WO2016071961A1 - Spherical ultrasonic wave transducer and underwater measurement device - Google Patents

Spherical ultrasonic wave transducer and underwater measurement device Download PDF

Info

Publication number
WO2016071961A1
WO2016071961A1 PCT/JP2014/079248 JP2014079248W WO2016071961A1 WO 2016071961 A1 WO2016071961 A1 WO 2016071961A1 JP 2014079248 W JP2014079248 W JP 2014079248W WO 2016071961 A1 WO2016071961 A1 WO 2016071961A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
ultrasonic transducer
piezoelectric
piezoelectric elements
piezoelectric element
Prior art date
Application number
PCT/JP2014/079248
Other languages
French (fr)
Japanese (ja)
Inventor
敦浩 林
晴久 広瀬
舞田 雄一
佐藤 桂一
Original Assignee
本多電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本多電子株式会社 filed Critical 本多電子株式会社
Priority to PCT/JP2014/079248 priority Critical patent/WO2016071961A1/en
Priority to JP2015511854A priority patent/JP5802886B1/en
Publication of WO2016071961A1 publication Critical patent/WO2016071961A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/44Special adaptations for subaqueous use, e.g. for hydrophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to a spherical ultrasonic transducer having an energy conversion unit that converts energy between acoustic energy and electric energy, and an underwater measuring device including the spherical ultrasonic transducer.
  • a non-directional ultrasonic sensor that transmits and receives ultrasonic waves using a respiratory vibration mode (radial vibration mode) of a sphere has been proposed (for example, see Patent Document 1).
  • a hollow ultrasonic sensor having a spherical shape is configured by connecting two hemispherical piezoelectric vibrators (piezoelectric elements) having electrodes formed on the inner surface and the outer surface.
  • an ultrasonic sensor 60 in which one piezoelectric element 61 is formed in a spherical shell shape having a surface area of hemisphere or more has been proposed.
  • the piezoelectric element 61 of the ultrasonic sensor 60 is a hollow element having a cavity inside, and a pair of electrodes 62 a and 62 b are formed on the outer surface and the inner surface of the piezoelectric element 61.
  • the ultrasonic sensor 60 having no directivity can be obtained by making the piezoelectric element 61 for transmitting and receiving ultrasonic waves into a spherical shell shape.
  • the frequency of the ultrasonic wave (resonance frequency of respiratory vibration) is lowered, and the ultrasonic wave can be propagated further.
  • an omnidirectional transducer is configured by attaching a plurality of piezoelectric ceramics (piezoelectric elements) to a polyhedron (for example, 12-sided polyhedron) housing.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a spherical ultrasonic transducer that can be easily formed at low cost. Another object is to provide an underwater measurement apparatus that can reliably perform measurement in water with non-directionality using the spherical ultrasonic transducer.
  • the invention described in claim 1 is a spherical ultrasonic transducer having an energy conversion unit that converts energy between acoustic energy and electric energy, wherein the energy conversion unit
  • the ratio of length to large is more than twice, it has a tapered end that narrows toward at least one side in the length direction, and has a convexly curved outer surface and a concavely curved inner surface.
  • a plurality of piezoelectric elements mainly composed of piezoelectric ceramic element pieces having an arc shape as viewed from the side, each having an electrode on each of the outer surface and the inner surface, and the tapered shape of the plurality of piezoelectric elements.
  • a support member for supporting the plurality of piezoelectric elements from the inner surface side so as to form a hemispherical shell shape or a spherical shell shape as a whole.
  • a plurality of piezoelectric elements so as to stretch the lengthwise, as its gist the spherical ultrasonic transducer, characterized in that the oscillatable at the natural frequency vibration modes of a length direction corresponding to the length.
  • the element pieces of the plurality of piezoelectric elements have a ratio of the length to the maximum width of twice or more, and the width increases toward at least one side in the length direction. It has a tapered end portion that becomes narrower, has an outer surface curved in a convex shape and an inner surface curved in a concave shape, and has an arc shape as a whole in a side view. Further, by aligning the directions of the piezoelectric elements so that the tapered end portions of the plurality of piezoelectric elements are directed to one place, the piezoelectric elements are arranged so as to have a hemispherical shell shape or a spherical shell shape as a whole.
  • the spherical energy conversion unit is configured by using a plurality of piezoelectric elements warped in an arc shape instead of using the spherical piezoelectric elements as in the prior art. .
  • Each piezoelectric element is formed such that the ratio of the length to the maximum width is twice or more, and the element width is relatively narrow.
  • the ratio of the length of the piezoelectric element to the maximum width of the element piece is 2 times or more, preferably 3 times or more, and more preferably 5 times or more. Moreover, it is particularly preferable to form the piezoelectric element so that the ratio of the length to the maximum width of the element piece is 10 times or more and 20 times or less.
  • the gist of a second aspect of the present invention is that, in the first aspect, the plurality of piezoelectric elements are arranged via gaps and are acoustically divided.
  • each piezoelectric element is reliably vibrated in the longitudinal vibration mode. Can be made.
  • the gap is a linear gap having a width equal to or less than the maximum width, and is formed along a length direction of the piezoelectric element.
  • the gist is a linear gap having a width equal to or less than the maximum width, and is formed along a length direction of the piezoelectric element.
  • the piezoelectric element vibrates in the length direction and reliably performs energy conversion. be able to.
  • the gap between each piezoelectric element is set to be equal to or smaller than the maximum width of the element piece, but is preferably equal to or smaller than 1 ⁇ 2 of the maximum width.
  • the gap between the piezoelectric elements is more preferably 1/5 or less of the maximum width. Further, when the size of the element piece is increased, the gap between the piezoelectric elements is 1/10 or less of the maximum width. It is preferable that
  • the piezoelectric element has a length corresponding to an arc having a central angle exceeding 90 ° by one element piece made of piezoelectric ceramics.
  • the gist is that it is formed as described above.
  • a spherical energy conversion unit having a surface area greater than a hemisphere by using a plurality of piezoelectric elements having a length corresponding to an arc whose central angle exceeds 90 °. it can. Further, since the piezoelectric element is formed by one element piece, there is no element piece joint as in the case where the piezoelectric element is formed by two or more element pieces. For this reason, it is possible to easily form the piezoelectric element, and it is possible to avoid a decrease in energy conversion efficiency at the joint portion of the element piece.
  • the plurality of piezoelectric elements have the tapered end portion arranged toward the top of the energy conversion portion.
  • the gist is that a gap is formed in the top of the head.
  • the fifth aspect of the present invention it is possible to reliably vibrate a plurality of piezoelectric elements at the top of the energy conversion unit.
  • the invention according to claim 6 is the spherical base having the element installation portion in which the outer surface is formed in a spherical shape in any one of the first to fifth aspects, and the energy conversion portion is The gist is that the plurality of piezoelectric elements are attached to the outer surface of the element installation portion.
  • the plurality of piezoelectric elements are adhered to the outer surface of the element installation portion, thereby reliably supporting the plurality of piezoelectric elements so as to have a hemispherical shape or a spherical shell shape as a whole. can do.
  • a spherical ultrasonic transducer according to any one of the first to sixth aspects of the present invention, and at least one of ultrasonic transmission and reception that is electrically connected to the spherical ultrasonic transducer.
  • An underwater measuring device including a processing circuit for performing processing and provided in water is a gist thereof.
  • the spherical ultrasonic transducer by using the spherical ultrasonic transducer, it is possible to reliably perform measurement in water at a relatively low cost.
  • the spherical ultrasonic transducer since the spherical ultrasonic transducer has omnidirectional directivity (omnidirectionality), it can detect a wide range and shorten the detection time.
  • the spherical ultrasonic transducer can be easily formed at low cost. Moreover, according to the invention of Claim 7, measurement in water can be reliably performed with non-directionality.
  • the schematic block diagram which shows the seafloor crustal movement observation system of one Embodiment.
  • Sectional drawing which shows the spherical ultrasonic transducer of one Embodiment.
  • the perspective view which shows the energy conversion part of one Embodiment.
  • the perspective view which shows the piezoelectric element seen from the outer surface side.
  • the perspective view which shows the piezoelectric element seen from the inner surface side.
  • the side view which shows a piezoelectric element.
  • the top view which shows a piezoelectric element.
  • the front view which shows a piezoelectric element.
  • Explanatory drawing which shows the measuring method of sound pressure.
  • the graph which shows the relationship between a frequency and sound pressure.
  • the graph which shows the directivity of a spherical ultrasonic transducer.
  • the perspective view which shows the energy conversion part of another embodiment The perspective view which shows the energy conversion part of another embodiment.
  • the perspective view which shows the energy conversion part of another embodiment The perspective view which shows the energy conversion part of another embodiment.
  • Sectional drawing which shows the spherical ultrasonic transducer of another embodiment.
  • the front view which shows the conventional ultrasonic sensor which consists of a spherical shell-shaped piezoelectric element.
  • FIG. 1 shows a schematic configuration of a seafloor crustal deformation observation system 1 that observes crustal deformation of the seabed.
  • the seafloor crustal movement observation system 1 includes a first underwater measurement device 2 installed on the seabed and a second underwater measurement device 4 provided on the bottom portion of the observation ship 3.
  • a plurality of the first underwater measurement devices 2 are provided at predetermined intervals in a predetermined area where crustal deformation needs to be observed.
  • the depth of the seabed where the first underwater measuring device 2 is installed may be 1000 m or more, and the first underwater measuring device 2 has a structure capable of withstanding the water pressure.
  • the first underwater measurement device 2 includes an omnidirectional spherical ultrasonic transducer 6 capable of transmitting and receiving ultrasonic waves, and a transmission / reception circuit 7 electrically connected to the transducer 6.
  • the second underwater measuring device 4 includes a spherical ultrasonic transducer 6 capable of transmitting and receiving ultrasonic waves, and a transmission / reception circuit 7 electrically connected to the transducer 6.
  • the spherical ultrasonic transducer 6 with which each underwater measuring device 2 and 4 is provided is an ultrasonic transducer which has the same structure.
  • the ultrasonic transducer 6 is used in one of the first underwater measuring device 2 and the second underwater measuring device 4 (specifically, for example, the receiving-side underwater measuring device 4 provided at the bottom of the ship).
  • underwater measurement may be performed using a microphone.
  • the spherical ultrasonic transducer 6 includes a spherical energy conversion unit 10 that converts energy between acoustic energy and electric energy, and an energy conversion unit 10 together with oil 11 that is an ultrasonic transmission medium. And a resin cover 12 to be accommodated.
  • the surface of the energy conversion unit 10 in the spherical ultrasonic transducer 6 functions as a transmission / reception wave surface for transmitting and receiving ultrasonic waves.
  • the spherical ultrasonic transducer 6 is installed on the seabed with the spherical energy conversion unit 10 facing upward.
  • the spherical ultrasonic transducer 6 is installed on the ship bottom with the spherical energy conversion unit 10 facing downward.
  • the installation position (sea bottom, ship bottom) of each underwater measuring device 2 and 4 and the direction (vertical direction) of the spherical ultrasonic transducer 6 are not indispensable structures, and underwater measurement is performed by appropriately changing the installation position and orientation. May be.
  • the energy conversion unit 10 includes a plurality (27 in this embodiment) of piezoelectric elements 14 and a spherical base 15 (support member) that supports the plurality of piezoelectric elements 14. ing.
  • the plurality of piezoelectric elements 14 have a shape in which a spherical shell is divided into a plurality along the meridian direction.
  • the piezoelectric element 14 of the present embodiment is mainly formed of one element piece 16 made of piezoelectric ceramic made of, for example, PZT.
  • the element piece 16 of the piezoelectric element 14 has a tapered end portion 18 whose width becomes narrower toward one side in the length direction (upper side in FIG. 3).
  • the element piece 16 of the piezoelectric element 14 has a convexly curved outer surface 21 and a concavely curved inner surface 22, and has an arc shape as a whole in a side view.
  • the end 19 of the element piece 16 opposite to the tapered end 18 (the lower side in FIG. 3) is formed in a flat shape having a predetermined width.
  • the piezoelectric element 14 has a ship shape (skin shape) in which the spherical shell is divided into a plurality of parts around the central axis and one end portion 19 (lower end portion in FIG. 3) is cut off. And the some piezoelectric element 14 is arrange
  • a pair of electrodes 26 and 27 made of silver are provided on the outer surface 21 and the inner surface 22 of the element piece 16.
  • the spherical base 15 includes an element installation portion 31 having an outer surface 30 formed into a spherical shape, and a disk-shaped base portion 32 provided below the element installation portion 31.
  • the spherical energy conversion part 10 is formed by affixing the some piezoelectric element 14 on the outer surface 30 of the element installation part 31 in the spherical base 15 via an adhesive agent.
  • the outer surface 30 of the element installation portion 31 is formed with the same curvature as the inner surface 22 of the piezoelectric element 14, and the entire inner surface 22 of the plurality of piezoelectric elements 14 is formed on the outer surface of the element installation portion 31 via an adhesive. 30 is adhered and fixed.
  • a relatively soft adhesive is used to facilitate the vibration of the piezoelectric element 14.
  • the resin cover 12 is made of a material having an acoustic impedance close to the acoustic impedance value of seawater, specifically, urethane rubber.
  • the resin cover 12 includes a cylindrical portion 35 and a hemispherical portion 36 that is integrally formed with the cylindrical portion 35 and is provided so as to close one end of the cylindrical portion 35, and an open end 37 on the other end side of the cylindrical portion 35. Is fixed in a state of being closed by the base portion 32 of the spherical base 15. In this state, the hemispherical portion 36 of the resin cover 12 is disposed so as to cover the energy conversion portion 10.
  • the some piezoelectric element 14 which comprises the energy conversion part 10 is arrange
  • a linear gap 41 along the meridian direction (the length direction of the element) is formed between two adjacent piezoelectric elements 14, and each piezoelectric element A gap 42 is formed in the top 25 where the 14 tapered ends 18 face each other.
  • the concavely curved inner surface 22 (the inner surface of the energy conversion unit 10) of each piezoelectric element 14 has a spherical shape with a radius R ⁇ b> 1 of 80 mm.
  • the convexly curved outer surface 21 (the outer surface of the energy conversion unit 10) of each piezoelectric element 14 has a spherical shape with a radius R2 of 85 mm. That is, the thickness T1 of the piezoelectric element 14 is 5 mm.
  • the length L1 in the radial direction of the piezoelectric element 14 has a length corresponding to an arc having a center angle of 132.9 °
  • the length L2 in the latitude direction (element (Width) has a length corresponding to an arc having a central angle of 12.0 °
  • the gap 41 between the piezoelectric elements 14 adjacent in the latitude direction has a width L3 corresponding to an arc having a central angle of 1.33 °. That is, the gap 41 between the piezoelectric elements 14 has a width L3 of about 1/9 of the element width L2.
  • each piezoelectric element 14 has a ratio of the length L1 to the maximum width L4 of about 11 times, and has a relatively elongated element shape.
  • one electrode 26 (plus electrode) provided on the outer surface 21 is all connected to the same first wiring 51 and the other electrode provided on the inner surface 22.
  • the electrodes 27 (minus electrodes) are all connected to the same second wiring 52.
