JP3465506B2 - Ultrasound imaging device - Google Patents

Ultrasound imaging device

Info

Publication number
JP3465506B2
JP3465506B2 JP31591196A JP31591196A JP3465506B2 JP 3465506 B2 JP3465506 B2 JP 3465506B2 JP 31591196 A JP31591196 A JP 31591196A JP 31591196 A JP31591196 A JP 31591196A JP 3465506 B2 JP3465506 B2 JP 3465506B2
Authority
JP
Japan
Prior art keywords
image
output
reception
displacement
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31591196A
Other languages
Japanese (ja)
Other versions
JPH10160826A (en
Inventor
裕 鱒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31591196A priority Critical patent/JP3465506B2/en
Publication of JPH10160826A publication Critical patent/JPH10160826A/en
Application granted granted Critical
Publication of JP3465506B2 publication Critical patent/JP3465506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ソナー等の、音波
伝搬を利用した水中映像化技術に係り、特に、送受波器
の運動による映像の動揺を修正する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater imaging technique using sound wave propagation such as sonar, and more particularly to a technique for correcting image fluctuation caused by movement of a transducer.

【0002】[0002]

【従来の技術】従来のソナー等の動揺修正技術では、水
中の探査領域に対して送受波器の姿勢が、不変となるよ
う機械的に姿勢制御する方法がとられていた。しかし、
機械式は可動部の耐久性の問題や複数の姿勢位置間での
迅速な切り替えに追従しにくいため、必ずしも有利な構
成ではなかった。この問題から、機械的な姿勢制御を行
わず、可動部のない電子的制御に置き換える技術が必要
になった。
2. Description of the Related Art In the conventional motion correction techniques such as sonar, a method of mechanically controlling the attitude of the transducer to keep the attitude unchanged with respect to the underwater exploration area has been adopted. But,
The mechanical type is not necessarily an advantageous configuration because it is difficult to follow the problem of durability of the movable part and quick switching between a plurality of posture positions. Due to this problem, a technique for replacing the mechanical attitude control with electronic control without a moving part is required.

【0003】電子的制御方式は、送受波器の素子を球や
円筒などの立体表面に2次元配置しておき、運動による
変化を全て送受信信号の信号処理で補正するものであ
る。送受波器は、設置されている船舶や航走体と共に送
受波器全体が空間内で動揺するので、最初の水平静止位
置等からの変位を常に監視することで補正すべき諸量を
求める。送受波器が傾いていても、常に同じ方向に対し
て波動を送受できるよう、送受波器の各素子ごとの送受
信信号に与える遅延時間等の整相加算条件を変更するこ
とで補正が行える。
In the electronic control method, the elements of the wave transmitter / receiver are two-dimensionally arranged on a three-dimensional surface such as a sphere or a cylinder, and all changes due to movement are corrected by signal processing of transmission / reception signals. Since the entire transducer moves in the space together with the installed vessels and moving bodies, the displacement from the initial horizontal stationary position is constantly monitored to find various amounts to be corrected. Even if the wave transmitter / receiver is tilted, correction can be performed by changing the phasing addition conditions such as the delay time given to the transmission / reception signal for each element of the wave transmitter / receiver so that waves can always be transmitted / received in the same direction.

【0004】送受波器が変位(動揺)しても常に同じ指
向性を保つには、幾何学的に常に同じ送波ビームまたは
受波ビームを形成するのに用いる送受波器上の領域(以
下、これを「送受信面」と呼称する)を確保するのが理
想的である。例えば、送受波器の素子を球面上に配列
し、送受信面の幾何学的形状を円形輪郭を持つよう切り
出された球殻の一部とすれば、回転対称で常に同じ指向
性分布を持たせることができる。
In order to maintain the same directivity even when the transducer is displaced (swing), the area on the transducer which is used to form the same transmitting or receiving beam geometrically (hereinafter Ideally, this is referred to as the "transmission / reception surface". For example, if the elements of the transducer are arranged on a spherical surface and the geometrical shape of the transmitting and receiving surface is part of a spherical shell cut out to have a circular contour, it will have the same directivity distribution with rotational symmetry. be able to.

【0005】しかし、艤装上の制限から通常は球面全面
に素子を配列できない場合が多い。例えば、送受波器と
船底の連結部のために確保すべき部分や、音響的に見て
船体の影に隠される部分が生じる。このため、船の動揺
のある変位位置で確保されていた、最も広い送受信面や
幾何学的形状が、別の変位位置では素子が配列されてい
ない無効な部分のために確保できなくなる。これを避け
るために、送受信面の大きさを狭めると、送受利得が低
下する。逆に、送受波器の各素子を配列できる領域が限
られており、かつ送受信の感度を確保するために、可能
な限り広い送受信面を必要とする場合は、常に同じ指向
性を保つ送受信面が確保できなくなる。
However, in many cases, it is not possible to arrange the elements on the entire surface of the spherical surface due to the limitation in mounting. For example, a portion that should be secured for the connecting portion between the transducer and the ship bottom and a portion that is acoustically hidden by the shadow of the hull occur. For this reason, the widest transmitting / receiving surface and geometrical shape, which were ensured at the displacement position where the ship is swaying, cannot be ensured at another displacement position due to an invalid portion in which the elements are not arranged. In order to avoid this, if the size of the transmission / reception surface is narrowed, the transmission / reception gain is reduced. On the contrary, when the area where each element of the transmitter / receiver can be arranged is limited and the widest possible transmission / reception surface is required to secure the sensitivity of transmission / reception, the transmission / reception surface that always maintains the same directivity Cannot be secured.

【0006】例として、水平静止時、送受信面の形状
が、垂直方向よりも水平方向に幅が広い長方形であれ
ば、この送受信面の指向性の主極(音響ビーム)は、水
平方向に鋭く、垂直方向に広がった、縦に偏平な指向性
を有する。送受波器全体が動揺により傾けば、立体的な
指向性分布(ビームパターン)も空間内で傾くので、水
平方向に鋭かったビームは広がり、逆に垂直方向は狭ま
った状態となる。ソナー等の画像は、水平面を探索画像
の面とするのが通常であるから、船が水平静止時に比べ
て、水平方向のビームの幅が、船の揺れで増減したよう
になる。
As an example, when the transmitting / receiving surface is a rectangle whose width is wider in the horizontal direction than in the vertical direction when horizontally stationary, the directional main pole (acoustic beam) of the transmitting / receiving surface is sharp in the horizontal direction. , With a vertically flat, vertically flat directivity. If the entire transducer is tilted due to shaking, the three-dimensional directivity distribution (beam pattern) is also tilted in space, so that the beam that is sharp in the horizontal direction expands and conversely becomes narrow in the vertical direction. In the case of images such as sonar, the horizontal plane is usually used as the plane of the search image, so the width of the horizontal beam appears to have increased or decreased due to the shaking of the ship as compared to when the ship is stationary horizontally.

【0007】この増減が生じる状況で、複数回の送受信
で得られる探索領域の画像を比較すると、船が傾いたあ
る特定の状態で送受信して得た画像で探知されていた反
射物体の像が、他の傾き状態で送受信して得た画像で
は、探知されなかったり、画像内の別の位置に現われる
ことになる。
When the images of the search area obtained by transmitting and receiving a plurality of times are compared in the situation where this increase and decrease occur, the image of the reflective object detected by the image obtained by transmitting and receiving in a certain tilted state of the ship In an image obtained by transmitting and receiving in another tilted state, it will not be detected or will appear at another position in the image.

