜500℃×0.5〜3hrの第2次時効処理を施す
ことを特徴とするリードフレーム材の製造方法。
(57) [Claims 1] At least 1.0 to 5.0 wt% of Ni,
0.2 to 1.0 wt% of Si and 1.0 to 5.0 watts of Zn
t and P are contained at 0.003-0.3 wt%.
In a method for producing a lead frame material obtained by subjecting a copper alloy having a weight ratio of Ni / Si of 4.5 to 5.5 to a solution treatment and an aging treatment, the copper alloy is subjected to 750 to 810 ° C.
After performing the above solution treatment in the temperature range described above, the copper alloy is subjected to a first cold working at a working ratio of 60% or more, and then the copper alloy is subjected to a 370-470 ° C. × 0.5-3 hr. After the first aging treatment, the copper alloy is again subjected to a second cold working at a working ratio of 50% or less, and then the copper alloy is subjected to 40% or less cold working.
A method for manufacturing a lead frame material, comprising performing a second aging treatment at 0 to 500C for 0.5 to 3 hours.
JP19149997A 1997-07-16 1997-07-16 Lead frame material manufacturing method Expired - Lifetime JP3465541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19149997A JP3465541B2 (en) 1997-07-16 1997-07-16 Lead frame material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19149997A JP3465541B2 (en) 1997-07-16 1997-07-16 Lead frame material manufacturing method

Publications (2)

Publication Number Publication Date
JPH1136055A JPH1136055A (en) 1999-02-09
JP3465541B2 true JP3465541B2 (en) 2003-11-10

Family

ID=16275676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19149997A Expired - Lifetime JP3465541B2 (en) 1997-07-16 1997-07-16 Lead frame material manufacturing method

Country Status (1)

Country Link
JP (1) JP3465541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361255B2 (en) 2005-09-02 2013-01-29 Hitachi Cable, Ltd. Copper alloy material and method of making same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP2011021225A (en) * 2009-07-15 2011-02-03 Hitachi Cable Ltd Copper alloy material for terminal/connector and method for producing the same
JP5045784B2 (en) 2010-05-14 2012-10-10 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
WO2011142450A1 (en) 2010-05-14 2011-11-17 三菱マテリアル株式会社 Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP5903832B2 (en) 2011-10-28 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
JP5903838B2 (en) 2011-11-07 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5903842B2 (en) 2011-11-14 2016-04-13 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, and method for producing copper alloy plastic working material
JP6421478B2 (en) * 2014-07-10 2018-11-14 大日本印刷株式会社 Lead frame for semiconductor device and resin-encapsulated semiconductor device
CN107502781A (en) * 2017-08-15 2017-12-22 徐高杰 A kind of rotor of steam turbo generator slot wedge material and its processing technology
CN111440964B (en) * 2020-06-01 2021-07-27 中南大学 High-strength high-conductivity Cu-Fe alloy short-process preparation method
CN114395705A (en) * 2021-12-27 2022-04-26 中铝洛阳铜加工有限公司 High-temperature-resistant softened nickel-zirconium bronze rod material and processing technology thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361255B2 (en) 2005-09-02 2013-01-29 Hitachi Cable, Ltd. Copper alloy material and method of making same

Also Published As

Publication number Publication date
JPH1136055A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
EP2371976B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4494258B2 (en) Copper alloy and manufacturing method thereof
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2008075172A (en) Cu-Ni-Si-BASED ALLOY
JP3465541B2 (en) Lead frame material manufacturing method
JPH0118977B2 (en)
JP2002241873A (en) High strength and highly electrically conductive copper alloy and method for producing copper alloy material
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP3376840B2 (en) Manufacturing method of copper alloy material
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP3900733B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP4175920B2 (en) High strength copper alloy
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP4750601B2 (en) Copper alloy excellent in hot workability and manufacturing method thereof
JPH1136056A (en) Production of copper alloy material for electronic equipment
JPH10152736A (en) Copper alloy material and its production
JP2010236029A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

EXPY Cancellation because of completion of term