  • the first wiring 51 is joined to the central portion 45 in the meridian direction where the element width is widened in each piezoelectric element 14 using solder or the like.
  • the second wiring 52 is connected to the negative electrode 27 exposed at the side surface portion of the piezoelectric element 14 through the gap 41 between the piezoelectric elements 14.
  • the wiring 50 (first wiring 51 and second wiring 52) extending from the ultrasonic transducer 6 is connected to the transmission / reception circuit 7.
  • the transmission / reception circuit 7 is a processing circuit including an amplification circuit, an A / D conversion circuit, and the like, and performs processing for transmission and reception of ultrasonic waves.
  • Each of the underwater measuring devices 2 and 4 includes, for example, an oscillator (not shown) that generates a 10 kHz drive signal and a control device (not shown) that comprehensively controls ultrasonic transmission / reception processing.
  • the control device includes a known CPU (central processing unit), a memory, and the like.
  • the seafloor crustal movement observation system 1 includes a position information acquisition device (not shown) that determines the current position of the ship using GPS.
  • the seafloor crustal deformation observation system 1 uses the first underwater measurement device 2 and the second underwater measurement device 4 to measure the distance between the observation ship 3 and the seabed by transmitting and receiving 10 kHz ultrasonic waves. Then, based on the distance and the current position of the observation ship 3 acquired by GPS, the seabed position where the first underwater measuring device 2 is installed is observed. By observing the seafloor position regularly or by observing the seafloor position after an earthquake, the crustal deformation of the seabed is measured. In the seafloor crustal deformation observation system 1, the measurement accuracy of the seafloor position is increased by performing distance measurement a plurality of times while the observation ship 3 is moving.
  • the spherical ultrasonic transducer 6 configured as described above was evaluated.
  • the spherical ultrasonic transducer 6 is installed in the water so that the energy conversion unit 10 faces upward, and the microphone 55 is arranged at a distance of 1 m above the transducer 6.
  • a voltage Vpp having a potential difference of 200 V is applied to each electrode 26 and 27 of each piezoelectric element 14 of the energy conversion unit 10 at a frequency of 10 kHz for 3 cycles, and a sound pressure (dB) observed using the microphone 55. And the frequency (kHz) were measured.
  • dB sound pressure
  • Table 1 shows the sound pressure (dB) at 10 kHz, the maximum sound pressure (dB), the frequency at the maximum sound pressure (kHz), and the bandwidth of the maximum sound pressure ⁇ 6 dB (kHz) obtained as a result of the measurement. ).
  • the conventional product is a transducer having a structure in which a regular polygonal piezoelectric element is attached to each surface, not a spherical shape but a polyhedral shape.
  • the spherical ultrasonic transducer 6 of this embodiment has higher sound pressure at 10 kHz and maximum sound pressure than the conventional product, and the frequency dependence of sound pressure is It was almost equal to the conventional product.
  • the impedance of the ultrasonic transducer 6 at 5 kHz to 15 kHz was measured.
  • the mechanical quality factor Qm in the ultrasonic transducer 6 of the present embodiment is lower than that of the conventional product, and the frequency dependency is reduced.
  • the impedance of the ultrasonic transducer 6 was lower than that of the conventional product, and the response in the received waveform (not shown) of the microphone 55 was better than that of the conventional product.
  • the directivity of the spherical ultrasonic transducer 6 was measured.
  • the measurement results are shown in FIG.
  • the measurement position of the microphone 55 is moved along the circumferential direction while keeping the distance D1 between the spherical ultrasonic transducer 6 and the microphone 55 at 1 m.
  • the position P0 in the horizontal direction (the horizontal position on the right side in FIG.
  • the directivity is less than that of the conventional product, and the measured sound pressure is larger than that of the conventional product.
  • the sound pressure of 181 dB to 186 dB was measured at each of the measurement positions P0 to P180, and the sound pressure at the position P90 was particularly small.
  • the sound pressure of 184 dB to 186 dB is measured at each measurement position P0 to P180, and the sound pressure difference at each measurement position is 2 dB. The sound pressure difference was less than 5 dB.
  • the sound pressure at the position P90 is 186 dB, which is about 5 dB larger than that of the conventional product.
  • the directions of the piezoelectric elements 14 are aligned so that the tapered end portions 18 of the plurality of piezoelectric elements 14 face one place.
  • the piezoelectric elements 14 can be arranged so as to have a spherical shell shape as a whole. And energy conversion is performed between acoustic energy and electric energy by the piezoelectric element 14 vibrating in the vibration mode in the length direction corresponding to the length, not the breathing vibration mode as in the prior art. As a result, the energy conversion unit 10 can transmit and receive ultrasonic waves.
  • the spherical ultrasonic transducer 6 of the present embodiment does not use the spherical shell-shaped piezoelectric element 61 (see FIG. 16) as in the prior art, but a plurality of piezoelectric elements 14 (in a circular arc shape) ( A spherical energy conversion unit 10 is configured using FIG. 3 to FIG.
  • the plurality of piezoelectric elements 14 constituting the spherical energy conversion unit 10 are all the same shape. Specifically, each piezoelectric element 14 is formed so that the ratio of the length L1 to the maximum width L4 is about 11 times, and the element width is relatively narrow.
  • the piezoelectric element 14 can be formed with an accurate dimension while suppressing deformation during firing. Furthermore, since it is possible to avoid an increase in the size of the manufacturing equipment, the spherical ultrasonic transducer 6 can be manufactured easily and at low cost.
  • the plurality of piezoelectric elements 14 in the spherical energy conversion unit 10 are arranged via the gaps 41 and are acoustically divided. Therefore, each piezoelectric element 14 can be reliably vibrated in the vibration mode in the length direction.
  • the gap 41 is a linear gap having a width L3 that is about 1/9 of the maximum width L4. In this case, since the gap 41 between the piezoelectric elements 14 becomes small, energy conversion can be reliably performed over the entire circumference of the energy conversion unit 10.
  • the piezoelectric element 14 is formed to have a length L1 corresponding to an arc having a central angle exceeding 90 °, and thus has a surface area equal to or greater than a hemisphere.
  • the spherical energy conversion unit 10 can be easily configured. Further, since the piezoelectric element 14 is formed by one element piece 16 made of piezoelectric ceramic, there is no element piece joint as in the case where the piezoelectric element is formed by two or more element pieces. For this reason, while being able to form the piezoelectric element 14 easily, the fall of the energy conversion efficiency in the junction part of the element piece 16 can be avoided.
  • the plurality of piezoelectric elements 14 are provided with a tapered end 18 toward the top 25 of the energy conversion unit 10, and A gap 42 is formed. If it does in this way, in the top part 25 of energy conversion part 10, a plurality of piezoelectric elements 14 can be vibrated reliably, and energy conversion efficiency can be raised.
  • the spherical ultrasonic waves are arranged so that the top portions 25 of the energy conversion unit 10 face each other.
  • a transducer 6 is arranged. That is, in the first underwater measurement device 2 installed on the seabed, the spherical ultrasonic transducer 6 is provided so that the top 25 of the energy conversion unit 10 faces upward, and the second underwater measurement device provided on the bottom of the ship. 4, the spherical ultrasonic transducer 6 is provided so that the top 25 of the energy conversion unit 10 faces downward. If it does in this way, transmission / reception of the ultrasonic wave between each ultrasonic transducer 6 can be performed reliably, and distance measurement can be performed correctly.
  • the first underwater measurement device 2 may be installed on the seabed having a water depth of 1000 m or more. Even in this case, since the energy conversion unit 10 of the ultrasonic transducer 6 is spherical, it can sufficiently withstand the water pressure, and the crustal movement of the seabed can be observed reliably.
  • each piezoelectric element 14 constituting the energy conversion unit 10 has a length L1 corresponding to an arc having a center angle of 132.9 ° and a center angle of 12 °.
  • the width L2 corresponding to the arc the length L1 and the width L2 may be appropriately changed as long as they are formed in an elongated arc shape.
  • each piezoelectric element 14 in order to sufficiently secure the surface area of the energy conversion unit 10, it is preferable to form each piezoelectric element 14 so as to have a length L1 corresponding to an arc having a central angle of 100 ° or more. Furthermore, considering the installation on the spherical base 15, it is preferable that the plurality of piezoelectric elements 14 have a length L1 corresponding to an arc having a central angle of 170 ° or less.
  • each piezoelectric element 14 constituting the energy converting unit 10 is formed by one element piece 16 made of piezoelectric ceramics, but is not limited thereto.
  • the plurality of piezoelectric elements 14a constituting the energy conversion unit 10A may be formed by joining two element pieces 16a and 16b made of piezoelectric ceramics in the length direction.
  • the plurality of piezoelectric elements 14b constituting the energy conversion unit 10B are formed by joining three element pieces 16c, 16d, and 16e made of piezoelectric ceramics in the length direction. But you can.
  • the element pieces 16a to 16e are mechanically joined using an adhesive without a gap.
  • the cured product of the adhesive that joins the element pieces 16 a to 16 e is harder than the cured product of the adhesive that fixes the piezoelectric elements 14 a and 14 b to the spherical base 15.
  • 12 has a length L1 corresponding to an arc having a central angle of 90 °
  • the piezoelectric element 14b of FIG. 13 has an arc having a central angle of 133 ° as in the above embodiment. It has a corresponding length L1. Even if the energy conversion units 10A and 10B are configured as shown in FIGS.
  • the piezoelectric elements 14a and 14b vibrate at a frequency corresponding to the length in the meridian direction, and between acoustic energy and electrical energy. Energy conversion can be performed.
  • the individual element pieces 16a to 16e are small in size, but the element pieces 16a to 16e are joined to form the piezoelectric elements 14a and 14b, thereby forming relatively large spherical energy conversion units 10A and 10B. be able to. For this reason, the enlargement of a manufacturing facility can be avoided and the manufacturing cost of a spherical ultrasonic transducer can be reduced.
  • the plurality of piezoelectric elements 14, 14 a, 14 b have a tapered upper end 18 disposed toward the top 25 of the energy conversion unit 10, 10 ⁇ / b> A, 10 ⁇ / b> B.
  • the arrangement of the plurality of piezoelectric elements is not particularly limited as long as a spherical energy conversion unit is configured by the plurality of piezoelectric elements.
  • the energy conversion unit 10 ⁇ / b> C may be configured by arranging a plurality of piezoelectric elements 14 c in a direction different from the meridian direction.
  • each piezoelectric element 14c has a tapered shape in which both end portions 18a are sharpened at an acute angle, and each end portion 18a has a spherical shape so as to face one place (a side portion 57 disposed opposite to the energy conversion portion 10C). It is arranged in the element installation part 31 of the base 15. As a result, each piezoelectric element 14 c is supported so as to have a hemispherical shell shape on the outer surface 30 of the element installation portion 31.
  • the resin cover 12 has a shape having the cylindrical portion 35 and the hemispherical portion 36.
  • the shape may be changed.
  • the resin cover 12 ⁇ / b> A has a cylindrical portion 38 and a spherical portion 39 formed integrally with the cylindrical portion 38.
  • the length of the cylindrical portion 38 in the axial direction is shorter than the length of the cylindrical portion 35 (see FIG. 2) in the resin cover 12 of the above-described embodiment. Is smaller than the diameter of the cylindrical portion 35.
  • the spherical portion 39 is provided at a position facing the energy conversion portion 10 and has an area larger than a hemisphere.
  • the outer diameter of the cylindrical portion 35 and the outer diameter of the hemispherical portion 36 in the resin cover 12 are the same size.
  • the outer diameter of the cylindrical portion 38 is smaller than the outer diameter of the spherical portion 39. That is, in the resin cover 12 ⁇ / b> A, the cylindrical portion 38 has a shape constricted with respect to the spherical portion 39.
  • the distance between the outer surface of the energy conversion unit 10 and the inner surface of the resin cover 12A (spherical portion 39) is above and below the energy conversion unit 10. It becomes uniform. In this case, the ultrasonic transmission / reception sensitivity in the spherical ultrasonic transducer 6A can be increased.
  • the energy conversion unit 10 is bonded to the outer surface 30 of the element installation part 31 by attaching the plurality of piezoelectric elements 14.
  • a support member other than the spherical base 15 may be used.
  • the supporting member may be any member that supports the plurality of piezoelectric elements 14 from the inner surface 22 side so as to have a hemispherical shell shape or a spherical shell shape as a whole.
  • the energy conversion unit 10 may be formed using a frame-shaped support member having a fixing unit that fixes a part of the inner surface 22 of each piezoelectric element 14.
  • the fixing portion is provided at a position corresponding to a quarter wavelength in the length direction of the piezoelectric element 14. If it does in this way, the piezoelectric element 14 can be vibrated reliably in the state which fixed the piezoelectric element 14 to the fixing
  • the spherical ultrasonic transducer 6 functions as an ultrasonic transmitter / receiver capable of transmitting / receiving ultrasonic waves. It may function as a receiver dedicated to receiving sound waves. Specifically, for example, when the spherical ultrasonic transducer 6 provided in the first underwater measuring device 2 is made to function as a transmitter dedicated to transmitting ultrasonic waves, the second underwater measuring device 4 on the receiving side is spherical. A distance may be measured by providing a microphone instead of the ultrasonic transducer 6.
  • the submarine crustal deformation observation system 1 including the pair of underwater measurement devices 2 and 4 is embodied, but is not limited thereto.
  • the observation system may be configured to provide one underwater measuring device 4 on the bottom of the ship and detect the presence or absence of obstacles existing in the water, the distance of the obstacles, and the like using the underwater measuring device 4.
  • the piezoelectric elements 14 of the ultrasonic transducer 6 are driven to transmit ultrasonic waves, and the ultrasonic waves reflected by the obstacles in the water are received by the piezoelectric elements 14 of the ultrasonic transducer 6.
  • a control device determines the presence or absence of an obstacle present in the water based on the received signal.
  • the control device detects the distance of the obstacle based on the propagation time of the ultrasonic wave.
  • you may comprise the underwater measuring device 4 so that the direction where an obstruction exists can be specified.
  • a dedicated receiving circuit is provided for each piezoelectric element 14 of the ultrasonic transducer 6 or for each of a plurality of adjacent piezoelectric elements 14.
  • the piezoelectric elements 14 are simultaneously driven by the transmission circuit, and ultrasonic waves are transmitted from the ultrasonic transducer 6 in all directions. Then, the ultrasonic waves reflected by the obstacle in the water are received by each piezoelectric element 14 of the ultrasonic transducer 6.
  • the spherical ultrasonic transducer 6 is configured as a directivity ultrasonic transducer, and the direction in which the obstacle exists is based on the magnitude of the ultrasonic reception signal detected by each reception circuit. Can be specified.
  • the plurality of piezoelectric elements in the energy conversion unit have a shape obtained by dividing a spherical shell into a plurality along the meridian direction. Sonic transducer.
  • the cured product of the adhesive that joins two or more of the element pieces in the piezoelectric element is harder than the cured product of the adhesive that fixes the piezoelectric element to the support member.
  • one electrode provided on the outer surface is connected to the same first wiring, and the other electrode provided on the inner surface is connected to the same second wiring.
  • An underwater measuring device connected to the underwater measuring device.
  • the apparatus includes the underwater measurement device according to claim 7, wherein the spherical ultrasonic transducer is installed on the seabed with the spherical energy conversion unit facing upward, and the crustal movement of the seabed is observed.