【0008】[0008]

【発明が解決しようとする課題】前記従来技術では、電
子的動揺修正を行う場合に、複数の送受信で画像を比較
すると反射物体の像の位置が、変動,変形したり、生成
消滅したりする点に問題があった。また、この原因とな
る指向性分布の変化を抑えるために、幾何学的に常に同
じ送受信面を形成する方法が知られていたが、送受波器
の素子の選択範囲を変更したり、送受信信号に重み付け
を行って実効等価な送受信面を形成するような方法で
は、しばしば送受利得の低下を招き、探知能力を低下さ
せる点に問題があった。
In the above-mentioned prior art, the position of the image of the reflecting object changes, deforms, or disappears when the images are compared by a plurality of transmissions and receptions when the electronic motion correction is performed. There was a problem with the point. In addition, in order to suppress the change in the directivity distribution that causes this, there has been known a method of geometrically forming the same transmitting and receiving surfaces. However, the method of forming an effective equivalent transmission / reception surface by weighting often causes a decrease in the transmission / reception gain and a problem in that the detection ability is deteriorated.

【0009】このような従来技術の問題点に鑑み、本発
明は送受利得の低下を招くことなく、指向性分布の変化
を許したまま、複数の送受信画像間の変動の問題を解決
するものである。
In view of the above problems of the prior art, the present invention solves the problem of variation between a plurality of transmitted / received images while permitting a change in the directivity distribution without lowering the transmission / reception gain. is there.

【0010】[0010]

【課題を解決するための手段】本発明の第一の手段は、
送受波器と、送受波器の変位を検出する変位検出手段
と、送受波器の間の波動の伝搬時間差を補償する整相加
算手段と、整相加算手段の出力を映像信号に変換する画
像信号処理手段と、画像を表示する表示手段とを備え、
変位検出手段の出力に従い、整相加算手段の出力に所定
の演算処理を加える。
The first means of the present invention is as follows:
Transducer, displacement detection means for detecting displacement of the transducer, phasing addition means for compensating for wave propagation time difference between the transducers, image for converting output of phasing addition means into video signal A signal processing means and a display means for displaying an image,
According to the output of the displacement detection means, a predetermined arithmetic processing is added to the output of the phasing addition means.

【0011】また、本発明の第二の手段では、上記第一
の手段において、前記画像信号処理手段が、前記変位検
出手段の出力から前記画像内の該当位置と前記該当位置
に応じた重み付け係数を求め、前記整相加算手段の出力
に前記重み付け係数を乗じる処理を行う手段である。
Further, in the second means of the present invention, in the above-mentioned first means, the image signal processing means uses the output of the displacement detecting means and a corresponding position in the image and a weighting coefficient corresponding to the corresponding position. Is calculated and the output of the phasing addition means is multiplied by the weighting coefficient.

【0012】また、本発明の第三の手段では、本発明の
第二の手段において、前記画像信号処理手段が、前記表
示手段に出力する映像信号を探査する空間に対応させて
保持する記憶手段と、前記変位検出手段の出力から前記
記憶手段内の格納領域の位置を出力する格納位置発生手
段と、前記変位検出手段の出力から前記格納領域内での
位置に応じた前記重み付け係数を出力する係数発生手段
と、前記整相加算手段の出力と前記重み付け係数との積
を、前記格納領域の格納位置に累積する手段とを含む。
According to the third means of the present invention, in the second means of the present invention, the image signal processing means stores the video signal output to the display means in association with the space to be searched for. A storage position generation means for outputting the position of the storage area in the storage means from the output of the displacement detection means, and the weighting coefficient corresponding to the position in the storage area from the output of the displacement detection means. And a means for accumulating the product of the output of the phasing addition means and the weighting coefficient at the storage position of the storage area.

【0013】また、本発明の第四の手段では、本発明の
第三の手段において、前記記憶手段内の格納領域が、複
数回の送受信にわたり前記累積値を独立に格納し、前記
画像内の該当位置が同じとなる各送受信ごとの格納値
を、複数回の送受信にわたり積算した結果を表示する。
Further, in the fourth means of the present invention, in the third means of the present invention, the storage area in the storage means stores the cumulative value independently over a plurality of transmissions and receptions, and The stored value for each transmission / reception with the same corresponding position is accumulated over a plurality of transmissions / receptions, and the result is displayed.

【0014】また、本発明の第五の手段では、本発明の
第三の手段において、前記記憶手段内の格納領域は、複
数回の送受信にわたり前記累積値を独立に格納し、前記
画像内の該当位置が同じとなる各送受信の格納値に対
し、各送受信に対して定める係数との積を求め、前記積
を積算した結果を表示する。
Further, in the fifth means of the present invention, in the third means of the present invention, the storage area in the storage means stores the accumulated value independently over a plurality of transmissions and receptions, and the storage area in the image is stored. The product of the stored value of each transmission / reception in which the corresponding position is the same is multiplied by the coefficient determined for each transmission / reception, and the result of integrating the products is displayed.

【0015】[0015]

【発明の実施の形態】図1は本発明の超音波映像装置の
説明図である。海中などの探査空間内を伝搬する波動1
は送受波器群100により検出される。波動1は探査空
間内の音源(例えば船舶や航走体)が発生する音響波
や、送受波器群100が発生した波動の後方散乱波(反
射波,エコー)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of an ultrasonic imaging apparatus of the present invention. Waves 1 propagating in exploration space such as undersea
Is detected by the transceiver group 100. The wave 1 is an acoustic wave generated by a sound source (for example, a ship or a moving body) in the exploration space or a backscattered wave (reflected wave, echo) of the wave generated by the transducer group 100.

【0016】送受波器群100は、複数の送受波器10
1,102〜10nで構成されており、波動エネルギを
電気信号である受信信号151,152〜15nに変換
する。受信信号151,152〜15nは整相加算手段
11の入力となる。整相加算手段11は、探査空間内の
点や方向に対して、送受波器間の波動の伝搬時間差を補
償すべく、受信信号151,152〜15nを遅延後に
加算する手段である。
The wave transmitter / receiver group 100 includes a plurality of wave transmitters / receivers 10.
1, 102 to 10n, the wave energy is converted into reception signals 151, 152 to 15n which are electric signals. The received signals 151, 152 to 15n are input to the phasing addition means 11. The phasing addition unit 11 is a unit that adds the received signals 151, 152 to 15n after delaying in order to compensate for the wave propagation time difference between the transmitter and the receiver with respect to a point or direction in the search space.

【0017】整相加算は従来から知られた種々の方式が
考えられ、単純に時間を送らせてから総和をとる手段以
外にも、高速フーリエ変換法に代表される、変換された
空間上での操作で実効的,等価的に遅延や加算を行うも
のであってもよい。整相加算手段11の整相条件(遅延
時間差など)は変位検出手段14の出力によって変更さ
れる。船体に固定された送受波器が動揺によってその位
置を変化させると、探査空間内の映像化しようとしてい
る点や方向との距離や方位の関係が変化する。
Various methods known in the prior art can be considered for phasing addition, and in addition to the means of simply sending the time and then taking the sum, in the transformed space represented by the fast Fourier transform method. The operation may effectively and equivalently delay or add. The phasing conditions (delay time difference, etc.) of the phasing addition means 11 are changed by the output of the displacement detection means 14. When the transducer fixed to the hull changes its position by shaking, the relationship of the distance and direction to the point or direction to be imaged in the exploration space changes.

【0018】変位検出手段14は、距離や方位の変位を
検知するために、衛星電波,レーザを用いた測距方法や
ジャイレータ,海底や海水に対するドプラ測定による速
度検出等を用いて送受波器の空間的位置を決定するため
の計測を行う。これらの計測精度は、船体の傾斜角度に
して0.001 度から2度程度までの範囲で必要に応じ
て備える。整相系の作り出すビーム方位分解能(角度分
解能)に合わせてその十分の一から一千分の一程度が適
切である。また距離の計測精度では、受信する波の海中
での波長にして十分の一から一万分の一程度が望まし
い。距離の計測精度は海中の音速から計算した時間精度
として置き換え、整相加算手段11の実現する時間精度
以上に高い精度としなければならない。また、変位の測
定が、速度や加速度の測定であれば、初期値の設定問題
や計測誤差の蓄積の問題があるため、計測は所定の時間
長にわたって平均化された処理とする必要がある。
The displacement detecting means 14 uses a satellite radio wave, a distance measuring method using a laser, a gyrator, a velocity detection by Doppler measurement for the seabed or seawater, etc. to detect displacement of the distance and azimuth. Make measurements to determine the spatial position. These measurement accuracies shall be provided as necessary within the range of 0.001 degrees to 2 degrees in terms of the inclination angle of the hull. The one tenth to one thousandth is appropriate in accordance with the beam azimuth resolution (angular resolution) produced by the phasing system. In terms of distance measurement accuracy, it is desirable that the wavelength of the received wave in the sea is about 1 / 10,000 to 1 / 10,000. The distance measurement accuracy must be replaced with the time accuracy calculated from the speed of sound in the sea, and must be higher than the time accuracy realized by the phasing addition means 11. If the displacement measurement is a velocity or acceleration measurement, there is a problem of setting an initial value and a problem of accumulation of measurement error. Therefore, the measurement needs to be an averaged process over a predetermined time length.

【0019】変位検出手段14の出力は画像信号処理手
段12に対しても入力される。画像信号処理手段12は
整相加算手段11の出力に基づいて映像信号120を出
力する。映像信号120は、CRT等で構成される表示
手段13のための入力信号で、輝度−色相信号やRGB
信号を形成するためのデータ信号であり、表示手段13
に内蔵されるVRAM(Video Random Access memory)へ
格納するデータ信号に代表される。
The output of the displacement detecting means 14 is also input to the image signal processing means 12. The image signal processing means 12 outputs the video signal 120 based on the output of the phasing addition means 11. The video signal 120 is an input signal for the display means 13 including a CRT or the like, and is a luminance-hue signal or RGB.
It is a data signal for forming a signal, and is a display means 13.
This is represented by a data signal stored in a VRAM (Video Random Access memory) built in the.

【0020】整相加算手段11の出力信号は、整相加算
信号の搬送波の位相情報を持つ信号や、包絡線検波出
力,チャープ送信信号などを用いた場合の相関処理出力
であってもよい。典型的な場合では、送受波器群100
でパルス状の波動を送波し、結果得られる反射パルスを
再び送受波器群100で受信し、整相加算と直交検波出
力を行うものである。直交検波出力は受信信号の搬送波
の位相情報を残すため、同相,直交(実部,虚部)の2
成分をもった出力である。本実施形態の構成上の特徴
は、整相加算手段11の出力信号に対し、変位検出手段
14の出力情報に従って、所定の演算処理を加え、送受
波器の空間的変位に応じた画像信号処理を行うことにあ
る。
The output signal of the phasing addition means 11 may be a signal having the phase information of the carrier of the phasing addition signal, an envelope detection output, a correlation processing output when a chirp transmission signal or the like is used. In a typical case, the transmitter / receiver group 100
The pulse wave is transmitted by, and the resulting reflected pulse is received again by the transmitter / receiver group 100, and phasing addition and quadrature detection output are performed. Since the quadrature detection output retains the phase information of the carrier wave of the received signal, it can be divided into in-phase and quadrature (real part, imaginary part)
It is an output with components. The characteristic feature of the present embodiment is that the output signal of the phasing addition means 11 is subjected to predetermined arithmetic processing according to the output information of the displacement detection means 14 to perform image signal processing according to the spatial displacement of the transducer. To do.

【0021】本実施例の送受波器群100の配置例を図
2に示す。送受波器群100は矩形の送受波面を持つ圧
電振動子で構成された送受波器101,102などで構
成されている。送受波器は所定の球面200に送受波を
行う面が沿うように配列されており、全体として球表面
200の一部を帯状に覆うように配列されている。送受
波器群100の全体は図示しない筐体と支持部材で固定
されて艤装される。なお、送受波器群の配列方法は、こ
の図2の配置方法に限られるものではない。
FIG. 2 shows an arrangement example of the wave transmitter / receiver group 100 of this embodiment. The wave transmitter / receiver group 100 is composed of wave transmitters / receivers 101, 102, etc., each of which is composed of a piezoelectric vibrator having a rectangular wave transmission / reception surface. The wave transmitters / receivers are arranged such that a surface for transmitting / receiving waves is along a predetermined spherical surface 200, and are arranged so as to cover a part of the spherical surface 200 in a band shape as a whole. The entire wave transmitter / receiver group 100 is fixed and mounted by a casing (not shown) and a supporting member. The method of arranging the transmitter / receiver group is not limited to the arrangement method of FIG.

【0022】同一の整相加算処理単位(特定の方位に音
響ビームを形成する処理単位)に供される送受波器の選
択範囲の一例を枠20で示す。また、探査により映像化
する方式はトモグラフィーであり、空間内の映像化すべ
き面は平面201に含まれるとする。平面201は例え
ば海上の水平面に平行となる面である。送受波器群10
0が船体の変位と共に傾き、送受波器群100から相対
的に見て平面201が平面211の位置に変化したと
き、ほぼ同等の空間分解能(指向性分布)を保つために
は、例えば枠21内部のような範囲に送受波器を設けな
ければならない。しかし、艤装上の問題から枠21内部
の全てを送受波器で埋めることはできず、実際に有効な
送受信面として実現できるのはハッチング部分21Hで
示した多角形領域だけとなる。
A frame 20 shows an example of a selection range of the transducers provided for the same phasing addition processing unit (processing unit for forming an acoustic beam in a specific direction). Further, it is assumed that the method of imaging by exploration is tomography, and the surface in the space to be imaged is included in the plane 201. The plane 201 is, for example, a plane parallel to the horizontal plane on the sea. Transducer group 10
In order to maintain substantially the same spatial resolution (directivity distribution) when the plane 0 changes to the position of the plane 211 relative to the transducer group 100 when 0 tilts with the displacement of the hull, for example, the frame 21 The transducer must be installed in the area such as the inside. However, because of the problem of fitting, the inside of the frame 21 cannot be completely filled with the transmitter / receiver, and only the polygonal area shown by the hatched portion 21H can be realized as an actually effective transmitting / receiving surface.

【0023】このような有効面積や形状の変化の影響を
なくすためには、枠20で示されるような選択範囲を枠
22で示されるような範囲とし、送受波器群100が傾
いても枠23で示されるように送受信の有効範囲が欠損
しないようにする必要がある。
In order to eliminate the influence of such a change in the effective area and the shape, the selection range shown by the frame 20 is set to the range shown by the frame 22, and even if the transmitter / receiver group 100 is tilted. It is necessary to prevent the effective range of transmission and reception from being lost as shown by 23.