Abstract

The purpose of the present invention is to provide a spherical ultrasonic wave transducer that can be formed at low cost and with ease. An energy converting part 10 of a spherical ultrasonic wave transducer 6 includes a plurality of piezoelectric elements 14 and a spherical base 15. Each piezoelectric element 14 is mainly composed of a piezoelectric ceramic element piece 16 that has a tapered end portion 18 the width of which becomes smaller toward at least one side in the longitudinal direction, that has a convexly curved outer surface 21 and a concavely curved inner surface 22, and that is arc-shaped on the whole when seen from the side; and electrodes 26 and 27 are respectively provided on the outer surface 21 and the inner surface 22. The spherical base 15 is arranged such that the tapered end portions 18 of the piezoelectric elements 14 face one location on the spherical base 15 and support each piezoelectric element 14 from the inner surface 22 side thereof so as to form a spherical shell shape on the whole. Each piezoelectric element 14 vibrates in a vibration mode of a length direction natural frequency which corresponds to the length of the piezoelectric element, so as to expand and contract in the length direction.

Description

球状超音波トランスデューサ、水中計測装置Spherical ultrasonic transducer, underwater measuring device

 本発明は、音響エネルギーと電気エネルギーとの間でエネルギー変換を行うエネルギー変換部を有する球状超音波トランスデューサ、及びその球状超音波トランスデューサを備える水中計測装置に関するものである。

The present invention relates to a spherical ultrasonic transducer having an energy conversion unit that converts energy between acoustic energy and electric energy, and an underwater measuring device including the spherical ultrasonic transducer.

 球状超音波トランスデューサの具体例として、球の呼吸振動モード(径方向の振動モード)を用いて超音波を送受信する無指向性の超音波センサが提案されている(例えば、特許文献1等参照)。特許文献1では、内面及び外面に電極を形成した2つの半球状圧電体振動子(圧電素子)を接続することで、球状をなす中空の超音波センサが構成されている。また、図16に示されるように、1つの圧電素子61が半球以上の表面積を有する球殻状に形成された超音波センサ60も提案されている。超音波センサ60の圧電素子61は、内側に空洞を有する中空形状の素子であり、圧電素子61の外面及び内面には、一対の電極62a,62bが形成されている。このように、超音波の送受信する圧電素子61を球殻状とすることにより、指向性のない超音波センサ60が得られる。さらに、圧電素子61のサイズ(直径)を大きくすることで、超音波の周波数(呼吸振動の共振周波数)が低くなり、より遠くへ超音波を伝搬させることが可能となる。

As a specific example of the spherical ultrasonic transducer, a non-directional ultrasonic sensor that transmits and receives ultrasonic waves using a respiratory vibration mode (radial vibration mode) of a sphere has been proposed (for example, see Patent Document 1). . In Patent Document 1, a hollow ultrasonic sensor having a spherical shape is configured by connecting two hemispherical piezoelectric vibrators (piezoelectric elements) having electrodes formed on the inner surface and the outer surface. Further, as shown in FIG. 16, an ultrasonic sensor 60 in which one piezoelectric element 61 is formed in a spherical shell shape having a surface area of hemisphere or more has been proposed. The piezoelectric element 61 of the ultrasonic sensor 60 is a hollow element having a cavity inside, and a pair of electrodes 62 a and 62 b are formed on the outer surface and the inner surface of the piezoelectric element 61. Thus, the ultrasonic sensor 60 having no directivity can be obtained by making the piezoelectric element 61 for transmitting and receiving ultrasonic waves into a spherical shell shape. Furthermore, by increasing the size (diameter) of the piezoelectric element 61, the frequency of the ultrasonic wave (resonance frequency of respiratory vibration) is lowered, and the ultrasonic wave can be propagated further.

 また、特許文献2では、多面体(例えば12面の多面体)の筐体に複数の圧電セラミック(圧電素子)を取り付けることで全指向性(無指向性)の送受波器が構成されている。

In Patent Document 2, an omnidirectional transducer is configured by attaching a plurality of piezoelectric ceramics (piezoelectric elements) to a polyhedron (for example, 12-sided polyhedron) housing.

特開2001-8292号公報JP 2001-8292 A 特開2010-212868号公報JP 2010-212868 A

 ところが、球状超音波トランスデューサを作製する際には、圧電素子61を球殻状に成形するために専用の金型が必要となる。また、球状超音波トランスデューサにおいて、呼吸振動の共振周波数を低くするために球のサイズを大きくする場合には、圧電素子61の製造が困難となる。より詳しくは、球殻状の圧電素子61を作製するために大型の設備が必要となる。また、これに加えて、素子サイズが大きくなることで焼成時に変形し易くなり、製品歩留まりが悪化する。従って、球状超音波トランスデューサの製造コストが嵩んでしまうといった問題があった。

However, when producing a spherical ultrasonic transducer, a dedicated die is required to form the piezoelectric element 61 into a spherical shell. Further, in the spherical ultrasonic transducer, when the size of the sphere is increased in order to reduce the resonance frequency of the respiratory vibration, it is difficult to manufacture the piezoelectric element 61. More specifically, a large facility is required to produce the spherical shell-shaped piezoelectric element 61. In addition to this, since the element size is increased, it is easily deformed during firing, and the product yield is deteriorated. Therefore, there is a problem that the manufacturing cost of the spherical ultrasonic transducer increases.

 因みに、特許文献2の送受波器は、多面体であり完全な球形ではないため、音響的な指向性をなくすためには、各素子の寸法精度や組み付け性を十分に確保する必要があり、製造コストが高くなってしまう。

Incidentally, since the transducer of Patent Document 2 is a polyhedron and is not a perfect sphere, it is necessary to sufficiently ensure the dimensional accuracy and assembly of each element in order to eliminate acoustic directivity. Cost becomes high.

 本発明は上記の課題に鑑みてなされたものであり、その目的は、低コスト、かつ容易に形成することができる球状超音波トランスデューサを提供することにある。また、別の目的は、上記球状超音波トランスデューサを用いて、水中における計測を無指向性で確実に行うことができる水中計測装置を提供することにある。

The present invention has been made in view of the above problems, and an object thereof is to provide a spherical ultrasonic transducer that can be easily formed at low cost. Another object is to provide an underwater measurement apparatus that can reliably perform measurement in water with non-directionality using the spherical ultrasonic transducer.

 上記課題を解決するために、請求項1に記載の発明は、音響エネルギーと電気エネルギーとの間でエネルギー変換を行うエネルギー変換部を有する球状超音波トランスデューサであって、前記エネルギー変換部は、最大幅に対する長さの比率が2倍以上であり、長さ方向の少なくとも一方側に行くに従って幅が狭くなる先細状の端部を有し、凸状に湾曲した外面及び凹状に湾曲した内面を有し、かつ全体的に側面視で円弧状をなす圧電セラミックス製の素子片を主体とし、前記外面及び前記内面に各々電極が設けられた複数の圧電素子と、前記複数の圧電素子における前記先細状の端部が1箇所を向くように配置するとともに、全体として半球殻状ないし球殻状となるよう前記複数の圧電素子を前記内面側から支持する支持部材とを備え、前記複数の圧電素子は、前記長さ方向に伸縮するよう、長さに応じた長さ方向の固有振動数の振動モードで振動可能であることを特徴とする球状超音波トランスデューサをその要旨とする。

In order to solve the above problems, the invention described in claim 1 is a spherical ultrasonic transducer having an energy conversion unit that converts energy between acoustic energy and electric energy, wherein the energy conversion unit The ratio of length to large is more than twice, it has a tapered end that narrows toward at least one side in the length direction, and has a convexly curved outer surface and a concavely curved inner surface. And a plurality of piezoelectric elements mainly composed of piezoelectric ceramic element pieces having an arc shape as viewed from the side, each having an electrode on each of the outer surface and the inner surface, and the tapered shape of the plurality of piezoelectric elements. And a support member for supporting the plurality of piezoelectric elements from the inner surface side so as to form a hemispherical shell shape or a spherical shell shape as a whole. A plurality of piezoelectric elements, so as to stretch the lengthwise, as its gist the spherical ultrasonic transducer, characterized in that the oscillatable at the natural frequency vibration modes of a length direction corresponding to the length.

 請求項1に記載の発明によると、エネルギー変換部において、複数の圧電素子の素子片は、最大幅に対する長さの比率が2倍以上であり、長さ方向の少なくとも一方側に行くに従って幅が狭くなる先細状の端部を有し、凸状に湾曲した外面及び凹状に湾曲した内面を有し、全体的に側面視で円弧状をなしている。また、複数の圧電素子における先細状の端部が1箇所を向くように各圧電素子の向きを揃えることで、全体として半球殻状ないし球殻状となるよう各圧電素子が配置される。そして、従来技術のような呼吸振動モードではなく、長さに応じた長さ方向の振動モードで圧電素子が振動することで音響エネルギーと電気エネルギーとの間でエネルギー変換が行われる。この結果、エネルギー変換部において超音波を送信したり受信したりすることが可能となる。このように、本発明の球状超音波トランスデューサでは、従来技術のような球状の圧電素子を用いるのではなく、円弧状に反った複数の圧電素子を用いて球状のエネルギー変換部が構成されている。また、各圧電素子は、最大幅に対する長さの比率が2倍以上であり、素子幅が比較的狭く形成されている。この場合、圧電素子の各々のサイズが小さくなるため、焼成時の変形を低く抑え正確な寸法で圧電素子を形成することができる。さらに、製造設備の大型化を回避することができるため、球状超音波トランスデューサを容易にかつ低コストで製造することができる。圧電素子の素子片の最大幅に対する長さの比率は、2倍以上としたが、3倍以上とすることが好ましく、5倍以上とすることがより好ましい。また、素子片の最大幅に対する長さの比率が10倍以上20倍以下となるよう圧電素子を形成することが特に好ましい。

According to the first aspect of the present invention, in the energy conversion section, the element pieces of the plurality of piezoelectric elements have a ratio of the length to the maximum width of twice or more, and the width increases toward at least one side in the length direction. It has a tapered end portion that becomes narrower, has an outer surface curved in a convex shape and an inner surface curved in a concave shape, and has an arc shape as a whole in a side view. Further, by aligning the directions of the piezoelectric elements so that the tapered end portions of the plurality of piezoelectric elements are directed to one place, the piezoelectric elements are arranged so as to have a hemispherical shell shape or a spherical shell shape as a whole. Then, energy conversion is performed between acoustic energy and electric energy by virtue of the vibration of the piezoelectric element in the vibration mode in the length direction corresponding to the length, not the breathing vibration mode as in the prior art. As a result, it is possible to transmit and receive ultrasonic waves in the energy conversion unit. As described above, in the spherical ultrasonic transducer of the present invention, the spherical energy conversion unit is configured by using a plurality of piezoelectric elements warped in an arc shape instead of using the spherical piezoelectric elements as in the prior art. . Each piezoelectric element is formed such that the ratio of the length to the maximum width is twice or more, and the element width is relatively narrow. In this case, since the size of each piezoelectric element becomes small, it is possible to form the piezoelectric element with accurate dimensions while suppressing deformation during firing. Furthermore, since the enlargement of the manufacturing equipment can be avoided, the spherical ultrasonic transducer can be manufactured easily and at low cost. The ratio of the length of the piezoelectric element to the maximum width of the element piece is 2 times or more, preferably 3 times or more, and more preferably 5 times or more. Moreover, it is particularly preferable to form the piezoelectric element so that the ratio of the length to the maximum width of the element piece is 10 times or more and 20 times or less.

 請求項2に記載の発明は、請求項1において、前記複数の圧電素子は、それぞれ隙間を介して配置され音響的に分断されていることをその要旨とする。

The gist of a second aspect of the present invention is that, in the first aspect, the plurality of piezoelectric elements are arranged via gaps and are acoustically divided.

 請求項2に記載の発明によると、球状のエネルギー変換部において、複数の圧電素子はそれぞれ隙間を介して音響的に分断されているので、長さ方向の振動モードで各圧電素子を確実に振動させることができる。

According to the second aspect of the present invention, since the plurality of piezoelectric elements are acoustically separated through the gaps in the spherical energy conversion section, each piezoelectric element is reliably vibrated in the longitudinal vibration mode. Can be made.

 請求項3に記載の発明は、請求項2において、前記隙間は、前記最大幅以下の幅を有する線状の隙間であり、前記圧電素子の長さ方向に沿って形成されていることをその要旨とする。

According to a third aspect of the present invention, in the second aspect, the gap is a linear gap having a width equal to or less than the maximum width, and is formed along a length direction of the piezoelectric element. The gist.