【0024】しかし、枠20の内部面積より枠22の内
部面積は必ず小さくなるために、送受利得が減少し、ま
た空間分解能(音響ビームの指向性幅)は悪化する。図
3にこの関係を説明する。良く知られているように、口
径を狭めたり、テーパ重みのついた形状では、音響ビー
ムの指向性幅は広がる。
However, since the internal area of the frame 22 is always smaller than the internal area of the frame 20, the transmission / reception gain is reduced and the spatial resolution (directivity width of the acoustic beam) is deteriorated. This relationship will be described with reference to FIG. As is well known, the directivity width of an acoustic beam is widened in a shape with a narrow aperture or a taper weight.

【0025】図2の201,211が、図3の水平軸h
を含む場合を考える。枠20で示される口径が送受波器
から見て所定の距離でビーム断面30を形成する。ビー
ム断面とは、例えば音軸sを中心とする指向性分布の主
極について、その先端から強度が−3dB低下する範囲
を囲うものとして定義することができる。
Reference numerals 201 and 211 in FIG. 2 denote horizontal axes h in FIG.
Consider the case including. The aperture shown by the frame 20 forms the beam cross section 30 at a predetermined distance when viewed from the transducer. The beam cross section can be defined, for example, as to enclose the range in which the intensity decreases by −3 dB from the tip of the main pole of the directivity distribution centered on the sound axis s.

【0026】水平軸hと直交し、図2の201,211
に垂直な軸を垂直軸vとすると、それぞれの軸方向での
ビームの幅Hw,Vwを求めることができる。有効な送
受信面として枠22の範囲を選択すれば、ビーム断面3
1が得られ、ビームの幅はHw′とVw′が得られる。
しかし、指向性の副極群を十分抑圧した状態では、Hw
<Hw′およびVw<Vw′となる場合が多く、ビーム
断面31の面積はビーム断面30の面積より大きくな
り、分解能が低下する場合が典型的である。このような
状況では、送受波器が水平時には高い分解能のビーム断
面30を用い、傾いた場合にはビーム断面31を用いる
ほうが有利となる。枠21,22を用いて常に定常的な
分解能にする映像化方法よりも、高い分解能を持ち得る
場合には、その分解能を有効に映像情報に供する方法で
画像化を実現する必要がある。
The axes 201 and 211 of FIG. 2 are orthogonal to the horizontal axis h.
Letting the axis perpendicular to V be the vertical axis v, the beam widths Hw and Vw in the respective axial directions can be obtained. If the range of the frame 22 is selected as an effective transmitting / receiving surface, the beam cross section 3
1 is obtained, and the widths of the beams are Hw 'and Vw'.
However, in the state where the directional sub-pole group is sufficiently suppressed, Hw
In many cases, <Hw ′ and Vw <Vw ′ are satisfied, and the area of the beam cross section 31 is larger than the area of the beam cross section 30, and the resolution is typically lowered. In such a situation, it is advantageous to use the beam cross section 30 having a high resolution when the transducer is horizontal and use the beam cross section 31 when the transducer is tilted. When it is possible to have a higher resolution than the imaging method that uses the frames 21 and 22 to always make the resolution constant, it is necessary to realize the imaging by a method that effectively uses the resolution for the video information.

【0027】また、さらに別の場合として、図4に示す
ように、口径の選択範囲は枠20のまま固定で、送受波
器群100から距離Dにある領域に対して複数回の送受
信や連続的な受信を行う間に、送受波器群100が傾い
た場合を考える。ここで、送受波器群100が傾いた場
合のビーム断面30Cのビーム幅Hw″とVw″は、ビ
ーム断面の軸h,vに対する投影を以て変化したと言う
に過ぎず、音軸sの回りに実現される分解能(例えば特
定距離での空間のサンプリング体積の小ささ)としては
同じである。傾く前後を比較すると、h−v面内の反射
源や音源である探知点40は水平時ビーム断面30の外
部にあり探知されず、傾斜時にビーム断面30Cに獲得
されるので探知される。両者の場合で得られる整相加算
出力を共に音軸sの位置の像とすると、傾いた状態では
虚探知したことになり問題が生じてしまう。
Further, as another case, as shown in FIG. 4, the selection range of the aperture is fixed as the frame 20, and the transmission / reception and continuous transmission / reception are performed a plurality of times with respect to the area at the distance D from the transducer group 100. Consider a case in which the wave transmitter / receiver group 100 is tilted during the periodic reception. Here, the beam widths Hw ″ and Vw ″ of the beam cross section 30C when the transducer group 100 is tilted are merely said to have changed by projection on the axes h and v of the beam cross section, and the beam widths around the sound axis s. The resolution that is realized (for example, the small sampling volume of the space at a specific distance) is the same. Comparing before and after tilting, the detection point 40, which is a reflection source or a sound source in the hv plane, is outside the beam cross section 30 when horizontal and is not detected, but is detected at the beam cross section 30C when tilted. If both the phasing addition outputs obtained in both cases are images of the position of the sound axis s, in the tilted state, false detection is performed and a problem occurs.

【0028】この問題は、ビームの垂直方向の広がりが
変化するために、水平方向の分解能の確度が変化したも
のとして把握すれば解決できる。撮像面が水平軸hを含
む面内にある場合、送受波器が水平な場合には、狭い幅
Hwの範囲で確度の高い情報を与え、傾斜している場合
は、広い幅Hw′にわたって、確度の低い曖昧な情報を
与えるとして扱えばよい。この「確度」,「曖昧さ」の
度合いと、広がりはビーム断面30,30Cの水平軸h
への投影積分から求めるのが好適である。送受波器群1
00が水平の時には、大きな積分値が狭い幅Hwで得ら
れ、傾いた時には、小さな積分値が広い幅Hw″で得ら
れる。また、h−v面内のビームの指向性分布を水平軸
hへ投影積分したものを用いてもよい。
This problem can be solved by grasping that the accuracy of the resolution in the horizontal direction is changed because the spread of the beam in the vertical direction is changed. When the imaging surface is in a plane including the horizontal axis h, when the transducer is horizontal, highly accurate information is given within a narrow width Hw, and when tilted, over a wide width Hw ′, It can be treated as giving ambiguous information with low accuracy. The degree of "accuracy" and "ambiguity" and the spread are the horizontal axes h of the beam cross sections 30 and 30C.
It is preferable to obtain it from the projection integral to. Transducer group 1
When 00 is horizontal, a large integrated value is obtained with a narrow width Hw, and when tilted, a small integrated value is obtained with a wide width Hw ″. In addition, the directivity distribution of the beam in the hv plane is represented by the horizontal axis h. You may use what carried out the projection integration to.

【0029】送受波器群100の変位は時間的に変化す
るので、ビーム断面も時間変動する。パルスの送受信に
よる映像化の場合、一回の送波に対する反射波の受信中
に、送受波器群100が変位するため、近距離と遠距離
では、ビームの指向性が変化する。
Since the displacement of the transducer group 100 changes with time, the beam cross section also changes with time. In the case of imaging by transmitting / receiving a pulse, the transducer group 100 is displaced during reception of a reflected wave for one transmission, so that the directivity of the beam changes at a short distance and a long distance.

【0030】まず、図5を用いて時間変動するビーム断
面の変化を考える。枠20で示される受信面は、送受波
器群100から距離Dの位置にあるh−v面内の反射信
号を受信した瞬間の受信面の位置を示す。枠50で示さ
れる受信面は、送受波器群100から距離D′の位置に
あるh′−v′面内の反射信号を受信した瞬間の受信面
の位置を示す。h−v面とh′−v′面は平行で、新た
な水平軸h′は先の水平軸hと同じ面内にある。枠50
で示される受信面は、送受波器群100が殆ど水平に近
かった場合に相当しており、ビーム断面51は広がりな
がら傾きの少ない状態にある。
First, the change of the beam cross section which changes with time will be considered with reference to FIG. The receiving surface indicated by the frame 20 indicates the position of the receiving surface at the moment when the reflected signal in the hv plane at the position of the distance D from the transducer group 100 is received. The receiving surface indicated by the frame 50 indicates the position of the receiving surface at the moment when the reflected signal in the h′-v ′ plane at the position of the distance D ′ from the transducer group 100 is received. The hv and h'-v 'planes are parallel and the new horizontal axis h'is in the same plane as the previous horizontal axis h. Frame 50
The receiving surface indicated by corresponds to the case where the wave transmitter / receiver group 100 is almost horizontal, and the beam cross section 51 is in a state where the beam cross section 51 spreads and has a small inclination.

【0031】送受波器群100が静止していても、距離
が増すに従って投影積分の分布幅が変化するので、上述
の投影積分の結果を距離変化毎,傾きの状態毎に保持す
るのは実際的でなく、距離により変わらない方位角度で
の分布に置き換えるのが望ましい。即ち、水平方向のビ
ーム幅Hw″を角度幅θh″に対応させ、Hw′′′を
角度幅θh′′′に対応させる。なお、図5ではθh″
>θh′′′であり、近距離にあるビーム断面30Cの
方が水平方向の角度幅が広がっている様子を示してい
る。
Even if the transmitter / receiver group 100 is stationary, the distribution width of the projection integral changes as the distance increases. Therefore, it is practical to hold the above-mentioned projection integral result for each distance change and each inclination state. It is desirable to replace the distribution with an azimuth angle that does not change depending on the distance. That is, the horizontal beam width Hw ″ corresponds to the angular width θh ″, and Hw ″ ″ corresponds to the angular width θh ″ ″. Note that in FIG. 5, θh ″
> Θh ″ ″, and the beam cross section 30C at a short distance has a wider angular width in the horizontal direction.

【0032】次に、複数回の送受信における画像の積算
を行う場合について、距離変化による積算時の画像内で
の重み付け分布の必要性を図5で説明する。一回目の送
受信の時に送受波器群100から見て、距離Dにあるh
軸と音軸sの交点が、送受波器群100の変位により、
二回目には距離D′にあるh′軸と音軸sの交点に移動
したとする。一回目と二回目の画像を積算してより確度
の高い映像を形成しようとする時、近距離で捕えた一回
目では、比較的小さな値を持つ前記投影積分値を重み係
数として画像内の角度幅θh″の広い部分に整相加算出
力を累積し、二回目は、重み係数値が大きく、角度幅θ
h′′′の狭い部分に整相加算出力を累積する。これら
の前記累積方法で、曖昧な(ビームが太い)時に捕えた
画像は薄く広く蓄積され、確度の高い(ビームが鋭い)
時に捕えた画像は濃く,狭く蓄積される。遠距離でぼや
けて捕えた像と、近距離で明瞭に捕えた像が整合性良く
重み付けされて加算されるため、積算画像の信頼性が向
上する。画像の積算により、海中雑音や不要な残響を効
率良く抑圧することができる。
Next, with reference to FIG. 5, the necessity of weighting distribution in the image at the time of integration due to a change in distance in the case of integrating images in a plurality of transmissions / receptions will be described. At the distance D when viewed from the transmitter / receiver group 100 during the first transmission / reception,
The intersection of the axis and the sound axis s is changed by the displacement of the transducer group 100.
The second time, it is assumed that the robot has moved to the intersection of the h'axis and the sound axis s at the distance D '. When trying to form a more accurate image by integrating the first and second images, the first time captured at a close distance, the projection integral value having a relatively small value is used as a weighting factor in the angle in the image. The phasing addition output is accumulated in a wide portion of the width θh ″, and the second time, the weighting factor value is large, and the angle width θ
The phasing addition output is accumulated in the narrow part of h ″ ′ ″. With these accumulation methods, the image captured when the image is ambiguous (thick beam) is accumulated thinly and widely, and the accuracy is high (beam sharp).
The captured images are sometimes dense and narrowly accumulated. Since the image captured blurry at a long distance and the image captured clearly at a short distance are weighted with good matching and added, the reliability of the integrated image is improved. By integrating the images, underwater noise and unnecessary reverberation can be efficiently suppressed.

【0033】上述の送受波器群100の変位による、画
像内重み付け分布の変化の様子を通常のパルス送受信の
場合を例に図6で示す。原点Oは送受波器群100の位
置に相当し、扇型の探査領域60を画像化する。探査領
域は、例えば海面に平行な面を想定することができ、線
分OPは実際の海上では500m〜20kmに相当す
る。画像を構成する場合に、一回の送受信で50〜10
00程度の複数の音響(走査,探査)ビームを形成して
画像を形成する。近距離より受信エコーが得られるの
で、画像は原点O付近の円弧から順に円弧64,円弧6
5の順に描かれる。線分Odは図5の距離Dに相当し、
線分Od′は図5の距離D′に相当する。
FIG. 6 shows how the weighted distribution in the image changes due to the displacement of the transducer group 100 described above, taking the case of normal pulse transmission / reception as an example. The origin O corresponds to the position of the transducer group 100, and images the fan-shaped search area 60. The exploration region can be assumed to be, for example, a plane parallel to the sea surface, and the line segment OP corresponds to 500 m to 20 km on the actual sea. When composing an image, 50 to 10 can be sent and received once.
An image is formed by forming a plurality of acoustic (scanning, exploration) beams of about 00. Since the received echo can be obtained from a short distance, the images are arc 64 and arc 6 in order from the arc near the origin O.
It is drawn in the order of 5. The line segment Od corresponds to the distance D in FIG.
The line segment Od 'corresponds to the distance D'in FIG.

【0034】円弧内の角度θcの位置にある方位の中心
線66は、図5の音軸sに相当するとして画像化方法を
説明する。円弧部分61は、図5のビーム断面30Cの
h軸への投影領域に該当する。同様に、円弧部分62は
図5のビーム断面51のh′軸への投影領域に該当す
る。図5のh−v面とh′−v′面は理解の便のために
平面としたが、厳密には座標系hvと座標系h′v′は
送受波器群100の位置を中心とした半径の異なる球殻
上にそれぞれ設けられる曲線座標系であり、ビーム断面
30C,51等は楕円様に切り出された球殻の一部とす
るのが望ましい。
The imaging method will be described assuming that the azimuth centerline 66 located at the angle θc in the arc corresponds to the sound axis s in FIG. The arc portion 61 corresponds to the projection area of the beam cross section 30C in FIG. 5 onto the h axis. Similarly, the circular arc portion 62 corresponds to the projection area of the beam cross section 51 of FIG. 5 onto the h ′ axis. The hv plane and the h′-v ′ plane in FIG. 5 are planes for the sake of understanding, but strictly speaking, the coordinate system hv and the coordinate system h′v ′ are centered on the position of the transducer group 100. It is a curvilinear coordinate system provided on spherical shells having different radii, and it is desirable that the beam cross sections 30C, 51, etc. be part of spherical shells cut out in an elliptical shape.