 請求項3に記載の発明によると、各圧電素子間には線状の隙間が長さ方向に沿って形成されているので、圧電素子がその長さ方向に振動してエネルギー変換を確実に行うことができる。各圧電素子間の隙間は、素子片の最大幅以下としたが、最大幅の1/2以下とすることが好ましい。また、各圧電素子間の隙間は、最大幅の1/5以下とすることがより好ましく、さらに、素子片のサイズが大きくなる場合には、圧電素子間の隙間を最大幅の1/10以下とすることが好ましい。

According to the third aspect of the present invention, since the linear gap is formed between the piezoelectric elements along the length direction, the piezoelectric element vibrates in the length direction and reliably performs energy conversion. be able to. The gap between each piezoelectric element is set to be equal to or smaller than the maximum width of the element piece, but is preferably equal to or smaller than ½ of the maximum width. The gap between the piezoelectric elements is more preferably 1/5 or less of the maximum width. Further, when the size of the element piece is increased, the gap between the piezoelectric elements is 1/10 or less of the maximum width. It is preferable that

 請求項4に記載の発明は、請求項1乃至3のいずれか1項において、前記圧電素子は、圧電セラミックス製の1つの素子片により、中心角が90°を超える円弧に対応する長さとなるように形成されていることをその要旨とする。

According to a fourth aspect of the present invention, in any one of the first to third aspects, the piezoelectric element has a length corresponding to an arc having a central angle exceeding 90 ° by one element piece made of piezoelectric ceramics. The gist is that it is formed as described above.

 請求項4に記載の発明によると、中心角が90°を超える円弧に対応する長さを有する複数の圧電素子を用いることで、半球以上の表面積を有する球状のエネルギー変換部を構成することができる。また、圧電素子が1つの素子片により形成されるので、2つ以上の素子片により圧電素子を形成する場合のように素子片の接合部が存在しない。このため、圧電素子を容易に形成することができるとともに、素子片の接合部でのエネルギー変換効率の低下を回避することができる。

According to the invention described in claim 4, it is possible to configure a spherical energy conversion unit having a surface area greater than a hemisphere by using a plurality of piezoelectric elements having a length corresponding to an arc whose central angle exceeds 90 °. it can. Further, since the piezoelectric element is formed by one element piece, there is no element piece joint as in the case where the piezoelectric element is formed by two or more element pieces. For this reason, it is possible to easily form the piezoelectric element, and it is possible to avoid a decrease in energy conversion efficiency at the joint portion of the element piece.

 請求項5に記載の発明は、請求項1乃至4のいずれか1項において、前記複数の圧電素子は、前記エネルギー変換部における頭頂部に向けて前記先細状の端部が配置されているとともに、前記頭頂部には隙間が形成されていることをその要旨とする。

According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the plurality of piezoelectric elements have the tapered end portion arranged toward the top of the energy conversion portion. The gist is that a gap is formed in the top of the head.

 請求項5に記載の発明によると、エネルギー変換部の頭頂部において、複数の圧電素子を確実に振動させることができる。

According to the fifth aspect of the present invention, it is possible to reliably vibrate a plurality of piezoelectric elements at the top of the energy conversion unit.

 請求項6に記載の発明は、請求項1乃至5のいずれか1項において、前記支持部材は、外面が球面状に形成された素子設置部を有する球状土台であり、前記エネルギー変換部は、前記素子設置部の外面に前記複数の圧電素子を貼り付けることにより構成されていることをその要旨とする。

The invention according to claim 6 is the spherical base having the element installation portion in which the outer surface is formed in a spherical shape in any one of the first to fifth aspects, and the energy conversion portion is The gist is that the plurality of piezoelectric elements are attached to the outer surface of the element installation portion.

 請求項6に記載の発明によると、球状土台において、素子設置部の外面に複数の圧電素子を貼り付けることにより、全体として半球殻状ないし球殻状となるよう複数の圧電素子を確実に支持することができる。

According to the invention described in claim 6, in the spherical base, the plurality of piezoelectric elements are adhered to the outer surface of the element installation portion, thereby reliably supporting the plurality of piezoelectric elements so as to have a hemispherical shape or a spherical shell shape as a whole. can do.

 請求項7に記載の発明は、請求項1乃至6のいずれか1項に記載の球状超音波トランスデューサと、前記球状超音波トランスデューサに電気的に接続され、超音波の送信及び受信の少なくとも一方の処理を行うための処理回路とを備え、水中に設けられることを特徴とする水中計測装置をその要旨とする。

According to a seventh aspect of the present invention, there is provided a spherical ultrasonic transducer according to any one of the first to sixth aspects of the present invention, and at least one of ultrasonic transmission and reception that is electrically connected to the spherical ultrasonic transducer. An underwater measuring device including a processing circuit for performing processing and provided in water is a gist thereof.

 請求項7に記載の発明によると、球状超音波トランスデューサを用いることにより、水中における計測を比較的低コストで確実に行うことができる。また、球状超音波トランスデューサは、全方向指向性(無指向性)を有するため、広範囲の探知が可能であり、かつ探知時間の短縮等を図ることができる。

According to the seventh aspect of the invention, by using the spherical ultrasonic transducer, it is possible to reliably perform measurement in water at a relatively low cost. In addition, since the spherical ultrasonic transducer has omnidirectional directivity (omnidirectionality), it can detect a wide range and shorten the detection time.

 以上詳述したように、請求項1~6に記載の発明によると、球状超音波トランスデューサを低コスト、かつ容易に形成することができる。また、請求項7に記載の発明によると、水中における計測を無指向性で確実に行うことができる。

As described in detail above, according to the first to sixth aspects of the invention, the spherical ultrasonic transducer can be easily formed at low cost. Moreover, according to the invention of Claim 7, measurement in water can be reliably performed with non-directionality.

一実施の形態の海底地殻変動観測システムを示す概略構成図。The schematic block diagram which shows the seafloor crustal movement observation system of one Embodiment. 一実施の形態の球状超音波トランスデューサを示す断面図。Sectional drawing which shows the spherical ultrasonic transducer of one Embodiment. 一実施の形態のエネルギー変換部を示す斜視図。The perspective view which shows the energy conversion part of one Embodiment. 外面側から見た圧電素子を示す斜視図。The perspective view which shows the piezoelectric element seen from the outer surface side. 内面側から見た圧電素子を示す斜視図。The perspective view which shows the piezoelectric element seen from the inner surface side. 圧電素子を示す側面図。The side view which shows a piezoelectric element. 圧電素子を示す上面図。The top view which shows a piezoelectric element. 圧電素子を示す正面図。The front view which shows a piezoelectric element. 音圧の測定方法を示す説明図。Explanatory drawing which shows the measuring method of sound pressure. 周波数と音圧との関係を示すグラフ。The graph which shows the relationship between a frequency and sound pressure. 球状超音波トランスデューサの指向性を示すグラフ。The graph which shows the directivity of a spherical ultrasonic transducer. 別の実施の形態のエネルギー変換部を示す斜視図。The perspective view which shows the energy conversion part of another embodiment. 別の実施の形態のエネルギー変換部を示す斜視図。The perspective view which shows the energy conversion part of another embodiment. 別の実施の形態のエネルギー変換部を示す斜視図。The perspective view which shows the energy conversion part of another embodiment. 別の実施の形態の球状超音波トランスデューサを示す断面図。Sectional drawing which shows the spherical ultrasonic transducer of another embodiment. 球殻状の圧電素子からなる従来の超音波センサを示す正面図。The front view which shows the conventional ultrasonic sensor which consists of a spherical shell-shaped piezoelectric element.

 以下、本発明を具体化した一実施の形態を図面に基づき詳細に説明する。

Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

 図1には、海底の地殻変動を観測する海底地殻変動観測システム1の概略構成を示している。

FIG. 1 shows a schematic configuration of a seafloor crustal deformation observation system 1 that observes crustal deformation of the seabed.

 図1に示されるように、海底地殻変動観測システム1は、海底に設置される第1の水中計測装置2と、観測船3の船底部分に設けられる第2の水中計測装置4とを備える。なお、図示しないが、第1の水中計測装置2は、地殻変動の観測が必要な所定エリアにおいて所定の間隔をあけて複数設けられている。なお、第1の水中計測装置2が設置される海底の水深は1000m以上であってもよく、第1の水中計測装置2はその水圧に耐えることが可能な構造を有している。

As shown in FIG. 1, the seafloor crustal movement observation system 1 includes a first underwater measurement device 2 installed on the seabed and a second underwater measurement device 4 provided on the bottom portion of the observation ship 3. Although not shown, a plurality of the first underwater measurement devices 2 are provided at predetermined intervals in a predetermined area where crustal deformation needs to be observed. The depth of the seabed where the first underwater measuring device 2 is installed may be 1000 m or more, and the first underwater measuring device 2 has a structure capable of withstanding the water pressure.

 第1の水中計測装置2は、超音波の送受信が可能な無指向性の球状超音波トランスデューサ6と、そのトランスデューサ6に電気的に接続される送受信回路7とを備えている。第2の水中計測装置4も同様に、超音波の送受信が可能な球状超音波トランスデューサ6と、そのトランスデューサ6に電気的に接続される送受信回路7とを備えている。本実施の形態において、各水中計測装置2,4に備えられている球状超音波トランスデューサ6は、同じ構成を有する超音波送受波器である。なお、第1の水中計測装置2及び第2の水中計測装置4のうちの一方の計測装置(具体的には、例えば船底部分に設けられる受信側の水中計測装置4)において、超音波トランスデューサ6の代わりにマイクロフォンを用いて水中計測を行うようにしてもよい。

The first underwater measurement device 2 includes an omnidirectional spherical ultrasonic transducer 6 capable of transmitting and receiving ultrasonic waves, and a transmission / reception circuit 7 electrically connected to the transducer 6. Similarly, the second underwater measuring device 4 includes a spherical ultrasonic transducer 6 capable of transmitting and receiving ultrasonic waves, and a transmission / reception circuit 7 electrically connected to the transducer 6. In this Embodiment, the spherical ultrasonic transducer 6 with which each underwater measuring device 2 and 4 is provided is an ultrasonic transducer which has the same structure. Note that in one of the first underwater measuring device 2 and the second underwater measuring device 4 (specifically, for example, the receiving-side underwater measuring device 4 provided at the bottom of the ship), the ultrasonic transducer 6 is used. Alternatively, underwater measurement may be performed using a microphone.

 図2に示されるように、球状超音波トランスデューサ6は、音響エネルギーと電気エネルギーとの間でエネルギー変換を行う球状のエネルギー変換部10と、超音波伝達媒体であるオイル11とともにエネルギー変換部10を収容する樹脂カバー12とを備えている。球状超音波トランスデューサ6におけるエネルギー変換部10の表面は、超音波の送信及び受信を行うための送受波面として機能する。本実施の形態における第1の水中計測装置2では、例えば、球状をなすエネルギー変換部10を上方に向けた状態で球状超音波トランスデューサ6が海底に設置される。一方、第2の水中計測装置4では、例えば、球状をなすエネルギー変換部10を下方に向けた状態で球状超音波トランスデューサ6が船底に設置される。なお、各水中計測装置2,4の設置位置(海底、船底)や球状超音波トランスデューサ6の向き(上下方向)は必須の構成ではなく、それら設置位置や向きを適宜変更して水中計測を行ってもよい。

As shown in FIG. 2, the spherical ultrasonic transducer 6 includes a spherical energy conversion unit 10 that converts energy between acoustic energy and electric energy, and an energy conversion unit 10 together with oil 11 that is an ultrasonic transmission medium. And a resin cover 12 to be accommodated. The surface of the energy conversion unit 10 in the spherical ultrasonic transducer 6 functions as a transmission / reception wave surface for transmitting and receiving ultrasonic waves. In the first underwater measuring device 2 in the present embodiment, for example, the spherical ultrasonic transducer 6 is installed on the seabed with the spherical energy conversion unit 10 facing upward. On the other hand, in the second underwater measurement device 4, for example, the spherical ultrasonic transducer 6 is installed on the ship bottom with the spherical energy conversion unit 10 facing downward. In addition, the installation position (sea bottom, ship bottom) of each underwater measuring device 2 and 4 and the direction (vertical direction) of the spherical ultrasonic transducer 6 are not indispensable structures, and underwater measurement is performed by appropriately changing the installation position and orientation. May be.

 図3に示されるように、エネルギー変換部10は、複数(本実施の形態では27個)の圧電素子14と、それら複数の圧電素子14を支持する球状土台15(支持部材)とによって構成されている。複数の圧電素子14は、球殻をその経線方向に沿って複数に分割した形状を有している。

As shown in FIG. 3, the energy conversion unit 10 includes a plurality (27 in this embodiment) of piezoelectric elements 14 and a spherical base 15 (support member) that supports the plurality of piezoelectric elements 14. ing. The plurality of piezoelectric elements 14 have a shape in which a spherical shell is divided into a plurality along the meridian direction.

 より詳しくは、本実施の形態の圧電素子14は、例えばPZTなどからなる圧電セラミックス製の1つの素子片16を主体として形成されている。圧電素子14の素子片16は、長さ方向の一方側(図3では上側)に行くに従って幅が狭くなる先細状の端部18を有する。図2~図5に示されるように、圧電素子14の素子片16は、凸状に湾曲した外面21及び凹状に湾曲した内面22を有し、全体的に側面視で円弧状をなしている。また、素子片16において先細状の端部18の反対側(図3では下側)の端部19は、所定の幅を有した平坦状に形成されている。つまり、圧電素子14は、球殻を中心軸にて複数に分割するとともに、一方の端部19(図3では下端部)を切除した船形状(瓜皮状)をなしている。そして、複数の圧電素子14は、鋭角に尖った先細状の端部18が1箇所(本実施の形態では、エネルギー変換部10の頭頂部25)を向くように配置されている。また、圧電素子14において、素子片16の外面21及び内面22には銀からなる一対の電極26,27が設けられている。

More specifically, the piezoelectric element 14 of the present embodiment is mainly formed of one element piece 16 made of piezoelectric ceramic made of, for example, PZT. The element piece 16 of the piezoelectric element 14 has a tapered end portion 18 whose width becomes narrower toward one side in the length direction (upper side in FIG. 3). As shown in FIGS. 2 to 5, the element piece 16 of the piezoelectric element 14 has a convexly curved outer surface 21 and a concavely curved inner surface 22, and has an arc shape as a whole in a side view. . Further, the end 19 of the element piece 16 opposite to the tapered end 18 (the lower side in FIG. 3) is formed in a flat shape having a predetermined width. That is, the piezoelectric element 14 has a ship shape (skin shape) in which the spherical shell is divided into a plurality of parts around the central axis and one end portion 19 (lower end portion in FIG. 3) is cut off. And the some piezoelectric element 14 is arrange | positioned so that the taper-shaped edge part 18 sharpened at the acute angle may face one place (this embodiment top part 25 of the energy conversion part 10). In the piezoelectric element 14, a pair of electrodes 26 and 27 made of silver are provided on the outer surface 21 and the inner surface 22 of the element piece 16.