【0035】上述の投影積分も厳密には、音軸sとh軸
とh′軸を含む平面へ前記球殻の投影とすべきであり、
投影の形状は円弧上の曲線線分でなく、円弧に弦を張っ
た様な平面領域とすべきであるが、通常は、角度幅θ
h″やθh′′′は1/100度〜20度程度であるの
で、ビーム断面を平面や曲率の緩い円筒面の一部と見做
したり、面である投影領域を円弧上の曲線線分と見做し
ても実用上問題ない。
Strictly speaking, the above projection integral should also be the projection of the spherical shell on a plane including the sound axes s, h and h '.
The shape of the projection should not be a curved line segment on the arc, but should be a flat area like a chord on the arc, but normally the angle width θ
Since h ″ and θh ″ ″ are about 1/100 to 20 degrees, the beam cross section is regarded as a plane or a part of a cylindrical surface with a gentle curvature, and the projection area, which is a surface, is a curved line on an arc. There is no practical problem even if it is regarded as a minute.

【0036】一つの方位方向のビームについては、円弧
部分61、62を含み、包絡線63で示されるような連
続的な領域に原点O付近から順に整相加算結果が画像と
して積算されることになる。画像を形成するために極座
標系の格子点を設ける場合、方位方向の分割点の角度間
隔θiが、角度幅θh″やθh′′′に比べて狭けれ
ば、付近のビームの間で円弧部分61,62に代表され
るような重み付け分布をつけた整相加算結果が互いに重
ね合わされる。
With respect to the beam in one azimuth direction, the phasing addition result is integrated as an image in order from the origin O in a continuous area including the arc portions 61 and 62 and shown by the envelope 63. Become. When a grid point in a polar coordinate system is provided to form an image, if the angular interval θi between the division points in the azimuth direction is narrower than the angular widths θh ″ and θh ″ ′ ″, the circular arc portion between adjacent beams The phasing addition results with weighted distributions represented by 61 and 62 are superimposed on each other.

【0037】円弧部分61,62に対応する重み付け分
布の例を図7に示す。重み係数Wdを縦軸に、画像内の
方位角度θを横軸としている。ビーム中心位置θcを分
布の中心として、角度幅θh″やθh′′′にわたる重
み係数Wdの分布曲線71,72を想定し、方位方向の
分割点の角度間隔θiで図中の白丸で示した位置の重み
係数群を求める。重み係数群と整相加算出力値との積
を、画像形成のためのデータとして、ビーム毎に順次積
算してゆく。重み係数群と積をとって積算される信号
は、整相加算の出力から画像の輝度信号に至るまでの種
々の処理段階のものを用いることができるが、複数の送
受信での積算を行う場合には、位相情報を残した整相加
算出力が適切で、周波数軸上、直流付近に複素の周波数
移動を行った検波後の複素出力等が望ましい。図6の画
像領域に対応させた複素の記憶領域を確保し、そこへ複
素出力を積算してゆき、画像の輝度信号生成時に複素値
の絶対値をもって表示のための輝度信号(映像信号)を
形成する。
An example of the weighting distribution corresponding to the arc portions 61 and 62 is shown in FIG. The weight coefficient Wd is on the vertical axis, and the azimuth angle θ in the image is on the horizontal axis. With the beam center position θc as the center of the distribution, the distribution curves 71 and 72 of the weighting coefficient Wd over the angular widths θh ″ and θh ″ ″ are assumed, and are indicated by white circles in the figure at the angular interval θi of the division points in the azimuth direction. The position weighting coefficient group is calculated.The product of the weighting coefficient group and the phasing addition output value is sequentially integrated for each beam as data for image formation. The signals can be used in various processing stages from the output of the phasing addition to the luminance signal of the image, but in the case of performing integration in multiple transmissions and receptions, the phasing addition that leaves the phase information. The output is appropriate, and it is desirable to use a complex output after detection by performing a complex frequency shift near DC on the frequency axis, etc. A complex storage area corresponding to the image area in Fig. 6 is secured, and the complex output is stored there. Accumulates, complex value when generating luminance signal of image With a magnitude to form a luminance signal (video signal) for display.

【0038】次に、複数の送受信による画像情報を積算
する時の、送受信毎の重み付けについて説明する。送受
波器群100の送信間隔Tsの間に一つの画像に相当す
る情報が、前記の角度幅θh″やθh′′′にわたる重
み付けと積算を行いながら得られる。これらを独立に記
憶しておき、探査空間の同じ位置に該当する情報を、所
定の送波回数にわたり積算することにより積算像のため
のデータを形成する。
Next, weighting for each transmission / reception when integrating image information by a plurality of transmission / reception will be described. Information corresponding to one image is obtained during the transmission interval Ts of the transmitter / receiver group 100 while performing weighting and integration over the angular widths θh ″ and θh ″ ″. These are stored independently. , Data corresponding to the same position in the exploration space is integrated over a predetermined number of transmissions to form data for an integrated image.

【0039】図8は探査空間の同じ位置に該当するデー
タの送受信毎の重み付け係数Wtを説明するものであ
る。縦軸は送受信毎の重み付け係数Wtの値、横軸Tは
時間、Tsは送信間隔、Twは積分時間である。Twの
時間幅に収まる、m回目送波からm+k回目の送波まで
を同一の重み(例えば1.0 )で積算することを表して
おり、連続的な窓関数として分布81を用いた場合に相
当する。これは、黒点で示される時点での各画像データ
を単純に積算する状態である。
FIG. 8 illustrates the weighting coefficient Wt for each transmission / reception of data corresponding to the same position in the search space. The vertical axis represents the value of the weighting coefficient Wt for each transmission / reception, the horizontal axis T represents time, Ts represents transmission interval, and Tw represents integration time. It represents that the mth transmission to the m + kth transmission within the time width of Tw are integrated with the same weight (for example, 1.0), and when the distribution 81 is used as a continuous window function. Equivalent to. This is a state in which each image data at the time indicated by a black dot is simply integrated.

【0040】通常、Tsは1/10〜15秒程度と比較
的間隔が長いため、送受波器群100の変位を検出する手
段が誤差を蓄積する点が問題となる。力や速度等の時間
微分量を積分することにより変位を求める場合、送受信
パルスの搬送波波長に対して、時間微分量の誤差の蓄積
が変位検出の誤差となる。変位検出誤差を保証できる時
間長には所定の限界が生じ、Twをそれ以上に長く確保
すると、空間位置が一致しない画像データを積算するこ
とにる。この問題から、積算にあたって積算時間内に重
み付けを行うと有効である。同時に積算すべき画像デー
タのうち、最も古い送信で得られた点mの画像データや
最も新しい送信で得られる点m+kの画像データは、積
算しようとしている時間幅の中で得られた画像データの
相対的位置精度から最も位置がずれる恐れのある画像デ
ータである。積算時間幅の中で、中心付近から両端に至
る間に、相対的に考えた場合の位置精度は低下している
ので、それらを等しい重みで積算するのは有利ではな
い。時間幅の両端にある画像データは中心から見ると位
置精度に曖昧さを増した状態にあると考えたとき、例え
ば窓関数として分布82を用い、所定の位置精度に基づ
いた時間幅Tw′の広がりを与えるほうが信頼性が上が
る。誤差を見込んでの、時間幅Tw′の広がりは中心か
ら見た相対的なものであるから、積算は画像データを分
布82のような窓関数で時間軸上で畳み込む操作とな
る。
Usually, Ts has a relatively long interval of about 1/10 to 15 seconds, so that there is a problem that the means for detecting the displacement of the transducer group 100 accumulates an error. When the displacement is obtained by integrating the time-differentiated amount such as force or velocity, the accumulated error of the time-differentiated amount with respect to the carrier wavelength of the transmission / reception pulse becomes the error of displacement detection. A predetermined limit occurs in the time length for which the displacement detection error can be guaranteed, and if Tw is secured longer than that, image data whose spatial positions do not match will be integrated. From this problem, it is effective to perform weighting within the integration time for integration. Among the image data to be integrated at the same time, the image data at the point m obtained by the oldest transmission and the image data at the point m + k obtained by the newest transmission are the image data obtained within the time width to be integrated. It is the image data that is most likely to be displaced from the relative position accuracy. Since the position accuracy in the relative consideration is lowered from the vicinity of the center to both ends in the integration time width, it is not advantageous to integrate them with equal weight. When it is considered that the image data at both ends of the time width has a ambiguity in the position accuracy when viewed from the center, for example, the distribution 82 is used as the window function and the time width Tw ′ based on the predetermined position accuracy is used. The more you give it, the more reliable it will be. Since the spread of the time width Tw ′ in consideration of the error is relative from the center, the integration is an operation of convolving the image data with a window function like the distribution 82 on the time axis.

【0041】以上の信号処理を実現する画像信号処理手
段12の構成例を図9に示す。画像信号処理手段12は
整相加算手段の出力を演算手段90の入力とする。演算
手段90は映像信号120を表示手段120に出力す
る。演算手段90は浮動小数点演算が可能な数値演算マ
イクロプロセッサやディジタルシグナルプロセッサで実
現される。また、演算手段90は記憶手段93と入出力
が可能な構成となっている。記憶手段93は内部に画像
データを積算するための記憶領域931,932〜93
kを有し、整相加算手段の出力を送受波器群100の変
位に従って重み付けした画像データとして蓄積すること
ができる。
FIG. 9 shows a structural example of the image signal processing means 12 for realizing the above signal processing. The image signal processing means 12 uses the output of the phasing addition means as the input of the arithmetic means 90. The calculation means 90 outputs the video signal 120 to the display means 120. The arithmetic means 90 is realized by a numerical arithmetic microprocessor or digital signal processor capable of floating point arithmetic. Further, the calculation means 90 is configured to be able to input / output with the storage means 93. The storage means 93 has storage areas 931 and 932 to 93 for internally accumulating image data.
With k, the output of the phasing addition means can be stored as image data weighted according to the displacement of the transducer group 100.

【0042】これらの画像データは、連続したk回の送
受信に対応して記憶され、新たに送受信が行われるごと
に古い画像データが新たなデータで上書き更新される。
k個の画像データのうち、探査空間内の同一の位置に該
当する画像データは、上述の窓関数の係数値との積和で
時間軸上の畳み込みが実現される。また、必要に応じて
図示しない走査画面データの記憶領域が記憶手段93に
確保される。走査画面データの記憶領域内にはk個の画
像データからの時間軸上の畳み込み結果を表示手段の映
像信号のフォーマットにするための座標変換や補間を行
った結果を格納し、演算手段90により呼び出されて映
像信号120となる。
These image data are stored corresponding to continuous transmission / reception of k times, and old image data is overwritten and updated with new data each time new transmission / reception is performed.
Among the k pieces of image data, the image data corresponding to the same position in the search space can be convolved on the time axis by the product sum of the coefficient values of the window function described above. Further, a storage area for scan screen data (not shown) is secured in the storage means 93 as needed. In the storage area of the scanning screen data, the result of coordinate conversion and interpolation for converting the convolution result on the time axis from the k image data into the format of the video signal of the display means is stored, and the calculation means 90 is used. It is called and becomes the video signal 120.

【0043】これらの動作で、送受波器群100の変位
情報が変位検出手段14より、格納位置発生手段91と
係数発生手段92に出力される。整相加算手段の出力に
同期して、整相加算する信号が獲得された時点での送受
波器群100の変位情報が供給されると、格納位置発生
手段91は記憶手段93内の格納位置(メモリのアドレ
ス等)を出力する。これは、例えば図6のような極座標
表示の画像データにおいて、方位角度θ,原点Oからの
距離,送受波面の傾きによるθhの幅等を決定して格納
位置を演算出力する。
By these operations, displacement information of the wave transmitter / receiver group 100 is output from the displacement detecting means 14 to the storage position generating means 91 and the coefficient generating means 92. When the displacement information of the transducer group 100 at the time when the signal for phasing addition is acquired is supplied in synchronization with the output of the phasing addition means, the storage position generating means 91 causes the storage position generating means 91 to store the storage position in the storage means 93. (Memory address etc.) is output. In the polar coordinate display image data as shown in FIG. 6, for example, the storage position is calculated and output by determining the azimuth angle θ, the distance from the origin O, the width of θh due to the inclination of the wave transmitting / receiving surface, and the like.

【0044】また係数発生手段92は上述の重み係数W
d,Wtを出力する。特にWdは送受波面の傾きの変位
データにより参照したものを出力するため、係数発生手
段92は図示しない内蔵の記憶手段を有する。送受波面
の傾きの状態毎に、ビーム断面を投影積分するなどして
求めた係数Wdのテーブルを傾きの変位データにより内
蔵の記憶手段から参照できるようにすることにより、時
間のかかる重み分布の計算を省くことができる。
The coefficient generating means 92 uses the above-mentioned weight coefficient W.
Output d and Wt. In particular, since Wd outputs what is referred to by the displacement data of the inclination of the wave transmission / reception surface, the coefficient generating means 92 has a built-in storage means (not shown). Calculation of a time-consuming weight distribution by making it possible to refer to the table of the coefficient Wd obtained by projecting and integrating the beam cross section for each inclination state of the wave transmission / reception surface from the built-in storage means by the inclination displacement data. Can be omitted.

【0045】90,91,92,93の信号入出力関係
は図9の他にも種々の構成が取り得るが、主として図6
で示されるように、整相化加算出力を空間の位置と送受
波器の送受信面の位置と関連づけて累積できる手段が提
供される点に本構成の本質がある。
The signal input / output relationship of 90, 91, 92, 93 can be variously configured in addition to FIG. 9, but mainly in FIG.
As shown in, the essence of this configuration is to provide a means for accumulating the phased addition output in association with the position of the space and the position of the transmitting / receiving surface of the transducer.

【0046】[0046]

【発明の効果】本発明により、送受波器の変位によるビ
ーム断面の変化を鑑みた画像の構成が可能となり、送受
信面の形状を制限するなどのシェイディング等の処理に
よる利得の低下を招くことを避けることができ、艤装上
の制約に柔軟に対処できる。また、画像の積算により、
海中雑音や不要な残響を効率良く抑圧することができ
る。
According to the present invention, it is possible to construct an image in consideration of a change in beam cross section due to displacement of a transmitter / receiver, which leads to a reduction in gain due to a shading process such as limiting the shape of a transmitting / receiving surface. It is possible to avoid, and it is possible to deal flexibly with outfitting restrictions. Also, by integrating the images,
Underwater noise and unnecessary reverberation can be efficiently suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の画像信号処理手段の説明図。FIG. 1 is an explanatory diagram of image signal processing means of the present invention.

【図2】本発明の送受波器及び送受信面の説明図。FIG. 2 is an explanatory view of a wave transmitter / receiver and a transmitting / receiving surface of the present invention.