 球状土台15は、外面30が球面状に形成された素子設置部31と、その素子設置部31の下方に設けられた円板状のベース部32とを有する。そして、球状土台15における素子設置部31の外面30に、複数の圧電素子14が接着剤を介して貼り付けられることで球状のエネルギー変換部10が形成されている。本実施の形態では、素子設置部31の外面30は圧電素子14の内面22と同じ曲率で形成されており、複数の圧電素子14の内面22全体が接着剤を介して素子設置部31の外面30に接着固定されている。なお、本実施の形態では、圧電素子14を振動し易くするために比較的柔らかい材質の接着剤が用いられている。

The spherical base 15 includes an element installation portion 31 having an outer surface 30 formed into a spherical shape, and a disk-shaped base portion 32 provided below the element installation portion 31. And the spherical energy conversion part 10 is formed by affixing the some piezoelectric element 14 on the outer surface 30 of the element installation part 31 in the spherical base 15 via an adhesive agent. In the present embodiment, the outer surface 30 of the element installation portion 31 is formed with the same curvature as the inner surface 22 of the piezoelectric element 14, and the entire inner surface 22 of the plurality of piezoelectric elements 14 is formed on the outer surface of the element installation portion 31 via an adhesive. 30 is adhered and fixed. In the present embodiment, a relatively soft adhesive is used to facilitate the vibration of the piezoelectric element 14.

 樹脂カバー12は、音響インピーダンスが海水の音響インピーダンスの値に近い材料、具体的には、ウレタンゴムからなる。樹脂カバー12は、円筒部35とその円筒部35と一体的に形成され円筒部35の一端を塞ぐように設けられた半球部36とを有し、円筒部35の他端側の開口端37が球状土台15のベース部32によって塞がれた状態で固定されている。この状態では、樹脂カバー12の半球部36がエネルギー変換部10を覆うように配置されている。

The resin cover 12 is made of a material having an acoustic impedance close to the acoustic impedance value of seawater, specifically, urethane rubber. The resin cover 12 includes a cylindrical portion 35 and a hemispherical portion 36 that is integrally formed with the cylindrical portion 35 and is provided so as to close one end of the cylindrical portion 35, and an open end 37 on the other end side of the cylindrical portion 35. Is fixed in a state of being closed by the base portion 32 of the spherical base 15. In this state, the hemispherical portion 36 of the resin cover 12 is disposed so as to cover the energy conversion portion 10.

 本実施の形態において、エネルギー変換部10を構成する複数の圧電素子14は、隙間41,42を介して配置され音響的に分断されている。具体的には、エネルギー変換部10において、隣接する2つの圧電素子14の間には、経線方向(素子の長さ方向)に沿った線状の隙間41が形成されているとともに、各圧電素子14の先細状の端部18が向き合う頭頂部25に、隙間42が形成されている。

In this Embodiment, the some piezoelectric element 14 which comprises the energy conversion part 10 is arrange | positioned through the clearance gaps 41 and 42, and is divided acoustically. Specifically, in the energy conversion unit 10, a linear gap 41 along the meridian direction (the length direction of the element) is formed between two adjacent piezoelectric elements 14, and each piezoelectric element A gap 42 is formed in the top 25 where the 14 tapered ends 18 face each other.

 図6に示されるように、各圧電素子14の凹状に湾曲した内面22(エネルギー変換部10の内面)は、半径R1が80mmである球面状をなす。また、各圧電素子14の凸状に湾曲した外面21(エネルギー変換部10の外面)は、半径R2が85mmである球面状をなす。つまり、圧電素子14の厚T1さは5mmである。図6~図8に示されるように、圧電素子14における径線方向の長さL1は、中心角が132.9°の円弧に対応する長さを有し、緯線方向の長さL2(素子幅)は、中心角が12.0°の円弧に対応する長さを有する。また、緯線方向に隣接する圧電素子14の隙間41は、中心角が1.33°の円弧に対応する幅L3を有している。つまり、各圧電素子14間の隙間41は、素子幅L2の1/9程度の幅L3を有している。これら圧電素子14の幅L2や隙間41の幅L3は、エネルギー変換部10における経線方向の中央部45にて最も大きくなっている。本実施の形態において、各圧電素子14は、最大幅L4に対する長さL1の比率が11倍程度であり、比較的細長い素子形状となっている。

As shown in FIG. 6, the concavely curved inner surface 22 (the inner surface of the energy conversion unit 10) of each piezoelectric element 14 has a spherical shape with a radius R <b> 1 of 80 mm. Further, the convexly curved outer surface 21 (the outer surface of the energy conversion unit 10) of each piezoelectric element 14 has a spherical shape with a radius R2 of 85 mm. That is, the thickness T1 of the piezoelectric element 14 is 5 mm. As shown in FIGS. 6 to 8, the length L1 in the radial direction of the piezoelectric element 14 has a length corresponding to an arc having a center angle of 132.9 °, and the length L2 in the latitude direction (element (Width) has a length corresponding to an arc having a central angle of 12.0 °. Further, the gap 41 between the piezoelectric elements 14 adjacent in the latitude direction has a width L3 corresponding to an arc having a central angle of 1.33 °. That is, the gap 41 between the piezoelectric elements 14 has a width L3 of about 1/9 of the element width L2. The width L <b> 2 of the piezoelectric element 14 and the width L <b> 3 of the gap 41 are the largest at the central portion 45 in the meridian direction in the energy conversion unit 10. In the present embodiment, each piezoelectric element 14 has a ratio of the length L1 to the maximum width L4 of about 11 times, and has a relatively elongated element shape.

 エネルギー変換部10において、複数の圧電素子14は、頭頂部25を貫く中心軸Z1に対して、1.5°の円弧に対応する長さL5分だけ隙間を開けた状態で配置されている。従って、エネルギー変換部10の頭頂部25において、それぞれ対向する各圧電素子14の端部18の間には、中心角が3°の円弧に対応する長さ(=2×L5)の隙間42が形成されている。

In the energy conversion unit 10, the plurality of piezoelectric elements 14 are arranged with a gap by a length L5 corresponding to a 1.5 ° arc with respect to the central axis Z <b> 1 penetrating the crown 25. Accordingly, a gap 42 having a length (= 2 × L5) corresponding to an arc having a central angle of 3 ° is formed between the end portions 18 of the respective piezoelectric elements 14 facing each other at the top 25 of the energy conversion unit 10. Is formed.

 図2に示されるように、複数の圧電素子14において、外面21に設けられた一方の電極26(プラス電極)が全て同じ第1配線51に連結されるとともに、内面22に設けられた他方の電極27(マイナス電極)が全て同じ第2配線52に連結されている。なお、第1配線51は、各圧電素子14において素子幅が広くなる経線方向の中央部45にはんだ等を用いて接合されている。また、第2配線52は、圧電素子14間の隙間41を介して圧電素子14の側面部分に露出しているマイナス電極27に接続されている。

As shown in FIG. 2, in the plurality of piezoelectric elements 14, one electrode 26 (plus electrode) provided on the outer surface 21 is all connected to the same first wiring 51 and the other electrode provided on the inner surface 22. The electrodes 27 (minus electrodes) are all connected to the same second wiring 52. The first wiring 51 is joined to the central portion 45 in the meridian direction where the element width is widened in each piezoelectric element 14 using solder or the like. The second wiring 52 is connected to the negative electrode 27 exposed at the side surface portion of the piezoelectric element 14 through the gap 41 between the piezoelectric elements 14.

 図1に示されるように、超音波トランスデューサ6から延びる配線50(第1配線51及び第2配線52)は、送受信回路7に接続される。送受信回路7は、増幅回路やA/D変換回路等を備える処理回路であり、超音波の送信及び受信のための処理を行う。また、各水中計測装置2,4は、例えば10kHzの駆動信号を発生させる発振器(図示略)や、超音波の送受信処理を統括的に制御する制御装置(図示略)を備えている。制御装置は、周知のCPU(中央処理装置)やメモリ等を含んで構成されている。

As shown in FIG. 1, the wiring 50 (first wiring 51 and second wiring 52) extending from the ultrasonic transducer 6 is connected to the transmission / reception circuit 7. The transmission / reception circuit 7 is a processing circuit including an amplification circuit, an A / D conversion circuit, and the like, and performs processing for transmission and reception of ultrasonic waves. Each of the underwater measuring devices 2 and 4 includes, for example, an oscillator (not shown) that generates a 10 kHz drive signal and a control device (not shown) that comprehensively controls ultrasonic transmission / reception processing. The control device includes a known CPU (central processing unit), a memory, and the like.

 さらに、本実施の形態の海底地殻変動観測システム1は、GPSで船の現在位置を決定する位置情報取得装置(図示略)を備える。海底地殻変動観測システム1は、第1の水中計測装置2及び第2の水中計測装置4を用い、10kHzの超音波を送受信することにより観測船3と海底との距離を測る。そして、その距離とGPSで取得した観測船3の現在位置とに基づいて、第1の水中計測装置2が設置されている海底位置を観測する。この海底位置の観測を定期的に行ったり、地震後などに海底位置の観測を行ったりすることで、海底の地殻変動が測定されるようになっている。また、海底地殻変動観測システム1では、観測船3の移動中に複数回の距離測定を行うことにより、海底位置の測定精度を高めるようにしている。

Furthermore, the seafloor crustal movement observation system 1 according to the present embodiment includes a position information acquisition device (not shown) that determines the current position of the ship using GPS. The seafloor crustal deformation observation system 1 uses the first underwater measurement device 2 and the second underwater measurement device 4 to measure the distance between the observation ship 3 and the seabed by transmitting and receiving 10 kHz ultrasonic waves. Then, based on the distance and the current position of the observation ship 3 acquired by GPS, the seabed position where the first underwater measuring device 2 is installed is observed. By observing the seafloor position regularly or by observing the seafloor position after an earthquake, the crustal deformation of the seabed is measured. In the seafloor crustal deformation observation system 1, the measurement accuracy of the seafloor position is increased by performing distance measurement a plurality of times while the observation ship 3 is moving.

 上記のように構成した球状超音波トランスデューサ6の評価を行った。ここでは、図9に示されるように、水中において、エネルギー変換部10が上方に向くように球状超音波トランスデューサ6を設置するとともに、そのトランスデューサ6の上方に1mの距離を離してマイクロフォン55を配置する。そして、エネルギー変換部10の各圧電素子14の各電極26,27に対して、電位差が200Vの電圧Vppを10kHzの周波数で3サイクル印加し、マイクロフォン55を用いて観測される音圧(dB)と周波数(kHz)との関係を測定した。その結果を図10に示している。さらに、表1には、その測定結果として得られた10kHzでの音圧(dB)、最大音圧(dB)、最大音圧時の周波数(kHz)、最大音圧-6dBの帯域幅(kHz)を示している。また、比較例として従来品(海外製品)においても音圧と周波数との関係を測定し、その結果を図10及び表1に示している。なお、従来品は、球形ではなく多面形であって、正多角形状の圧電素子を各表面に貼り付けてなる構造を有する送受波器である。

Figure JPOXMLDOC01-appb-T000001

The spherical ultrasonic transducer 6 configured as described above was evaluated. Here, as shown in FIG. 9, the spherical ultrasonic transducer 6 is installed in the water so that the energy conversion unit 10 faces upward, and the microphone 55 is arranged at a distance of 1 m above the transducer 6. To do. Then, a voltage Vpp having a potential difference of 200 V is applied to each electrode 26 and 27 of each piezoelectric element 14 of the energy conversion unit 10 at a frequency of 10 kHz for 3 cycles, and a sound pressure (dB) observed using the microphone 55. And the frequency (kHz) were measured. The result is shown in FIG. Further, Table 1 shows the sound pressure (dB) at 10 kHz, the maximum sound pressure (dB), the frequency at the maximum sound pressure (kHz), and the bandwidth of the maximum sound pressure −6 dB (kHz) obtained as a result of the measurement. ). As a comparative example, the relationship between sound pressure and frequency was also measured for a conventional product (overseas product), and the results are shown in FIG. The conventional product is a transducer having a structure in which a regular polygonal piezoelectric element is attached to each surface, not a spherical shape but a polyhedral shape.

Figure JPOXMLDOC01-appb-T000001

 図10及び表1に示されるように、本実施の形態の球状超音波トランスデューサ6(実施例)は、10kHzでの音圧及び最大音圧が従来品よりも高く、音圧の周波数依存性は従来品とほぼ等しくなっていた。

As shown in FIG. 10 and Table 1, the spherical ultrasonic transducer 6 of this embodiment (example) has higher sound pressure at 10 kHz and maximum sound pressure than the conventional product, and the frequency dependence of sound pressure is It was almost equal to the conventional product.

 また、5kHz~15kHzにおける超音波トランスデューサ6のインピーダンスを測定した。この結果、本実施の形態の超音波トランスデューサ6における機械的品質係数Qmは従来品よりも低く、周波数依存性が少なくなっていた。さらに、超音波トランスデューサ6のインピーダンスは従来品よりも低く、マイクロフォン55の受信波形(図示略)における応答性は従来品よりも良好であることが確認された。

Further, the impedance of the ultrasonic transducer 6 at 5 kHz to 15 kHz was measured. As a result, the mechanical quality factor Qm in the ultrasonic transducer 6 of the present embodiment is lower than that of the conventional product, and the frequency dependency is reduced. Furthermore, it was confirmed that the impedance of the ultrasonic transducer 6 was lower than that of the conventional product, and the response in the received waveform (not shown) of the microphone 55 was better than that of the conventional product.

 また、球状超音波トランスデューサ6の指向性に関する測定を行った。その測定結果を図11に示している。なおここでは、球状超音波トランスデューサ6とマイクロフォン55との距離D1を1mに保ちつつ、マイクロフォン55の測定位置を周方向に沿って移動させる。具体的には、水平方向の位置P0(図9では右側の水平位置)を基準位置(角度が0°の位置)とし、位置P0→位置P45(角度が45°の位置)→位置P90(角度が90°の位置)→位置P135(角度が135°の位置)→位置P180(角度が180°の位置)の順に周方向に沿ってマイクロフォン55を移動させ、各位置P0~P180での音圧を測定した。なお、測定周波数は10kHzである。また、比較例としての従来品の指向性についても同様に測定し、その測定結果を図11に示している。

Further, the directivity of the spherical ultrasonic transducer 6 was measured. The measurement results are shown in FIG. Here, the measurement position of the microphone 55 is moved along the circumferential direction while keeping the distance D1 between the spherical ultrasonic transducer 6 and the microphone 55 at 1 m. Specifically, the position P0 in the horizontal direction (the horizontal position on the right side in FIG. 9) is set as a reference position (position where the angle is 0 °), and position P0 → position P45 (position where the angle is 45 °) → position P90 (angle) Is moved along the circumferential direction in the order of position P135 (position where the angle is 135 degrees) → position P180 (position where the angle is 180 degrees), and the sound pressure at each position P0 to P180. Was measured. The measurement frequency is 10 kHz. Further, the directivity of a conventional product as a comparative example was measured in the same manner, and the measurement result is shown in FIG.

 図11に示されるように、本実施の形態の球状超音波トランスデューサ6を用いる場合、従来品と比較して指向性が少なく、測定音圧が従来品よりも大きくなっていた。具体的には、従来品の場合、P0~P180の各測定位置において、181dB~186dBの音圧が測定され、特に位置P90での音圧が小さくなっていた。これに対して、本実施の形態の球状超音波トランスデューサ6では、P0~P180の各測定位置において、184dB~186dBの音圧が測定され、各測定位置での音圧差は2dBであり、従来品の音圧差の5dBよりも小さくなっていた。また、球状超音波トランスデューサ6では、位置P90での音圧が186dBであり、従来品と比較して5dB程度も大きくなっていた。

As shown in FIG. 11, when the spherical ultrasonic transducer 6 of the present embodiment is used, the directivity is less than that of the conventional product, and the measured sound pressure is larger than that of the conventional product. Specifically, in the case of the conventional product, the sound pressure of 181 dB to 186 dB was measured at each of the measurement positions P0 to P180, and the sound pressure at the position P90 was particularly small. On the other hand, in the spherical ultrasonic transducer 6 of the present embodiment, the sound pressure of 184 dB to 186 dB is measured at each measurement position P0 to P180, and the sound pressure difference at each measurement position is 2 dB. The sound pressure difference was less than 5 dB. In the spherical ultrasonic transducer 6, the sound pressure at the position P90 is 186 dB, which is about 5 dB larger than that of the conventional product.

 このように、本実施の形態の球状超音波トランスデューサ6を用いることにより、送受信感度が良好な無指向性の水中計測装置2,3を構成することができることが確認された。

Thus, it was confirmed that by using the spherical ultrasonic transducer 6 of the present embodiment, it is possible to configure the omnidirectional underwater measuring devices 2 and 3 with good transmission and reception sensitivity.

 従って、本実施の形態によれば以下の効果を得ることができる。

Therefore, according to the present embodiment, the following effects can be obtained.

 (1)本実施の形態の球状超音波トランスデューサ6では、エネルギー変換部10において、複数の圧電素子14における先細状の端部18が1箇所を向くように各圧電素子14の向きを揃えることで、全体として球殻状となるよう各圧電素子14を配置させることができる。そして、従来技術のような呼吸振動モードではなく、長さに応じた長さ方向の振動モードで圧電素子14が振動することで音響エネルギーと電気エネルギーとの間でエネルギー変換が行われる。この結果、エネルギー変換部10において超音波を送信したり受信したりすることが可能となる。このように、本実施の形態の球状超音波トランスデューサ6では、従来技術のような球殻状の圧電素子61(図16参照)を用いるのではなく、円弧状に反った複数の圧電素子14(図3~図5参照)を用いて球状のエネルギー変換部10が構成されている。また、球状のエネルギー変換部10を構成する複数の圧電素子14は、全て同じ形状である。具体的には、各圧電素子14は、最大幅L4に対する長さL1の比率が11倍程度であり、素子幅が比較的狭く形成されている。この場合、圧電素子14の各々のサイズが小さくなるため、焼成時の変形を低く抑え正確な寸法で圧電素子14を形成することができる。さらに、製造設備の大型化を回避することができるため、球状超音波トランスデューサ6を容易にかつ低コストで製造することができる。

(1) In the spherical ultrasonic transducer 6 of the present embodiment, in the energy conversion unit 10, the directions of the piezoelectric elements 14 are aligned so that the tapered end portions 18 of the plurality of piezoelectric elements 14 face one place. The piezoelectric elements 14 can be arranged so as to have a spherical shell shape as a whole. And energy conversion is performed between acoustic energy and electric energy by the piezoelectric element 14 vibrating in the vibration mode in the length direction corresponding to the length, not the breathing vibration mode as in the prior art. As a result, the energy conversion unit 10 can transmit and receive ultrasonic waves. As described above, the spherical ultrasonic transducer 6 of the present embodiment does not use the spherical shell-shaped piezoelectric element 61 (see FIG. 16) as in the prior art, but a plurality of piezoelectric elements 14 (in a circular arc shape) ( A spherical energy conversion unit 10 is configured using FIG. 3 to FIG. The plurality of piezoelectric elements 14 constituting the spherical energy conversion unit 10 are all the same shape. Specifically, each piezoelectric element 14 is formed so that the ratio of the length L1 to the maximum width L4 is about 11 times, and the element width is relatively narrow. In this case, since the size of each piezoelectric element 14 is reduced, the piezoelectric element 14 can be formed with an accurate dimension while suppressing deformation during firing. Furthermore, since it is possible to avoid an increase in the size of the manufacturing equipment, the spherical ultrasonic transducer 6 can be manufactured easily and at low cost.

 (2)本実施の形態の球状超音波トランスデューサ6では、球状のエネルギー変換部10における複数の圧電素子14は、それぞれ隙間41を介して配置され音響的に分断されている。従って、長さ方向の振動モードで各圧電素子14を確実に振動させることができる。また、隙間41は、最大幅L4の1/9程度の幅L3を有する線状の隙間である。この場合、各圧電素子14間の隙間41が小さくなるので、エネルギー変換部10の全周にわたってエネルギー変換を確実に行うことができる。

(2) In the spherical ultrasonic transducer 6 of the present embodiment, the plurality of piezoelectric elements 14 in the spherical energy conversion unit 10 are arranged via the gaps 41 and are acoustically divided. Therefore, each piezoelectric element 14 can be reliably vibrated in the vibration mode in the length direction. The gap 41 is a linear gap having a width L3 that is about 1/9 of the maximum width L4. In this case, since the gap 41 between the piezoelectric elements 14 becomes small, energy conversion can be reliably performed over the entire circumference of the energy conversion unit 10.

 (3)本実施の形態の球状超音波トランスデューサ6では、圧電素子14は、中心角が90°を超える円弧に対応する長さL1となるように形成されているので、半球以上の表面積を有する球状のエネルギー変換部10を容易に構成することができる。また、圧電素子14が圧電セラミックス製の1つの素子片16により形成されるので、2つ以上の素子片により圧電素子を形成する場合のように素子片の接合部が存在しない。このため、圧電素子14を容易に形成することができるとともに、素子片16の接合部でのエネルギー変換効率の低下を回避することができる。

(3) In the spherical ultrasonic transducer 6 of the present embodiment, the piezoelectric element 14 is formed to have a length L1 corresponding to an arc having a central angle exceeding 90 °, and thus has a surface area equal to or greater than a hemisphere. The spherical energy conversion unit 10 can be easily configured. Further, since the piezoelectric element 14 is formed by one element piece 16 made of piezoelectric ceramic, there is no element piece joint as in the case where the piezoelectric element is formed by two or more element pieces. For this reason, while being able to form the piezoelectric element 14 easily, the fall of the energy conversion efficiency in the junction part of the element piece 16 can be avoided.

 (4)本実施の形態の球状超音波トランスデューサ6において、複数の圧電素子14はエネルギー変換部10における頭頂部25に向けて先細状の端部18が配置されているとともに、頭頂部25には隙間42が形成されている。このようにすると、エネルギー変換部10の頭頂部25において、複数の圧電素子14を確実に振動させることができ、エネルギーの変換効率を高めることができる。

(4) In the spherical ultrasonic transducer 6 of the present embodiment, the plurality of piezoelectric elements 14 are provided with a tapered end 18 toward the top 25 of the energy conversion unit 10, and A gap 42 is formed. If it does in this way, in the top part 25 of energy conversion part 10, a plurality of piezoelectric elements 14 can be vibrated reliably, and energy conversion efficiency can be raised.

 (5)本実施の形態の海底地殻変動観測システム1では、第1の水中計測装置2及び第2の水中計測装置4において、エネルギー変換部10の頭頂部25同士が対向するよう各球状超音波トランスデューサ6が配置されている。つまり、海底に設置される第1の水中計測装置2では、エネルギー変換部10の頭頂部25が上方に向くように球状超音波トランスデューサ6が設けられ、船底部分に設けられる第2の水中計測装置4では、エネルギー変換部10の頭頂部25が下方に向くように球状超音波トランスデューサ6が設けられている。このようにすると、各超音波トランスデューサ6間での超音波の送受信を確実に行うことができ、距離測定を正確に行うことができる。

(5) In the seafloor crustal deformation observation system 1 according to the present embodiment, in the first underwater measurement device 2 and the second underwater measurement device 4, the spherical ultrasonic waves are arranged so that the top portions 25 of the energy conversion unit 10 face each other. A transducer 6 is arranged. That is, in the first underwater measurement device 2 installed on the seabed, the spherical ultrasonic transducer 6 is provided so that the top 25 of the energy conversion unit 10 faces upward, and the second underwater measurement device provided on the bottom of the ship. 4, the spherical ultrasonic transducer 6 is provided so that the top 25 of the energy conversion unit 10 faces downward. If it does in this way, transmission / reception of the ultrasonic wave between each ultrasonic transducer 6 can be performed reliably, and distance measurement can be performed correctly.

 (6)本実施の形態の海底地殻変動観測システム1において、第1の水中計測装置2は、水深1000m以上の海底に設置される場合がある。この場合でも、超音波トランスデューサ6のエネルギー変換部10が球形であるので、その水圧に十分に耐えることができ、海底の地殻変動を確実に観測することができる。

(6) In the seafloor crustal deformation observation system 1 of the present embodiment, the first underwater measurement device 2 may be installed on the seabed having a water depth of 1000 m or more. Even in this case, since the energy conversion unit 10 of the ultrasonic transducer 6 is spherical, it can sufficiently withstand the water pressure, and the crustal movement of the seabed can be observed reliably.

 なお、本発明の実施の形態は以下のように変更してもよい。

In addition, you may change embodiment of this invention as follows.

 ・上記実施の形態の超音波トランスデューサ6において、エネルギー変換部10を構成する各圧電素子14は、中心角が132.9°の円弧に対応する長さL1を有するとともに、中心角が12°の円弧に対応する幅L2を有していたが、細長い円弧状に形成されるものであれば、長さL1や幅L2は適宜変更してもよい。但し、半球以上の表面を有するエネルギー変換部10を構成する場合、中心角が90°を超える円弧に対応する長さL1となるように各圧電素子14を形成することが好ましい。また、エネルギー変換部10の表面積を十分に確保するには、中心角が100°以上の円弧に対応する長さL1となるように各圧電素子14を形成することが好ましい。さらに、球状土台15への設置を考慮すると、複数の圧電素子14は、中心角が170°以下の円弧に対応する長さL1とすることが好ましい。

In the ultrasonic transducer 6 of the above embodiment, each piezoelectric element 14 constituting the energy conversion unit 10 has a length L1 corresponding to an arc having a center angle of 132.9 ° and a center angle of 12 °. Although it has the width L2 corresponding to the arc, the length L1 and the width L2 may be appropriately changed as long as they are formed in an elongated arc shape. However, when configuring the energy conversion unit 10 having a hemispherical surface or more, it is preferable to form each piezoelectric element 14 so as to have a length L1 corresponding to an arc whose central angle exceeds 90 °. Further, in order to sufficiently secure the surface area of the energy conversion unit 10, it is preferable to form each piezoelectric element 14 so as to have a length L1 corresponding to an arc having a central angle of 100 ° or more. Furthermore, considering the installation on the spherical base 15, it is preferable that the plurality of piezoelectric elements 14 have a length L1 corresponding to an arc having a central angle of 170 ° or less.

 ・上記実施の形態の超音波トランスデューサ6では、エネルギー変換部10を構成する各圧電素子14は、圧電セラミックス製の1つの素子片16により形成されていたが、これに限定されるものではない。例えば、図12に示されるように、エネルギー変換部10Aを構成する複数の圧電素子14aは、圧電セラミックス製の2つの素子片16a,16bを長さ方向に接合することにより形成されるものでもよい。また、図13に示されるように、エネルギー変換部10Bを構成する複数の圧電素子14bは、圧電セラミックス製の3つの素子片16c,16d,16eを長さ方向に接合することにより形成されるものでもよい。なお、図12及び図13のような圧電素子14a,14bを形成する場合、各素子片16a~16eは、接着剤を用いて隙間がない状態で機械的に接合される。素子片16a~16e同士を接合する接着剤の硬化物は、各圧電素子14a,14bを球状土台15に固定する接着剤の硬化物よりも硬くなっている。また、図12の圧電素子14aは、中心角が90°の円弧に対応する長さL1を有し、図13の圧電素子14bは、上記実施の形態と同様に中心角が133°の円弧に対応する長さL1を有する。図12及び図13のようにエネルギー変換部10A,10Bを構成しても、各圧電素子14a,14bは、経線方向の長さに応じた周波数で振動し、音響エネルギーと電気エネルギーとの間でエネルギー変換を行うことができる。この場合、個々の素子片16a~16eのサイズは小さいが、素子片16a~16eを接合して圧電素子14a,14bを形成することにより、比較的大きな球状のエネルギー変換部10A,10Bを形成することができる。このため、製造設備の大型化を回避することができ、球状超音波トランスデューサの製造コストを低減することができる。

In the ultrasonic transducer 6 of the above embodiment, each piezoelectric element 14 constituting the energy converting unit 10 is formed by one element piece 16 made of piezoelectric ceramics, but is not limited thereto. For example, as shown in FIG. 12, the plurality of piezoelectric elements 14a constituting the energy conversion unit 10A may be formed by joining two element pieces 16a and 16b made of piezoelectric ceramics in the length direction. . As shown in FIG. 13, the plurality of piezoelectric elements 14b constituting the energy conversion unit 10B are formed by joining three element pieces 16c, 16d, and 16e made of piezoelectric ceramics in the length direction. But you can. When the piezoelectric elements 14a and 14b as shown in FIGS. 12 and 13 are formed, the element pieces 16a to 16e are mechanically joined using an adhesive without a gap. The cured product of the adhesive that joins the element pieces 16 a to 16 e is harder than the cured product of the adhesive that fixes the piezoelectric elements 14 a and 14 b to the spherical base 15. 12 has a length L1 corresponding to an arc having a central angle of 90 °, and the piezoelectric element 14b of FIG. 13 has an arc having a central angle of 133 ° as in the above embodiment. It has a corresponding length L1. Even if the energy conversion units 10A and 10B are configured as shown in FIGS. 12 and 13, the piezoelectric elements 14a and 14b vibrate at a frequency corresponding to the length in the meridian direction, and between acoustic energy and electrical energy. Energy conversion can be performed. In this case, the individual element pieces 16a to 16e are small in size, but the element pieces 16a to 16e are joined to form the piezoelectric elements 14a and 14b, thereby forming relatively large spherical energy conversion units 10A and 10B. be able to. For this reason, the enlargement of a manufacturing facility can be avoided and the manufacturing cost of a spherical ultrasonic transducer can be reduced.

 ・上記実施の形態の球状超音波トランスデューサ6において、複数の圧電素子14,14a,14bは、エネルギー変換部10,10A,10Bにおける頭頂部25に向けて先細状の上端部18が配置されるとともに、経線方向に沿って配置されていたが、これに限定されるものではない。複数の圧電素子によって球状のエネルギー変換部を構成するものであれば、複数の圧電素子の配置は特に限定されるものではない。具体的には、例えば、図14に示されるように、経線方向とは異なる方向に複数の圧電素子14cを配置してエネルギー変換部10Cを構成してもよい。図14のエネルギー変換部10Cでは、頭頂部25ではなく側部57に向けて各圧電素子14cの先細状の端部18aが向くように配置されている。なお、図14において、圧電素子14cは、一方の端部18aのみ図示されているが、図示されていない他方の端部18aも鋭角に尖った先細状となっている。つまり、各圧電素子14cは、両端部18aが鋭角に尖った先細状となっており、各端部18aがそれぞれ1箇所(エネルギー変換部10Cにおいて対向配置される側部57)を向くように球状土台15の素子設置部31に配置されている。この結果、素子設置部31の外面30において半球殻状となるよう各圧電素子14cが支持される。

In the spherical ultrasonic transducer 6 of the above embodiment, the plurality of piezoelectric elements 14, 14 a, 14 b have a tapered upper end 18 disposed toward the top 25 of the energy conversion unit 10, 10 </ b> A, 10 </ b> B. Although arranged along the meridian direction, it is not limited to this. The arrangement of the plurality of piezoelectric elements is not particularly limited as long as a spherical energy conversion unit is configured by the plurality of piezoelectric elements. Specifically, for example, as illustrated in FIG. 14, the energy conversion unit 10 </ b> C may be configured by arranging a plurality of piezoelectric elements 14 c in a direction different from the meridian direction. In the energy conversion unit 10 </ b> C of FIG. 14, the tapered end portions 18 a of the piezoelectric elements 14 c are arranged so as to face the side portions 57 instead of the top portion 25. In FIG. 14, only one end portion 18a of the piezoelectric element 14c is shown, but the other end portion 18a not shown is also tapered at an acute angle. That is, each piezoelectric element 14c has a tapered shape in which both end portions 18a are sharpened at an acute angle, and each end portion 18a has a spherical shape so as to face one place (a side portion 57 disposed opposite to the energy conversion portion 10C). It is arranged in the element installation part 31 of the base 15. As a result, each piezoelectric element 14 c is supported so as to have a hemispherical shell shape on the outer surface 30 of the element installation portion 31.

 ・上記実施の形態の球状超音波トランスデューサ6において、樹脂カバー12は、円筒部35と半球部36とを有する形状であったが、図15に示す球状超音波トランスデューサ6Aのように樹脂カバー12Aの形状を変更してもよい。樹脂カバー12Aは、円筒部38とその円筒部38と一体的に形成された球形部39とを有する。樹脂カバー12Aにおいて、円筒部38の軸線方向(図15では上下方向)の長さは上記実施の形態の樹脂カバー12における円筒部35(図2参照)の長さよりも短く、円筒部38の直径は円筒部35の直径より小さくなっている。また、樹脂カバー12Aにおいて、球形部39は、エネルギー変換部10に対向する位置に設けられており、半球以上の面積を有している。上記実施の形態の球状超音波トランスデューサ6では、樹脂カバー12において円筒部35の外径と半球部36の外径とが同じ寸法であった。これに対して、図15に示す樹脂カバー12Aでは、円筒部38の外径が球形部39の外径よりも小さくなっている。つまり、樹脂カバー12Aにおいて、円筒部38は、球形部39に対して窄んだ形状となっている。このように、樹脂カバー12Aを用いて球状超音波トランスデューサ6Aを構成すると、エネルギー変換部10の上部及び下部において、エネルギー変換部10の外面と樹脂カバー12A(球形部39)の内面との距離が均一になる。この場合、球状超音波トランスデューサ6Aにおける超音波の送受信感度を高めることができる。

In the spherical ultrasonic transducer 6 of the above embodiment, the resin cover 12 has a shape having the cylindrical portion 35 and the hemispherical portion 36. However, like the spherical ultrasonic transducer 6A shown in FIG. The shape may be changed. The resin cover 12 </ b> A has a cylindrical portion 38 and a spherical portion 39 formed integrally with the cylindrical portion 38. In the resin cover 12A, the length of the cylindrical portion 38 in the axial direction (vertical direction in FIG. 15) is shorter than the length of the cylindrical portion 35 (see FIG. 2) in the resin cover 12 of the above-described embodiment. Is smaller than the diameter of the cylindrical portion 35. In the resin cover 12A, the spherical portion 39 is provided at a position facing the energy conversion portion 10 and has an area larger than a hemisphere. In the spherical ultrasonic transducer 6 of the above embodiment, the outer diameter of the cylindrical portion 35 and the outer diameter of the hemispherical portion 36 in the resin cover 12 are the same size. In contrast, in the resin cover 12 </ b> A shown in FIG. 15, the outer diameter of the cylindrical portion 38 is smaller than the outer diameter of the spherical portion 39. That is, in the resin cover 12 </ b> A, the cylindrical portion 38 has a shape constricted with respect to the spherical portion 39. Thus, when the spherical ultrasonic transducer 6A is configured using the resin cover 12A, the distance between the outer surface of the energy conversion unit 10 and the inner surface of the resin cover 12A (spherical portion 39) is above and below the energy conversion unit 10. It becomes uniform. In this case, the ultrasonic transmission / reception sensitivity in the spherical ultrasonic transducer 6A can be increased.

 ・上記実施の形態では、外面30が球面状に形成された素子設置部31を有する球状土台15において、素子設置部31の外面30に複数の圧電素子14を貼り付けることでエネルギー変換部10が形成されていたが、球状土台15以外の支持部材を用いてもよい。具体的には、支持部材は、全体として半球殻状ないし球殻状となるよう複数の圧電素子14をその内面22側から支持するものであればよい。例えば、各圧電素子14の内面22の一部を固定する固定部を有する枠状の支持部材を用いてエネルギー変換部10を形成してもよい。なおこの場合、固定部は、圧電素子14の長さ方向において1/4波長に対応する位置に設けられる。このようにすると、支持部材の固定部に圧電素子14を固定した状態で圧電素子14を確実に振動させることができる。

In the above embodiment, in the spherical base 15 having the element installation part 31 having the outer surface 30 formed into a spherical shape, the energy conversion unit 10 is bonded to the outer surface 30 of the element installation part 31 by attaching the plurality of piezoelectric elements 14. Although formed, a support member other than the spherical base 15 may be used. Specifically, the supporting member may be any member that supports the plurality of piezoelectric elements 14 from the inner surface 22 side so as to have a hemispherical shell shape or a spherical shell shape as a whole. For example, the energy conversion unit 10 may be formed using a frame-shaped support member having a fixing unit that fixes a part of the inner surface 22 of each piezoelectric element 14. In this case, the fixing portion is provided at a position corresponding to a quarter wavelength in the length direction of the piezoelectric element 14. If it does in this way, the piezoelectric element 14 can be vibrated reliably in the state which fixed the piezoelectric element 14 to the fixing | fixed part of the supporting member.

 ・上記実施の形態では、球状超音波トランスデューサ6は、超音波の送受信を行うことが可能な超音波送受波器として機能させるものであったが、超音波の送信専用の送波器や、超音波の受信専用の受波器として機能させるものでもよい。具体的には、例えば、第1の水中計測装置2に設けられる球状超音波トランスデューサ6を超音波の送信専用の送波器として機能させる場合、受信側となる第2の水中計測装置4において球状超音波トランスデューサ6の代わりにマイクロフォンを設けて距離測定を行ってもよい。

In the above embodiment, the spherical ultrasonic transducer 6 functions as an ultrasonic transmitter / receiver capable of transmitting / receiving ultrasonic waves. It may function as a receiver dedicated to receiving sound waves. Specifically, for example, when the spherical ultrasonic transducer 6 provided in the first underwater measuring device 2 is made to function as a transmitter dedicated to transmitting ultrasonic waves, the second underwater measuring device 4 on the receiving side is spherical. A distance may be measured by providing a microphone instead of the ultrasonic transducer 6.

 ・上記実施の形態では、一対の水中計測装置2,4を備える海底地殻変動観測システム1に具体化するものであったが、これに限定されるものではない。例えば、1つの水中計測装置4を船底に設け、その水中計測装置4を用いて水中に存在する障害物の有無や、障害物の距離等を検出するよう観測システムを構成してもよい。この場合、超音波トランスデューサ6の各圧電素子14を駆動して超音波を送信するとともに、水中にある障害物で反射した超音波を超音波トランスデューサ6の各圧電素子14で受信する。制御装置(図示略)は、この受信信号に基づいて、水中に存在する障害物の有無を判定する。また、制御装置は、超音波の伝搬時間に基づいて、障害物の距離を検出する。さらに、障害物が存在する方向を特定できるように水中計測装置4を構成してもよい。具体的には、水中計測装置4において、超音波トランスデューサ6の圧電素子14毎、または隣接する複数の圧電素子14毎に専用の受信回路を設ける。また、送信回路によって各圧電素子14を同時に駆動して、超音波トランスデューサ6から全方向に超音波を送信する。そして、水中にある障害物で反射した超音波を超音波トランスデューサ6の各圧電素子14で受信する。このようにすると、球状超音波トランスデューサ6は、指向性を有する超音波送受波器として構成され、各受信回路で検出される超音波の受信信号の大きさに基づいて、障害物が存在する方向を特定することができる。

In the above embodiment, the submarine crustal deformation observation system 1 including the pair of underwater measurement devices 2 and 4 is embodied, but is not limited thereto. For example, the observation system may be configured to provide one underwater measuring device 4 on the bottom of the ship and detect the presence or absence of obstacles existing in the water, the distance of the obstacles, and the like using the underwater measuring device 4. In this case, the piezoelectric elements 14 of the ultrasonic transducer 6 are driven to transmit ultrasonic waves, and the ultrasonic waves reflected by the obstacles in the water are received by the piezoelectric elements 14 of the ultrasonic transducer 6. A control device (not shown) determines the presence or absence of an obstacle present in the water based on the received signal. Further, the control device detects the distance of the obstacle based on the propagation time of the ultrasonic wave. Furthermore, you may comprise the underwater measuring device 4 so that the direction where an obstruction exists can be specified. Specifically, in the underwater measurement device 4, a dedicated receiving circuit is provided for each piezoelectric element 14 of the ultrasonic transducer 6 or for each of a plurality of adjacent piezoelectric elements 14. Further, the piezoelectric elements 14 are simultaneously driven by the transmission circuit, and ultrasonic waves are transmitted from the ultrasonic transducer 6 in all directions. Then, the ultrasonic waves reflected by the obstacle in the water are received by each piezoelectric element 14 of the ultrasonic transducer 6. In this way, the spherical ultrasonic transducer 6 is configured as a directivity ultrasonic transducer, and the direction in which the obstacle exists is based on the magnitude of the ultrasonic reception signal detected by each reception circuit. Can be specified.

 次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。

Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

 (1)請求項1乃至6のいずれか1項において、前記エネルギー変換部における前記複数の圧電素子は、球殻をその経線方向に沿って複数に分割した形状を有することを特徴とする球状超音波トランスデューサ。

(1) In any one of claims 1 to 6, the plurality of piezoelectric elements in the energy conversion unit have a shape obtained by dividing a spherical shell into a plurality along the meridian direction. Sonic transducer.

 (2)請求項1乃至6のいずれか1項において、前記圧電素子は、100°以上170°以下の円弧に対応する長さを有することを特徴とする球状超音波トランスデューサ。

(2) The spherical ultrasonic transducer according to any one of claims 1 to 6, wherein the piezoelectric element has a length corresponding to an arc of 100 ° to 170 °.

 (3)請求項1乃至6のいずれか1項において、超音波伝達媒体とともに前記エネルギー変換部を収容する樹脂カバーをさらに備えていることを特徴とする球状超音波トランスデューサ。

(3) The spherical ultrasonic transducer according to any one of claims 1 to 6, further comprising a resin cover that accommodates the energy conversion unit together with the ultrasonic transmission medium.

 (4)請求項1乃至3のいずれか1項において、前記圧電素子は、圧電セラミックス製の2つ以上の素子片を長さ方向に接合することにより、中心角が90°を超える円弧に対応する長さとなるように形成されていることを特徴とする球状超音波トランスデューサ。

(4) The piezoelectric element according to any one of claims 1 to 3, wherein the piezoelectric element corresponds to an arc having a central angle exceeding 90 ° by joining two or more element pieces made of piezoelectric ceramics in a length direction. A spherical ultrasonic transducer characterized by being formed to have a length to be

 (5)技術的思想(4)において、前記圧電素子において2つ以上の前記素子片を接合する接着剤の硬化物は、前記圧電素子を前記支持部材に固定する接着剤の硬化物よりも硬いことを特徴とする球状超音波トランスデューサ。

(5) In the technical idea (4), the cured product of the adhesive that joins two or more of the element pieces in the piezoelectric element is harder than the cured product of the adhesive that fixes the piezoelectric element to the support member. A spherical ultrasonic transducer.

 (5)請求項7において、前記複数の圧電素子の各電極において、前記幅が最大となる前記長さ方向の中央部に配線が接続されることを特徴とする水中計測装置。

(5) The underwater measurement device according to claim 7, wherein, in each electrode of the plurality of piezoelectric elements, a wiring is connected to a central portion in the length direction where the width is maximum.

 (6)請求項7において、前記複数の圧電素子において、前記外面に設けられた一方の電極を全て同じ第1配線に連結するとともに、前記内面に設けられた他方の電極を全て同じ第2配線に連結することを特徴とする水中計測装置。

(6) In the seventh aspect, in the plurality of piezoelectric elements, one electrode provided on the outer surface is connected to the same first wiring, and the other electrode provided on the inner surface is connected to the same second wiring. An underwater measuring device connected to the underwater measuring device.

 (7)請求項7において、前記球状超音波トランスデューサは、音響的に無指向性であることを特徴とする水中計測装置。

(7) The underwater measuring device according to claim 7, wherein the spherical ultrasonic transducer is acoustically omnidirectional.

 (8)請求項7に記載の水中計測装置を備え、球状をなす前記エネルギー変換部を上方に向けた状態で前記球状超音波トランスデューサを海底に設置し、前記海底の地殻変動を観測することを特徴とする海底地殻変動観測システム。

(8) The apparatus includes the underwater measurement device according to claim 7, wherein the spherical ultrasonic transducer is installed on the seabed with the spherical energy conversion unit facing upward, and the crustal movement of the seabed is observed. A characteristic ocean bottom crustal deformation observation system.

 2,4…水中計測装置

 6,6A…球状超音波トランスデューサ

 7…処理回路としての送受信回路

 10,10A~10C…エネルギー変換部

 14,14a~14c…圧電素子

 15…支持部材としての球状土台

 16,16a~16e…素子片

 18,18a…先細状の端部

 21…外面

 22…内面

 25…頭頂部

 26,27…電極

 30…外面

 31…素子設置部

 41,42…隙間

2,4 ... Underwater measuring device

6,6A ... Spherical ultrasonic transducer

7: Transmission / reception circuit as a processing circuit

10, 10A-10C ... Energy conversion section

14, 14a-14c ... Piezoelectric element

15 ... Spherical base as support member

16, 16a to 16e ... element piece

18, 18a ... Tapered end

21 ... Outer surface

22 ... Inside

25 ... the top of the head

26, 27 ... Electrodes

30 ... Outer surface

31 ... Element installation part

41, 42 ... gap

Claims (7)


  1.  音響エネルギーと電気エネルギーとの間でエネルギー変換を行うエネルギー変換部を有する球状超音波トランスデューサであって、

     前記エネルギー変換部は、

     最大幅に対する長さの比率が2倍以上であり、長さ方向の少なくとも一方側に行くに従って幅が狭くなる先細状の端部を有し、凸状に湾曲した外面及び凹状に湾曲した内面を有し、かつ全体的に側面視で円弧状をなす圧電セラミックス製の素子片を主体とし、前記外面及び前記内面に各々電極が設けられた複数の圧電素子と、

     前記複数の圧電素子における前記先細状の端部が1箇所を向くように配置するとともに、全体として半球殻状ないし球殻状となるよう前記複数の圧電素子を前記内面側から支持する支持部材と

    を備え、前記複数の圧電素子は、前記長さ方向に伸縮するよう、長さに応じた長さ方向の固有振動数の振動モードで振動可能である

    ことを特徴とする球状超音波トランスデューサ。

    A spherical ultrasonic transducer having an energy conversion unit that converts energy between acoustic energy and electrical energy,

    The energy converter is

    The ratio of the length to the maximum width is twice or more, and has a tapered end portion that becomes narrower toward at least one side in the length direction, and has a convexly curved outer surface and a concavely curved inner surface. A plurality of piezoelectric elements each having an electrode formed on each of the outer surface and the inner surface, the main component being an element piece made of piezoelectric ceramic that has an arc shape as a whole in a side view;

    A support member configured to support the plurality of piezoelectric elements from the inner surface side so that the tapered end portions of the plurality of piezoelectric elements are directed to one place and have a hemispherical shell shape or a spherical shell shape as a whole;

    The plurality of piezoelectric elements can vibrate in a vibration mode having a natural frequency in the length direction corresponding to the length so as to expand and contract in the length direction.

    A spherical ultrasonic transducer.

  2.  前記複数の圧電素子は、それぞれ隙間を介して配置され音響的に分断されていることを特徴とする請求項1に記載の球状超音波トランスデューサ。

    The spherical ultrasonic transducer according to claim 1, wherein each of the plurality of piezoelectric elements is arranged via a gap and is acoustically divided.

  3.  前記隙間は、前記最大幅以下の幅を有する線状の隙間であり、前記圧電素子の長さ方向に沿って形成されていることを特徴とする請求項2に記載の球状超音波トランスデューサ。

    The spherical ultrasonic transducer according to claim 2, wherein the gap is a linear gap having a width equal to or smaller than the maximum width, and is formed along a length direction of the piezoelectric element.

  4.  前記圧電素子は、圧電セラミックス製の1つの素子片により、中心角が90°を超える円弧に対応する長さとなるように形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の球状超音波トランスデューサ。

    4. The piezoelectric element according to claim 1, wherein the piezoelectric element is formed by one element piece made of piezoelectric ceramic so as to have a length corresponding to an arc having a central angle exceeding 90 °. A spherical ultrasonic transducer according to 1.

  5.  前記複数の圧電素子は、前記エネルギー変換部における頭頂部に向けて前記先細状の端部が配置されているとともに、前記頭頂部には隙間が形成されていることを特徴とする請求項1乃至4のいずれか1項に記載の球状超音波トランスデューサ。

    2. The plurality of piezoelectric elements, wherein the tapered end portion is disposed toward the top of the energy conversion unit, and a gap is formed in the top. 5. The spherical ultrasonic transducer according to any one of 4 above.

  6.  前記支持部材は、外面が球面状に形成された素子設置部を有する球状土台であり、前記エネルギー変換部は、前記素子設置部の外面に前記複数の圧電素子を貼り付けることにより構成されていることを特徴とする請求項1乃至5のいずれか1項に記載の球状超音波トランスデューサ。

    The support member is a spherical base having an element installation portion whose outer surface is formed in a spherical shape, and the energy conversion unit is configured by attaching the plurality of piezoelectric elements to the outer surface of the element installation portion. The spherical ultrasonic transducer according to claim 1, wherein:

  7.  請求項1乃至6のいずれか1項に記載の球状超音波トランスデューサと、

     前記球状超音波トランスデューサに電気的に接続され、超音波の送信及び受信の少なくとも一方の処理を行うための処理回路と

    を備え、水中に設けられることを特徴とする水中計測装置。

    The spherical ultrasonic transducer according to any one of claims 1 to 6,

    A processing circuit electrically connected to the spherical ultrasonic transducer and performing at least one of transmission and reception of ultrasonic waves;

    And an underwater measuring device provided in the water.
PCT/JP2014/079248 2014-11-04 2014-11-04 Spherical ultrasonic wave transducer and underwater measurement device WO2016071961A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/079248 WO2016071961A1 (en) 2014-11-04 2014-11-04 Spherical ultrasonic wave transducer and underwater measurement device
JP2015511854A JP5802886B1 (en) 2014-11-04 2014-11-04 Spherical ultrasonic transducer, underwater measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079248 WO2016071961A1 (en) 2014-11-04 2014-11-04 Spherical ultrasonic wave transducer and underwater measurement device

Publications (1)

Publication Number Publication Date
WO2016071961A1 true WO2016071961A1 (en) 2016-05-12

Family

ID=54544732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079248 WO2016071961A1 (en) 2014-11-04 2014-11-04 Spherical ultrasonic wave transducer and underwater measurement device

Country Status (2)

Country Link
JP (1) JP5802886B1 (en)
WO (1) WO2016071961A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101864A1 (en) * 2016-11-30 2018-06-07 Saab Ab Sonar device with holder
WO2018229735A1 (en) * 2017-06-16 2018-12-20 Universidade Do Minho High frequency wideband wide beam ultrasound emitter transducer for underwater communications
TWI684005B (en) * 2019-04-10 2020-02-01 佳世達科技股份有限公司 Underwater ultrasonic device
TWI695981B (en) * 2019-10-02 2020-06-11 佳世達科技股份有限公司 Underwater ultrasonic device
CN112152308A (en) * 2020-09-04 2020-12-29 北京信息科技大学 Underwater wireless charging method and device covering full sea depth based on sound waves
WO2021165146A1 (en) * 2020-02-21 2021-08-26 Atlas Elektronik Gmbh Waterborne sound transducer
CN115542303A (en) * 2022-09-30 2022-12-30 中国科学院深圳先进技术研究院 Hemispherical omnidirectional ultrasonic transducer for complex structure detection and preparation method thereof
CN116953711A (en) * 2023-09-20 2023-10-27 国家深海基地管理中心 Long time sequence automatic monitoring device and method for underwater target
US11885876B2 (en) 2019-09-30 2024-01-30 Qisda Corporation Underwater ultrasonic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256398A (en) * 1995-03-16 1996-10-01 Olympus Optical Co Ltd Ultrasonic wave transducer and its manufacture
JPH10160826A (en) * 1996-11-27 1998-06-19 Hitachi Ltd Ultrasonic image device
JP2001343450A (en) * 2000-06-02 2001-12-14 Furuno Electric Co Ltd Underwater detecting device
JP2003232848A (en) * 2002-02-12 2003-08-22 Kaijo Corp Scanning sonar
JP2006208107A (en) * 2005-01-26 2006-08-10 Furuno Electric Co Ltd Ultrasonic handset and underwater detector
JP2012137412A (en) * 2010-12-27 2012-07-19 Biva Holdings Co Ltd Underwater position detection system, ultrasonic transmission means and ship side reception means used for underwater position detection system, and underwater position detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205879A (en) * 1985-03-08 1986-09-12 Tech Res & Dev Inst Of Japan Def Agency Directional beam forming circuit
US4638207A (en) * 1986-03-19 1987-01-20 Pennwalt Corporation Piezoelectric polymeric film balloon speaker
JPH05168094A (en) * 1991-12-19 1993-07-02 Hitachi Ltd Ultrasonic probe
JP3291074B2 (en) * 1993-06-15 2002-06-10 日本無線株式会社 Ultrasonic receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256398A (en) * 1995-03-16 1996-10-01 Olympus Optical Co Ltd Ultrasonic wave transducer and its manufacture
JPH10160826A (en) * 1996-11-27 1998-06-19 Hitachi Ltd Ultrasonic image device
JP2001343450A (en) * 2000-06-02 2001-12-14 Furuno Electric Co Ltd Underwater detecting device
JP2003232848A (en) * 2002-02-12 2003-08-22 Kaijo Corp Scanning sonar
JP2006208107A (en) * 2005-01-26 2006-08-10 Furuno Electric Co Ltd Ultrasonic handset and underwater detector
JP2012137412A (en) * 2010-12-27 2012-07-19 Biva Holdings Co Ltd Underwater position detection system, ultrasonic transmission means and ship side reception means used for underwater position detection system, and underwater position detection method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101864A1 (en) * 2016-11-30 2018-06-07 Saab Ab Sonar device with holder
US20190317201A1 (en) * 2016-11-30 2019-10-17 Saab Ab Sonar device with holder
US11686831B2 (en) 2016-11-30 2023-06-27 Saab Ab Sonar device with holder
WO2018229735A1 (en) * 2017-06-16 2018-12-20 Universidade Do Minho High frequency wideband wide beam ultrasound emitter transducer for underwater communications
US10955517B2 (en) 2019-04-10 2021-03-23 Qisda Corporation Underwater ultrasonic device
TWI684005B (en) * 2019-04-10 2020-02-01 佳世達科技股份有限公司 Underwater ultrasonic device
US11885876B2 (en) 2019-09-30 2024-01-30 Qisda Corporation Underwater ultrasonic device
TWI695981B (en) * 2019-10-02 2020-06-11 佳世達科技股份有限公司 Underwater ultrasonic device
WO2021165146A1 (en) * 2020-02-21 2021-08-26 Atlas Elektronik Gmbh Waterborne sound transducer
CN112152308A (en) * 2020-09-04 2020-12-29 北京信息科技大学 Underwater wireless charging method and device covering full sea depth based on sound waves
CN112152308B (en) * 2020-09-04 2022-12-09 北京信息科技大学 Underwater wireless charging method and device covering full sea depth based on sound waves
CN115542303A (en) * 2022-09-30 2022-12-30 中国科学院深圳先进技术研究院 Hemispherical omnidirectional ultrasonic transducer for complex structure detection and preparation method thereof
CN116953711A (en) * 2023-09-20 2023-10-27 国家深海基地管理中心 Long time sequence automatic monitoring device and method for underwater target
CN116953711B (en) * 2023-09-20 2023-12-15 国家深海基地管理中心 Long time sequence automatic monitoring device and method for underwater target

Also Published As

Publication number Publication date
JP5802886B1 (en) 2015-11-04
JPWO2016071961A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5802886B1 (en) Spherical ultrasonic transducer, underwater measuring device
US20210043825A1 (en) Multi-cell transducer
US20080013405A1 (en) Ultrasonic transducer for ranging measurement with high directionality using parametric transmitting array in air and a method for manufacturing same
CN102652269A (en) Ultrasonic wave sensor and method for attaching ultrasonic wave sensor
EP2271132A2 (en) Acoustic transducer
JP2009232056A (en) Low frequency oscillator, non-directional low frequency underwater acoustic wave receiver using same, and cylindrical radiation type low frequency underwater acoustic receiver
JP5434153B2 (en) Three-dimensional array type transducer, and apparatus provided with three-dimensional array type transducer
GB2521762A (en) Ultrasonic transmitting and/or receiving device
JP6759453B2 (en) Hydrophone and energy conversion method and composite hydrophone
KR101173937B1 (en) Underwater-use electroacoustic transducer
JP5111977B2 (en) Ultrasonic transducer
US20190257930A1 (en) Multi frequency piston transducer
EP2949404B1 (en) An electroacoustic transducer
WO2021201947A1 (en) Integrated acoustic localization and communications array
RU2403684C1 (en) Combined acoustic receiver
CN214410766U (en) Multi-mode broadband high-power directional emission longitudinal vibration underwater acoustic transducer
CN108262240B (en) PVDF ultrasonic transmitter in round table shape
JP2642812B2 (en) Underwater transducer
JPS6126397A (en) Ultrasonic transmitter-receiver
CN112530392A (en) Multimode broadband high-power directional emission longitudinal vibration underwater acoustic transducer
JP2010278913A (en) Ultrasonic transmitter-receiver
JP2007315791A (en) Underwater ultrasonic utilization apparatus, ship with same, ultrasonic transducer used for same, and wavelength matching body
JP2006180080A (en) Underwater echo sounder transducer integrated with optical wave receiver
JPS6126399A (en) Ultrasonic transmitter-receiver
JPH0638395U (en) Directional transducer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015511854

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905579

Country of ref document: EP

Kind code of ref document: A1