【図3】送受信面形状のビーム断面の説明図。FIG. 3 is an explanatory diagram of a beam cross section of a transmission / reception surface shape.

【図4】送受波器の回転によるビーム断面の回転の説明
図。
FIG. 4 is an explanatory diagram of rotation of a beam cross section due to rotation of a wave transmitter / receiver.

【図5】送受波器の受信中の運動及び位置の移動による
ビーム断面の回転の説明図。
FIG. 5 is an explanatory diagram of rotation of a beam cross section due to movement of the transducer during movement and movement of a position.

【図6】本発明による画像データの形成過程の説明図。FIG. 6 is an explanatory diagram of a process of forming image data according to the present invention.

【図7】方位角度方向の重み付け係数の分布の説明図。FIG. 7 is an explanatory diagram of a distribution of weighting coefficients in the azimuth angle direction.

【図8】本発明の画像データの時間軸方向の畳み込みの
説明図。
FIG. 8 is an explanatory diagram of convolution of image data in the time axis direction according to the present invention.

【図9】本発明の画像信号処理手段の構成例の説明図。FIG. 9 is an explanatory diagram of a configuration example of image signal processing means of the present invention.

【符号の説明】[Explanation of symbols]

11…整相加算手段、14…変位検出手段、100…送
受波器。
11 ... Phasing addition means, 14 ... Displacement detection means, 100 ... Transducer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01S 7/52 - 7/64 G01N 29/00 - 29/28 G01S 15/00 - 15/96 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01S 7 /52-7/64 G01N 29/00-29/28 G01S 15/00-15/96

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超音波の送受信を行う複数の送受波器と,
前記送受波器の変位を検出する変位検出手段と,前記送
受波器の間の超音波の伝搬時間差補償する整相加算手段
と,前記整相加算手段の出力を映像信号に変換する画像
信号処理手段と,前記映像信号を画像として表示する表
示手段とを具備し,前記画像信号処理手段は,前記変位
検出手段の出力から,前記画像内の該当位置と前記該当
位置に応じた重み付け係数を求め,前記整相加算手段の
出力に前記重み付け係数を乗じる処理を行うことを特徴
とする超音波映像装置。
1. A plurality of transducers for transmitting and receiving ultrasonic waves,
Displacement detecting means for detecting displacement of the transducer, and
Phasing and adding means for compensating the difference in propagation time of ultrasonic waves between receivers
And an image for converting the output of the phasing addition means into a video signal
Signal processing means and table for displaying the video signal as an image
Indicating means, wherein the image signal processing means comprises the displacement
From the output of the detection means, the corresponding position in the image and the corresponding position
The weighting coefficient corresponding to the position is obtained, and the phasing addition means
Characterized in that the output is multiplied by the weighting coefficient
And ultrasonic imaging equipment.
【請求項2】請求項1に記載の超音波映像装置おいて,
前記画像信号処理手段は,前記表示手段に出力する前記
映像信号を,探査する空間に対応させて保持する記憶手
段と,前記変位検出手段の出力から前記記憶手段内の格
納領域を出力する格納位置発生手段と,前記変位検出手
段の出力から前記格納領域内での位置に応じた前記重み
付け係数を出力する係数発生手段と,前記整相加算手段
の出力と前記重み付け係数との積を前記格納領域内での
位置に累積し累積値を求める演算手段とを含むことを特
徴とする超音波映像装置。
2. The ultrasonic imaging apparatus according to claim 1,
The image signal processing means outputs the image data to the display means.
A memory hand that holds the video signal corresponding to the space to be searched
And the output of the displacement detection means, the case in the storage means.
Storage position generating means for outputting the storage area and the displacement detecting means
The weight according to the position in the storage area from the output of the stage
Coefficient generating means for outputting a weighting coefficient, and the phasing addition means
The product of the output and the weighting factor in the storage area
It includes a calculation means for accumulating at a position and obtaining a cumulative value.
Ultrasound imaging device to collect.
【請求項3】請求項2に記載の超音波映像装置おいて,
前記記憶手段内の格納領域は,複数回の前記送受信にわ
たり前記累積値を格納し,前記画像内の前記該当位置が
同じとなる前記各送受信ごとの格納値を複数回の前記送
受信にわたり積算した結果を表示することを特徴とする
超音波映像装置。
3. The ultrasonic imaging apparatus according to claim 2,
The storage area in the storage means is used for transmitting and receiving a plurality of times.
Or the accumulated value is stored, and the corresponding position in the image is
Store the same stored value for each transmission and reception for multiple times.
Characterized by displaying the result accumulated over reception
Ultrasonic imaging device.
【請求項4】請求項2に記載の超音波映像装置おいて,
前記記憶手段内の格納領域は,複数回の前記送受信にわ
たり前記累積値を独立に格納し,前記画像内の前記該当
位置が同じとなる前記各送受信の格納値に対し,前記各
送受信に対して定める係数との積を求め,前記積を積算
した結果を表示することを特徴とする超音波映像装置。
4. The ultrasonic imaging apparatus according to claim 2,
The storage area in the storage means is used for transmitting and receiving a plurality of times.
Or the accumulated value is stored independently, and the corresponding value in the image is stored.
For each stored value of each transmission and reception that has the same position,
Calculate the product with the coefficient specified for transmission and reception and integrate the product
An ultrasonic imaging apparatus, which displays the result of the above.
JP31591196A 1996-11-27 1996-11-27 Ultrasound imaging device Expired - Fee Related JP3465506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31591196A JP3465506B2 (en) 1996-11-27 1996-11-27 Ultrasound imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31591196A JP3465506B2 (en) 1996-11-27 1996-11-27 Ultrasound imaging device

Publications (2)

Publication Number Publication Date
JPH10160826A JPH10160826A (en) 1998-06-19
JP3465506B2 true JP3465506B2 (en) 2003-11-10

Family

ID=18071098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31591196A Expired - Fee Related JP3465506B2 (en) 1996-11-27 1996-11-27 Ultrasound imaging device

Country Status (1)

Country Link
JP (1) JP3465506B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223532B2 (en) * 2008-08-08 2013-06-26 株式会社Ihi Water column observation apparatus and method
JP5802886B1 (en) * 2014-11-04 2015-11-04 本多電子株式会社 Spherical ultrasonic transducer, underwater measuring device

Also Published As

Publication number Publication date
JPH10160826A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
AU2021229158B2 (en) Sidescan sonar imaging system
EP0947854B1 (en) Apparatus suitable for searching objects in water
AU760693B2 (en) Method for producing a 3D image
JP2006052987A (en) Forward detection sonar and underwater imaging display apparatus
WO2002059645A2 (en) Multibeam synthetic aperture sonar
US5663930A (en) Signal processing system and method for use in multibeam sensing systems
EP3064958B1 (en) Systems and associated methods for producing a 3d sonar image
JP3849999B2 (en) Directionally detectable fish finder
US5029144A (en) Synthetic aperture active underwater imaging system
JP3465506B2 (en) Ultrasound imaging device
KR20020083321A (en) Three-dimensional ultrasound imaging system for performing receiving focusing at voxels corresponding to display pixels
JPH0679065B2 (en) Seabed search device
GB2314628A (en) Acoustic and radar direction finding
Alais et al. Noncoherent synthetic aperture Imaging
JPH03257390A (en) Processing device of echo signal and hydrospace detector including said device
Tucker Electronic sector-scanning asdic
JP2001311770A (en) Underwater acoustic image processor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees