JP2001311770A - Underwater acoustic image processor - Google Patents

Underwater acoustic image processor

Info

Publication number
JP2001311770A
JP2001311770A JP2000132847A JP2000132847A JP2001311770A JP 2001311770 A JP2001311770 A JP 2001311770A JP 2000132847 A JP2000132847 A JP 2000132847A JP 2000132847 A JP2000132847 A JP 2000132847A JP 2001311770 A JP2001311770 A JP 2001311770A
Authority
JP
Japan
Prior art keywords
reception
vertical
horizontal
reception beams
transmissions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000132847A
Other languages
Japanese (ja)
Inventor
Yutaka Masuzawa
裕 鱒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000132847A priority Critical patent/JP2001311770A/en
Publication of JP2001311770A publication Critical patent/JP2001311770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underwater acoustic image processor receiving little influence by the changes of the states of waves on the sea surface and capable of sufficiently obtaining the effect of adding reception beams. SOLUTION: Vertical reception beams 8-1 through 8-m are concurrently formed at reception, the relative phase difference information among a plurality of vertical reception beams after a plurality of transmissions of acoustic waves is extracted from the information obtained by a plurality of vertical reception beams having little influence of waves near the sea surface, and the phase difference information is reflected on the process of horizontal reception beams. For the extraction of the phase difference information among a plurality of vertical reception beams, the correlation coefficient among the vertical reception beams is calculated based on the phasing output signal in the prescribed wave- form zone where the vertical reception beam includes the reflected signal of an object 6 or in the prescribed wave-form zone of a reception signal, and the phase difference giving the maximum value of the correlation coefficient is obtained. The influence by the changes of the state in the sea and on the sea surface is efficiently reduced, and reception beams by a plurality of transmissions and receptions can be added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,ソーナー装置,魚
群探知機などの水中情報を音響的な手法により可視化す
る水中音響映像化装置に関り,特に水中の状況変化によ
る探知対象画像の変動を低減する水中音響映像化装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater acoustic imaging device for visualizing underwater information by an acoustic method, such as a sonar device and a fish finder, and more particularly to a method for detecting a change in an image to be detected due to a change in underwater conditions. The present invention relates to an underwater acoustic imaging device to be reduced.

【0002】[0002]

【従来の技術】従来のソーナー装置等は,主に船舶や水
中,水上の航走体,水中潜航体に装着されている。装着
される船舶等や航走体等は,通常,海面,海中での波,
又は航走による揺れの影響を受け,地球上の絶対位置座
標に対して常に相対運動をしている状態で動作してい
る。
2. Description of the Related Art Conventional sonar devices and the like are mainly mounted on ships, underwater vehicles, underwater vehicles, and underwater vehicles. Ships and crafts to be mounted are usually at sea level, underwater waves,
Or, it is affected by the sway caused by the cruising, and is operating in a state of always performing relative movement with respect to the absolute position coordinates on the earth.

【0003】これに対し,海上船舶であれば一般に言う
電波灯台からの基準信号として知られるロラン信号や,
近年では複数の衛星からの電波を元に絶対位置を測定す
るグローバル・ポジショニング・システム(GPS)が
搭載されており,海底に対して送信した音波の反射信号
を用いるドプラ速度計の慣性航法と併せ,港湾内等での
船舶の航行に対する十分高精度な位置情報が得られるシ
ステムが普及している。 また,ソーナー画像は,船舶
等の航走体の推進速度に併せて十分遠距離位置の情報を
できる限り詳細に把握することを目的とするが,ソーナ
ー装置等の装着部と,探知,検出,画像化する水中や海
中の対象との距離が,送受信する音波の水中での波長に
比べて非常に大きい場合が殆どであり,水中の鉛直方向
の温度分布により音速が変化し,音の伝播経路が変化し
て遠距離の目標反射物への距離計測に著しい狂いを生じ
ることが広く知られている。
On the other hand, for marine vessels, a Loran signal, which is generally known as a reference signal from a radio lighthouse,
In recent years, a Global Positioning System (GPS) that measures the absolute position based on radio waves from multiple satellites has been installed, along with the inertial navigation of the Doppler speedometer that uses the reflected signal of the sound wave transmitted to the sea floor. 2. Description of the Related Art Systems that can obtain sufficiently high-accuracy position information for navigation of ships in ports and the like have become widespread. The purpose of the sonar image is to grasp the information on the far-distance position sufficiently as much as possible in accordance with the propulsion speed of the marine vehicle such as a ship. In most cases, the distance to the underwater or underwater object to be imaged is very large compared to the wavelength of sound waves transmitted and received in water, and the speed of sound changes due to the vertical temperature distribution in the water, and the sound propagation path It is widely known that changes in the distance can cause significant deviations in the distance measurement to a target reflector at a long distance.

【0004】ソーナー装置の複数の送受信で得られる音
響信号を加工して,海中,海面の状況の変化の影響を減
少させる情報処理手法が知られている(特開平9−14
5840号公報,特開平6−222142号公報)。こ
れらの処理方法では,深海域のサイドスキャンソーナー
装置等の比較的好適な受信信号の加算が行なわれてい
る。
There is known an information processing method for processing an acoustic signal obtained by a plurality of transmissions and receptions of a sonar device to reduce the influence of changes in the state of the sea or the sea surface (JP-A-9-14).
No. 5840, JP-A-6-222142). In these processing methods, relatively suitable addition of received signals from a side scan sonar device or the like in the deep sea is performed.

【0005】[0005]

【発明が解決しようとする課題】従来技術の位置情報シ
ステム等の技術は,主に船舶等の航走体の水平面内の併
進運動に関してその絶対位置を与えるが,船体全体の運
動を把握することには主眼が置かれておらず,船舶の垂
直方向の運動要素を含むローリング,ピッチングの変動
分を,必ずしも十分に検出できない場合が多いという問
題がある。
The prior art, such as the position information system, mainly gives the absolute position of the translatory motion of a marine vehicle such as a ship in the horizontal plane, but it is necessary to grasp the motion of the entire hull. However, there is a problem that the main focus is not placed on, and it is often not always possible to sufficiently detect the rolling and pitching fluctuations including the vertical motion element of the ship.

【0006】従来技術では,ソーナー装置の近傍の水温
の垂直分布を計測して音線経路を推定する方法等が取ら
れているが,局所的な水塊の存在等で,再構成されたソ
ーナー画像の絶対位置は遠方に至るほど著しく精度を落
とすのが常であるという問題があった。
In the prior art, a method of estimating a sound ray path by measuring a vertical distribution of water temperature in the vicinity of a sonar device or the like has been adopted. There has been a problem that the accuracy of the absolute position of an image is usually significantly reduced as it gets farther.

【0007】また,絶対位置の校正された音響ビーコン
信号源等も特定の港湾,航路以外の沿岸,一般の海洋上
等では設置されておらず,特定の航路以外で運用される
ソーナーシステムではソーナー画像,ソーナー情報によ
り船舶の絶対位置を求めることには実用上限界があると
いう問題があった。
[0007] Further, an acoustic beacon signal source or the like whose absolute position is calibrated is not installed in a specific port, a coast other than a route, a general marine environment, and the like. There is a practical limit to obtaining the absolute position of a ship from images and sonar information.

【0008】従来技術に於けるソーナー装置の画像処理
方法では,浅海域での海面風浪の影響を考慮した信号の
計測方法,それに基づく受信ビームの加算方法が開示さ
れていない。
In the image processing method of the sonar device in the prior art, there is no disclosure of a method of measuring a signal in consideration of the influence of sea surface wind in a shallow sea area and a method of adding a received beam based on the method.

【0009】本発明の目的は,海中,海面の状況の変化
による影響を効率的に減少させて,複数の送受信による
受信ビームを加算する方法を提供し,海面の風浪状況の
変化による影響が少なく,受信ビームの加算の効果が十
分に得られる水中音響映像化装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for efficiently reducing the influence of a change in the state of the sea and the sea surface and adding a plurality of reception beams by transmission / reception. It is another object of the present invention to provide an underwater acoustic imaging apparatus capable of sufficiently obtaining the effect of addition of reception beams.

【0010】[0010]

【課題を解決するための手段】本発明の水中音響映像化
装置は,鉛直方向に配列される複数の鉛直送受波素子を
有する鉛直送受波器と,水平方向に配列される複数の水
平送受波素子を有する水平送受波器とを具備し,受信整
相回路により,水平方向の所望の探知範囲(関心領域)
で複数の受信ビーム,及び,鉛直方向に複数の受信ビー
ムを形成する。受波整相回路は水中の深度,又は水平か
らの俯角に対応して鉛直方向に複数の受信ビームを形成
する。水平方向の受信ビームの信号は水平受信ビームメ
モリに記憶され,鉛直方向の受信ビームの信号は鉛直受
信ビームメモリに記憶される。鉛直方向に形成される複
数の受信ビームの演算処理結果に基づいて,水平方向で
の所望の関心領域での複数の受信ビームの複数回の音波
の送信にわたる加算を行なう構成とする。
An underwater acoustic imaging apparatus according to the present invention comprises a vertical transducer having a plurality of vertical transducers arranged in a vertical direction, and a plurality of horizontal transducers arranged in a horizontal direction. And a horizontal detector having an element, and a desired detection range in the horizontal direction (region of interest) by a reception phasing circuit.
Form a plurality of reception beams and a plurality of reception beams in the vertical direction. The reception phasing circuit forms a plurality of reception beams in the vertical direction corresponding to the depth in water or the depression angle from the horizontal. The signal of the reception beam in the horizontal direction is stored in the horizontal reception beam memory, and the signal of the reception beam in the vertical direction is stored in the vertical reception beam memory. On the basis of the arithmetic processing result of the plurality of reception beams formed in the vertical direction, the addition of the plurality of reception beams in the desired region of interest in the horizontal direction over a plurality of times of transmission of sound waves is performed.

【0011】鉛直方向に形成される複数の受信ビームの
所定の時間区間に関する相関係数を複数回の音波の送信
にわたり求める。この相関係数から複数回の音波の送信
にわたる複数の受信ビームの波形に於ける上記所定の時
間区間の開始時点の相対的時間差を検出する。この相対
的時間差を水平方向での所望の関心領域での複数の受信
ビームに与えた後に,複数回の音波の送信にわたり,加
算を行なう構成とする。 鉛直方向に形成される複数の
受信ビームの所定の時間区間に関する相関係数を複数回
の音波の送信にわたり求める。求められた複数の相関係
数のうちで相関係数が最も大きい場合の相対的時間差を
求める。この相対的時間差を水平方向での所望の関心領
域での複数の受信ビームに与えた後に,複数回の音波の
送信にわたり,加算を行なう構成とする。
A correlation coefficient for a predetermined time section of a plurality of reception beams formed in the vertical direction is obtained over a plurality of transmissions of sound waves. From this correlation coefficient, a relative time difference between the start points of the predetermined time section in the waveforms of a plurality of reception beams over a plurality of transmissions of sound waves is detected. After giving this relative time difference to a plurality of reception beams in a desired region of interest in the horizontal direction, addition is performed over a plurality of transmissions of sound waves. A correlation coefficient for a predetermined time section of a plurality of reception beams formed in the vertical direction is obtained over a plurality of times of transmission of sound waves. The relative time difference when the correlation coefficient is the largest among the plurality of obtained correlation coefficients is determined. After giving this relative time difference to a plurality of reception beams in a desired region of interest in the horizontal direction, addition is performed over a plurality of transmissions of sound waves.

【0012】水中の深度,又は水平からの俯角に対応し
て鉛直方向に形成される複数の受信ビームをそれらの水
中の深度,又は水平からの俯角に関して配列した順序
で,それらの一部または全てに指数を対応させる。これ
ら,深度に対応する指数と時間に関する2次元相関係数
を求める。即ち,鉛直(深度,又は俯角)方向と時間方
向に関する前記鉛直方向に形成される複数の受信ビーム
の間での2次元相関係数を求める。求められた複数の2
次元相関係数のうちで2次元相関係数が最も大きい場合
の相対的時間差を求め,この相対的時間差を水平方向で
の所望の関心領域での複数の受信ビームに与えた後に,
複数回の音波の送信にわたり,加算を行なう構成とす
る。
A plurality of receiving beams formed in the vertical direction corresponding to the depth in water or the depression angle from the horizontal are arranged in a part or all of them in the order of their depth in the water or the depression angle from the horizontal. To the exponent. These two-dimensional correlation coefficients relating to the exponent corresponding to the depth and time are obtained. That is, a two-dimensional correlation coefficient between a plurality of reception beams formed in the vertical direction with respect to the vertical (depth or depression angle) direction and the time direction is obtained. The multiple 2 sought
After obtaining a relative time difference when the two-dimensional correlation coefficient is the largest among the two-dimensional correlation coefficients, and applying the relative time difference to a plurality of reception beams in a desired region of interest in the horizontal direction,
The addition is performed over a plurality of transmissions of the sound wave.

【0013】本発明によれば,ソーナー装置,魚群探知
機等の水中音響映像化装置に於いて,風浪により遠距離
部分での受信ビームの間での信号の相関が劣化しやすい
という問題を解決できる。
According to the present invention, in an underwater acoustic imaging device such as a sonar device and a fish finder, the problem that the correlation of signals between reception beams in a long distance portion easily deteriorates due to wind waves is solved. it can.

【0014】[0014]

【発明の実施の形態】以下,本発明の実施例を図面を参
照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明を船舶ソーナー装置に適用す
る実施例を説明する図である。船舶1の喫水下に装着さ
れたソーナー装置(図1に図示せず)は探信音(音波)
の送信により定まる探知範囲2を持っている。探知範囲
2内では,1回の探信音の送信で同時に水平受信ビーム
3−1,3−2,…,3−t,…,3−nが音響受信信
号の整相加算処理により形成されている。
FIG. 1 is a view for explaining an embodiment in which the present invention is applied to a ship sonar device. The sonar device (not shown in FIG. 1) mounted under the draft of the ship 1 is a probe sound (sound wave).
Has the detection range 2 determined by the transmission of Within the detection range 2, horizontal reception beams 3-1, 3-2,..., 3-t,. ing.

【0016】水平受信ビーム3−1〜3−nは,海面4
と海底5の間に浮流する物体6を捕らえるべく水平面よ
り所定の俯角を基準に形成され,扇状の探知範囲2内か
らの音響的反射信号に基いてソーナー画像等の有用情報
が形成される。
The horizontal reception beams 3-1 to 3-n are transmitted to the sea surface 4
In order to catch the object 6 floating between the sea and the seabed 5, a predetermined depression angle is formed from a horizontal plane as a reference, and useful information such as a sonar image is formed based on an acoustic reflection signal from within the fan-shaped detection range 2.

【0017】本発明では,物体6が存在するか,又は物
体6の存在が疑われる部分の水平受信ビーム3−tの上
下方向で,鉛直線7に沿うように鉛直受信ビーム8−1
〜8−mを新たに形成する。また,水平受信ビーム3−
tも鉛直線7に沿うという点で鉛直受信ビーム8−1〜
8−mに含まれると考えることができる。
According to the present invention, the vertical reception beam 8-1 extends along the vertical line 7 in the vertical direction of the horizontal reception beam 3-t in the portion where the object 6 exists or where the object 6 is suspected to exist.
~ 8-m is newly formed. In addition, the horizontal receive beam 3-
The vertical receiving beam 8-1 to 8-1 in that t also follows the vertical line 7.
8-m.

【0018】なお,船舶1の海上での動揺により鉛直受
信ビーム8−1〜8−mが正確に鉛直方向に沿わない場
合もあるが,船舶1のローリング・ピッチング等の偏向
運動の影響は実用上小さい。
Although the vertical receiving beams 8-1 to 8 -m may not accurately follow the vertical direction due to the motion of the ship 1 at sea, the effect of the deflection motion such as rolling and pitching of the ship 1 is not practical. Above small.

【0019】図2は本発明の実施例の船舶ソーナー装置
の原理を説明する図である。船舶1に装備されたソーナ
ー装置9から探信音が発射され,音線経路10−1,1
0−2,10−3,10−4等を経て物体6に到達す
る。また,反射信号の経路も同様の経路を経ると考えら
れる。探信音の送信時刻t1では海面の状態は状態11
−1,探信音の送信時刻t2では海面の状態は状態11
−2である。
FIG. 2 is a view for explaining the principle of the ship sonar apparatus according to the embodiment of the present invention. A search sound is emitted from a sonar device 9 mounted on the ship 1, and the sound ray paths 10-1, 1
It reaches the object 6 via 0-2, 10-3, 10-4 and the like. Also, it is considered that the path of the reflected signal also goes through a similar path. At the transmission time t1 of the search sound, the state of the sea surface is state 11
At the transmission time t2 of the probe sound, the state of the sea surface is state 11
-2.

【0020】探信音の送信時刻t1では音線経路10−
1であるが,探信音の送信時刻t2では音線経路10−
1は変化して音線経路10−2を形成する。一方,直接
に物体6に到達する音線経路10−3,海底5で反射す
る音線経路10−4では,音線経路10−1,10−2
のように探信音の音線経路の変動は少なく,探信音の音
線経路は安定している。
At the transmission time t1 of the search sound, the sound ray path 10-
1, but at the transmission time t2 of the search sound, the sound ray path 10-
1 changes to form a sound ray path 10-2. On the other hand, in the sound ray path 10-3 that directly reaches the object 6 and the sound ray path 10-4 that reflects off the sea floor 5, the sound ray paths 10-1 and 10-2
The fluctuation of the sound ray path of the search sound is small as shown in Fig. 7, and the sound ray path of the search sound is stable.

【0021】図1に示す水平受信ビーム3−tの形成で
は,このような音線経路群の全てが加算された状態で受
信整相が行なわれるため,物体6からの反射信号や整相
出力はこうした多重の音線経路による残響を伴うのが常
である。
In the formation of the horizontal reception beam 3-t shown in FIG. 1, the reception phasing is performed in a state where all of the sound ray path groups are added, so that the reflection signal from the object 6 and the phasing output are obtained. Is usually accompanied by reverberation from these multiple ray paths.

【0022】物体6が海面付近を浮流している場合等に
は,水平受信ビームの形成範囲である探知範囲2は水平
面に対する俯角を小さくして形成しなければならない
が,送信した探信音のエネルギのうち,音線経路10−
1,10−2のように海面で多重反射を往復経路で受け
て反射してくるエネルギの占める割合が増すため,特別
に風浪階級が低い場合を除き,海面4の状態変化により
探信音の送信毎に著しく異なる残響を持つ反射信号で水
平受信ビームが形成され,各種の音響情報による物体6
の探知を困難にしている。
When the object 6 is floating near the sea surface or the like, the detection range 2, which is the formation range of the horizontal reception beam, must be formed with a small depression angle with respect to the horizontal plane. Of energy, sound ray path 10-
As shown in 1,10-2, the ratio of the energy reflected by receiving multiple reflections on the sea surface in the reciprocating path increases, and therefore, unless the wind wave class is particularly low, the state change of the sea surface 4 causes A horizontal reception beam is formed by a reflected signal having reverberation that is significantly different for each transmission, and an object 6 based on various acoustic information is formed.
Making it difficult to detect.

【0023】一方,風浪による海面は所定の統計モデル
に当てはめることができることから,探信音の音線経路
の往復経路の変動も統計量に従うとして,複数回の探信
音の送信により得られる受信整相出力をそのまま統計処
理する技術が広く普及しているが,風浪の影響が大き
く,複数回の探信音の送信により得られる受信波形の相
関が著しく失われている状況では,必ずしも優位な結果
を得られない。
On the other hand, since the sea surface due to wind waves can be applied to a predetermined statistical model, it is assumed that the fluctuation of the round-trip path of the sound ray path of the search sound follows the statistics, and the reception obtained by transmitting the search sound a plurality of times. Statistical processing of the phasing output as it is is widely used, but it is not always advantageous in situations where the effects of wind waves are large and the correlation of the received waveforms obtained by multiple transmissions of the probe sound is significantly lost. No result.

【0024】本発明では,海面付近の音線経路は風浪の
影響が大きく受けるという事実に着目し,鉛直受信ビー
ム8−1〜8−mを受信時に同時に形成し,海面付近の
風浪の影響が少ない複数の鉛直受信ビームにより得られ
る情報から,複数の鉛直受信ビームの間での相対的な位
相差情報を抽出し,この位相差情報を水平受信ビームの
処理に反映させることに特徴がある。
In the present invention, attention is paid to the fact that the sound ray path near the sea surface is greatly affected by wind waves, and the vertical reception beams 8-1 to 8 -m are simultaneously formed at the time of reception, so that the influence of wind waves near the sea surface is reduced. It is characterized in that relative phase difference information among a plurality of vertical reception beams is extracted from information obtained by a small number of vertical reception beams, and this phase difference information is reflected in processing of a horizontal reception beam.

【0025】複数回の探信音の送信により得られる複数
の鉛直受信ビームの,複数回の探信音の送信にわたる位
相(時間)差情報の抽出は,鉛直受信ビームが物体6の
反射信号を含む所定の波形区間か,受信信号の所定の波
形区間の整相出力信号に基づいて,鉛直受信ビームの間
の相関係数を計算し,相関係数の最大値を与える位相差
を得ることができる。以下具体的にこの処理を説明す
る。
The extraction of the phase (time) difference information of the plurality of vertical reception beams obtained by transmitting the plurality of search sounds over the plurality of transmissions of the search sound is performed by extracting the reflection signal of the object 6 from the vertical reception beam. A correlation coefficient between vertical reception beams is calculated based on a phasing output signal of a predetermined waveform section including or a predetermined waveform section of a reception signal, and a phase difference that gives a maximum value of the correlation coefficient can be obtained. it can. Hereinafter, this processing will be specifically described.

【0026】先ず,オペレータは,第i回目の探信音の
送信により得られる水平受信ビーム3−tの整相出力波
形に,物体6の検出推定時刻tixを含む長さtpの時
間区間,{tia,tib}(tia≦tix≦ti
b,tp=tib−tia)を設定する。鉛直受信ビー
ム8−1〜8−mの整相出力波形の時間区間,{ti
a,tib}部分から切り出された波形を,ui(t,
1)〜ui(t,m)とする。 同様に,第j回目の探
信音の送信により得られる水平受信ビーム3−tの整相
出力波形に,オペレータは,物体6の検出推定時刻tj
xを含む同じ長さtpの時間区間,{tja,tjb}
(tja≦tjx≦tjb,tp=tjb−tja)を
設定する。鉛直受信ビーム8−1〜8−mの整相出力波
形の時間区間,{tja,tjb}部分から切り出され
た波形を,uj(t,1)〜uj(t,m)とする。
First, the operator adds to the phasing output waveform of the horizontal reception beam 3-t obtained by the transmission of the i-th probe sound a time section of length tp including the estimated detection time tix of the object 6, { tia, tib} (tia ≦ tix ≦ ti
b, tp = tib-tia) is set. Time section of phasing output waveform of vertical receiving beams 8-1 to 8-m, Δti
a, tib}, the waveform cut out from ui (t,
1) to ui (t, m). Similarly, the phasing output waveform of the horizontal reception beam 3-t obtained by the transmission of the j-th search sound indicates the detection estimated time tj of the object 6 by the operator.
a time interval of the same length tp including x, {tja, tjb}
(Tja ≦ tjx ≦ tjb, tp = tjb−tja) is set. Time sections of the phasing output waveforms of the vertical reception beams 8-1 to 8-m, and waveforms cut out from the {tja, tjb} portion are referred to as uj (t, 1) to uj (t, m).

【0027】第i回目と第j回目の探信音の送信により
得られる第k番目(k=1〜m)の鉛直受信ビームの波
形,ui(t,k),uj(t,k)の間の相関係数ρ
ij(t,k)は,(数1)〜(数4)から計算され
る。(数1)〜(数3)に於いて,積分∫dτは,τ=
0からτ=tpの間で行なう。
The waveform of the k-th (k = 1 to m) vertical reception beam obtained by the transmission of the i-th and j-th search tones, ui (t, k) and uj (t, k) Correlation coefficient ρ between
ij (t, k) is calculated from (Equation 1) to (Equation 4). In (Equation 1) to (Equation 3), the integral ∫dτ is given by τ =
It is performed between 0 and τ = tp.

【0028】[0028]

【数1】 Cii(t,k)=∫ui(τ,k)ui(t−τ,k)dτ …(数1)## EQU1 ## Cii (t, k) = ∫ui (τ, k) ui (t−τ, k) dτ (Equation 1)

【0029】[0029]

【数2】 Cjj(t,k)=∫uj(τ,k)uj(t−τ,k)dτ …(数2)Cjj (t, k) = ∫uj (τ, k) uj (t−τ, k) dτ (Equation 2)

【0030】[0030]

【数3】 Cij(t,k)=∫ui(τ,k)uj(t−τ,k)dτ …(数3)## EQU3 ## Cij (t, k) = ∫ui (τ, k) uj (t−τ, k) dτ (Equation 3)

【0031】[0031]

【数4】 ρij(t,k)=Cij(t,k)/ √(Cii(0,k)Cjj(0,k)) …(数4) オペレータが設定する時間区間,{ts,te}に於け
る相関係数ρij(t,k)の最大値mxk(k=1〜
m)を全てのkについて求める。
Ρij (t, k) = Cij (t, k) /) (Cii (0, k) Cjj (0, k)) (Equation 4) Time section set by operator, {ts, te} The maximum value mxk of the correlation coefficient ρij (t, k) in (k = 1 to
m) is obtained for all k.

【0032】更に,mxk(k=1〜m)の中の最大値
を与えるkを決定する。最大値を与えたkについて相関
係数ρij(t,k)の最大値mxkを与えた時間をt
mx(ts≦tmx≦te)とすれば,第i回目と第j
回目の探信音の送信により得られる水平受信ビームの処
理はtmxを基準として行われる。
Further, k which gives the maximum value among mxk (k = 1 to m) is determined. The time at which the maximum value mxk of the correlation coefficient ρij (t, k) is given for k at which the maximum value is given is t
mx (ts ≦ tmx ≦ te), i-th and j-th
The processing of the horizontal reception beam obtained by the transmission of the second search sound is performed with reference to tmx.

【0033】また,mがある程度の大きさを持つ場合,
(数1)〜(数4)の1次元相関係数の演算の代えて以
下に示す(数5)〜(数8)による2次元相関係数を用
いても良い。(数5)〜(数7)に於いて,積分∫dτ
は,τ=0からτ=tpの間で行ない,加算Σは,k=
1からk=mについて行なう。
When m has a certain size,
Instead of calculating the one-dimensional correlation coefficients of (Equation 1) to (Equation 4), the following two-dimensional correlation coefficients of (Equation 5) to (Equation 8) may be used. In (Equation 5) to (Equation 7), the integral ∫dτ
Is performed between τ = 0 and τ = tp, and the addition Σ is k =
This is performed for 1 to k = m.

【0034】[0034]

【数5】 C’ii(t,z)=Σ∫ui(τ,k)ui(t−τ,k−z)dτ …(数5)C′ii (t, z) = Σ∫ui (τ, k) ui (t−τ, k−z) dτ (Equation 5)

【0035】[0035]

【数6】 C’jj(t,z)=Σ∫uj(τ,k)uj(t−τ,k−z)dτ …(数6)C′jj (t, z) = Σ∫uj (τ, k) uj (t−τ, k−z) dτ (Equation 6)

【0036】[0036]

【数7】 C’ij(t,z)=Σ∫ui(τ,k)uj(t−τ,k−z)dτ …(数7)C′ij (t, z) = Σ∫ui (τ, k) uj (t−τ, k−z) dτ (Expression 7)

【0037】[0037]

【数8】 ρ’ij(t,k)=C’ij(t,k)/ √(C’ii(0,k)C’jj(0,k))…(数8) (数8)により2次元相関係数ρ’ij(t,k)を定
義し,時間区間,{ts,te},及び,オペレータが
設定するz(水中の深度,又は水平からの俯角を示す指
標)の区間,{zs,ze}により定義される2次元区
間の領域に於けるρ’ij(t,k)の最大値mx’を
求め,最大値mx’を与えた時間をtmx(ts≦tm
x≦te)とする。なお,上記の相関係数の計算に窓関
数を乗じた演算を行っても良い。
Ρ′ij (t, k) = C′ij (t, k) /) (C′ii (0, k) C′jj (0, k)) (Expression 8) (Expression 8) Defines a two-dimensional correlation coefficient ρ ′ ij (t, k) according to, a section of time, {ts, te}, and a section of z (index indicating the depth in water or the depression angle from the horizontal) set by the operator. , {Zs, ze}, the maximum value mx ′ of ρ′ij (t, k) in the area of the two-dimensional section is determined, and the time when the maximum value mx ′ is given is tmx (ts ≦ tm
x ≦ te). The calculation of the above correlation coefficient may be multiplied by a window function.

【0038】上記のtmxの値を用いて水平受信ビーム
の整相出力波形の処理は,次に説明する処理で実現でき
る。
The processing of the phasing output waveform of the horizontal reception beam using the value of tmx can be realized by the processing described below.

【0039】第i回目の探信音の送信により得られる水
平受信ビーム3−1〜3−nの整相加算出力の,波形y
i(t,1)〜yi(t,n)と,第j回目の探信音の送
信により得られる水平受信ビーム3−1〜3−nの整相
加算出力の波形,yj(t,1)〜yj(t,n)とを加
算する処理を行なう場合に,yj(t,1)〜yj(t,
n)を時間区間,{tja,tjb}よりtmxだけず
らして加算する。
The waveform y of the phasing addition output of the horizontal reception beams 3-1 to 3-n obtained by transmitting the i-th search sound
waveforms of phasing addition output of i (t, 1) to yi (t, n) and horizontal reception beams 3-1 to 3-n obtained by transmission of the jth search sound, yj (t, 1) ) To yj (t, n) when performing the processing of adding yj (t, 1) to yj (t, n).
n) from the time section {tja, tjb} by tmx.

【0040】各探信音の送信の間に,船舶1が航走して
いればtmxは探信音の送信の周期と航走速度で決まる
時間差が含まれることになる。tmxの値は時間区間,
{tia,tib},{tja,tjb}に関してのみ
定まる局所的なものであるため,探知範囲に於ける消耗
の領域内の点の全てに適用する場合には,tmxの推定
精度が悪化するため,時間区間,{tia,tib},
{tja,tjb}に相当する時間区間を複数設けて各
時間間隔毎に個別にtmxを求めるのが望ましい。
If the ship 1 is traveling during transmission of each search sound, tmx includes a time difference determined by the transmission sound transmission cycle and the traveling speed. The value of tmx is a time interval,
Since it is a local thing determined only with respect to {tia, tib}, {tja, tjb}, the estimation accuracy of tmx deteriorates when it is applied to all points in the exhaustion area in the detection range. , Time interval, {tia, tib},
It is desirable to provide a plurality of time sections corresponding to {tja, tjb} and obtain tmx individually for each time interval.

【0041】図3は本発明の実施例の水平及び鉛直送受
波器素子の配列例を説明する図である。図1に示したよ
うに,水平受信ビーム3−1〜3−nと鉛直受信ビーム
8−1〜8−mを形成する必要から,水平方向と鉛直方
向に配列した送受波器素子が必要になる。
FIG. 3 is a diagram for explaining an example of the arrangement of horizontal and vertical transducer elements according to the embodiment of the present invention. As shown in FIG. 1, since it is necessary to form the horizontal reception beams 3-1 to 3-n and the vertical reception beams 8-1 to 8-m, the transducer elements arranged in the horizontal direction and the vertical direction are required. Become.

【0042】図3に於いて,水平送受波器12は,図4
に示す送受信回路16に電気的に独立して接続される水
平送受波素子13−1,13−2,13−3〜13−p
を具備している。水平送受波器12は,静水で静止した
船舶や航走体の躯体(図3に図示せず)に対して,水平
送受波素子13−1〜13−pの配列方向が水平になる
ように制御される。
In FIG. 3, the horizontal transducer 12 corresponds to FIG.
Horizontal transmitting / receiving elements 13-1, 13-2, 13-3 to 13-p electrically connected to the transmitting / receiving circuit 16 shown in FIG.
Is provided. The horizontal transducer 12 is arranged such that the arrangement direction of the horizontal transducers 13-1 to 13 -p is horizontal with respect to the body (not shown in FIG. 3) of a ship or a cruising body that is stationary in still water. Controlled.

【0043】鉛直送受波器14は,図4に示す送受信回
路16に電気的に独立して接続される鉛直送受波素子1
5−1,15−2,15−3〜15−qを具備してい
る。鉛直送受波器14は,静水で静止した船舶や航走体
の躯体(図3に図示せず)に対して,鉛直送受波素子1
5−1〜15−qの配列方向が所定の鉛直線を含む面内
に含まれるように制御される。
The vertical transducer 14 is a vertical transducer 1 electrically connected to the transmission / reception circuit 16 shown in FIG.
5-1, 15-2, 15-3 to 15-q. The vertical transducer 14 is used for the vertical transducer element 1 (not shown in FIG. 3) of a ship or a cruising body (not shown in FIG. 3) which is stopped by still water.
Control is performed so that the arrangement directions of 5-1 to 15-q are included in a plane including a predetermined vertical line.

【0044】水平送受波器12,鉛直送受波器14は,
船の動揺を相殺するような動揺安定機構により船舶や航
走体の躯体に固定されても良い。また,鉛直,水平方向
に複数のビームが形成できればよいことから,水平送受
波器12を構成する水平送受波素子13−1〜13−
p,鉛直送受波器14を構成する鉛直送受波素子15−
1〜15−qは,図2に示す例のように線状に1次元に
配列することは必須ではない。
The horizontal transducer 12 and the vertical transducer 14 are
It may be fixed to the body of the ship or the cruising body by a sway stabilizing mechanism that cancels the sway of the ship. In addition, since it is only necessary to form a plurality of beams in the vertical and horizontal directions, the horizontal transmitting and receiving elements 13-1 to 13-
p, a vertical transducer element 15 that constitutes the vertical transducer 14-
It is not essential that 1 to 15-q be linearly arranged one-dimensionally as in the example shown in FIG.

【0045】例えば,送受波素子の音響送受面が,所定
の平面,又は曲面上に縦横に2次元に配列されても良い
し,縦横に不等間隔に分散するような2次元配列してい
ても良いことは言うまでもない。
For example, the sound transmitting and receiving surfaces of the transmitting and receiving elements may be arranged two-dimensionally on a predetermined plane or curved surface in a vertical or horizontal manner, or may be two-dimensionally arranged so as to be unequally distributed in a vertical or horizontal direction. Needless to say, it is good.

【0046】図4は本発明の実施例のソーナー装置の構
成例を説明する図である。図3に示す水平送受波器1
2,鉛直送受波器14は,送受信回路16に接続され
る。送受信回路16は,水平送受波器12,鉛直送受波
器14をそれぞれ構成する複数の送受波素子を駆動して
水中に音波(探信音)を発射する送信回路(図4に図示
せず)と,水平送受波器12,鉛直送受波器14をそれ
ぞれ構成する複数の送受波素子により水中からの反射音
を受けて送受波素子が発生する信号を受信する受信回路
(図4に図示せず)からなる。
FIG. 4 is a diagram for explaining a configuration example of a sonar device according to an embodiment of the present invention. Horizontal transducer 1 shown in FIG.
2. The vertical transducer 14 is connected to the transmission / reception circuit 16. The transmission / reception circuit 16 drives a plurality of transmission / reception elements constituting the horizontal transducer 12 and the vertical transducer 14 to emit a sound wave (probing sound) into water (not shown in FIG. 4). And a receiving circuit (not shown in FIG. 4) for receiving a signal generated by the transmitting / receiving element in response to a reflected sound from underwater by a plurality of transmitting / receiving elements constituting the horizontal transducer 12 and the vertical transducer 14 respectively. ).

【0047】送受信回路16の送信回路(図4に図示せ
ず)は,送信整相回路17の指令に従って水平,及び鉛
直送受波器12,14の送受信素子を駆動する。受信整
相回路18は,送受信回路16の受信回路(図4に図示
せず)による受信信号を受けて,少なくとも位相,又は
遅延時間を制御する整相と加算処理により,図1に示す
鉛直受信ビーム8−1〜8−mを形成し結果を鉛直受信
ビームメモリ19に格納し,また,水平受信ビーム3−
1〜3−nを形成し結果を水平受信ビームメモリ20に
格納する。
The transmission circuit (not shown in FIG. 4) of the transmission / reception circuit 16 drives the transmission / reception elements of the horizontal and vertical transducers 12 and 14 according to the command of the transmission phasing circuit 17. The reception phasing circuit 18 receives a signal received by a reception circuit (not shown in FIG. 4) of the transmission / reception circuit 16, and performs phasing and addition processing for controlling at least a phase or a delay time to perform vertical reception shown in FIG. Beams 8-1 to 8 -m are formed, and the results are stored in the vertical reception beam memory 19.
1 to 3 -n are formed and the result is stored in the horizontal reception beam memory 20.

【0048】相関演算装置21は,マイクロプロセッサ
等で構成される演算装置を含み,(数1)〜(数8)で
示される相関係数の演算や,時間差tmxを検出する演
算処理を行なう。
The correlation operation device 21 includes an operation device constituted by a microprocessor or the like, and performs an operation of a correlation coefficient represented by (Equation 1) to (Equation 8) and an operation of detecting a time difference tmx.

【0049】演算処理装置22は,相関演算装置21か
ら時間差tmxを入力して,水平受信ビームメモリ20
から受信ビームの波形のうち時間差tmxを適用する対
象の時間区間をの波形を読み出し,探信音の送信で得ら
れる受信ビームの波形の間で時間をずらした加算を反復
する。加算結果は表示装置23により可視化される。相
関演算装置21を省略して,演算処理装置22が,相関
演算装置21が行なうべき演算処理を実行する構成とし
ても良い。
The arithmetic processing unit 22 receives the time difference tmx from the correlation arithmetic unit 21 and inputs the time difference tmx to the horizontal reception beam memory 20.
, The waveform of the time section to which the time difference tmx is applied is read out from the waveform of the reception beam, and the addition with the time shifted between the reception beam waveforms obtained by transmitting the search sound is repeated. The addition result is visualized by the display device 23. The correlation calculation device 21 may be omitted, and the calculation processing device 22 may execute a calculation process to be performed by the correlation calculation device 21.

【0050】図4に示す水平送受波器12,鉛直送受波
器14を除く全ての構成要素の動作は,装置全体の動作
を規定する制御装置(図4に図示せず)により制御され
る。また,演算処理装置22がこの制御装置が実行すべ
き制御を行なう構成とすることもできる。
The operation of all the components except for the horizontal transducer 12 and the vertical transducer 14 shown in FIG. 4 is controlled by a control device (not shown in FIG. 4) which regulates the operation of the entire apparatus. Further, the arithmetic processing device 22 may be configured to perform control to be executed by the control device.

【0051】[0051]

【発明の効果】本発明によれば,海中,海面の状況の変
化による影響を効率的に減少させ複数の送受信による受
信ビームを加算することができ,海面の風浪状況の変化
による影響が少なく,受信ビームの加算の効果が十分に
得られる水中音響映像化装置を提供できる。
According to the present invention, it is possible to efficiently reduce the influence of changes in the state of the sea and the sea surface, to add the received beams by a plurality of transmissions and receptions, and to reduce the influence of the change in the sea surface wind conditions. It is possible to provide an underwater acoustic imaging apparatus capable of sufficiently obtaining the effect of adding the reception beams.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を船舶ソーナー装置に適用する実施例を
説明する図。
FIG. 1 is a diagram illustrating an embodiment in which the present invention is applied to a ship sonar device.

【図2】本発明の実施例の船舶ソーナー装置の原理を説
明する図。
FIG. 2 is a diagram illustrating the principle of a ship sonar device according to an embodiment of the present invention.

【図3】本発明の実施例の水平及び鉛直送受波器素子の
配列例を説明する図。
FIG. 3 is a diagram illustrating an example of the arrangement of horizontal and vertical transducer elements according to an embodiment of the present invention.

【図4】本発明の実施例のソーナー装置の構成例を説明
する図。
FIG. 4 is a diagram illustrating a configuration example of a sonar device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1船舶,2…探知範囲,3−1〜3−n…水平受信ビー
ム,4…海面,5…海底,6…物体,7…鉛直線,8−
1〜8−m…鉛直受信ビーム,9…ソーナー装置,10
−1〜10−4…音線経路,11−1,11−2…海面
の状態,12…水平送受波器,13−1〜13−p…水
平送受波素子,14…鉛直送受波器,15−1〜15−
q…鉛直送受波素子,16…送受信回路,17…送信整
相回路,18…受信整相回路,19…鉛直受信ビームメ
モリ,20…水平受信ビームメモリ,21…相関演算装
置,22…演算処理装置,23…表示装置。
1 ship, 2 detection range, 3-1 to 3-n horizontal reception beam, 4 sea surface, 5 sea floor, 6 object, 7 vertical line, 8-
1 to 8-m: vertical receiving beam, 9: sonar device, 10
-1 to 10-4: sound ray path, 11-1, 11-2: state of the sea surface, 12: horizontal transducer, 13-1 to 13-p: horizontal transducer, 14: vertical transducer, 15-1 to 15-
q: vertical transmission / reception element, 16: transmission / reception circuit, 17: transmission phasing circuit, 18: reception phasing circuit, 19: vertical reception beam memory, 20: horizontal reception beam memory, 21: correlation operation device, 22: arithmetic processing Device, 23 ... Display device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水平方向に配列される送受波素子を具備す
る水平送受波器と,鉛直方向に配列される送受波素子を
具備する鉛直送受波器と,前記水平,及び鉛直送受波器
の前記送受波素子を駆動して音波を送信し反射音を受信
する送受波回路と,前記水平,及び鉛直送受波器の前記
送受波素子による受信信号から,前記水平,及び鉛直方
向の複数の受信ビームを形成する受波整相回路と,前記
受波整相回路の出力を複数回の音波の送信にわたり格納
する記憶手段と,前記記憶手段から読み出された前記複
数の受信ビームの波形を処理する演算処理装置とを具備
し,前記演算処理装置は,複数回の音波の送信にわた
る,前記鉛直方向に形成される前記複数の受信ビームに
関する信号の演算処理の結果に基づいて,前記水平方向
の前記複数の受信ビームの複数回の音波の送信にわたる
加算を行なうことを特徴とする水中音響映像化装置。
1. A horizontal transducer comprising a transmitting / receiving element arranged in a horizontal direction, a vertical transducer comprising a transmitting / receiving element arranged in a vertical direction, and the horizontal and vertical transducers. A transmission / reception circuit for driving the transmission / reception element to transmit a sound wave and receive a reflected sound; and a plurality of reception signals in the horizontal and vertical directions from signals received by the transmission / reception elements of the horizontal and vertical transducers. Receiving phasing circuit for forming a beam, storage means for storing the output of the receiving phasing circuit over a plurality of transmissions of sound waves, and processing the waveforms of the plurality of reception beams read from the storage means An arithmetic processing unit for performing the processing in the horizontal direction based on the result of the arithmetic processing of the signals related to the plurality of reception beams formed in the vertical direction over a plurality of transmissions of the sound waves. The plurality of receiving Underwater Acoustic imaging apparatus characterized by a plurality of times summation over the transmission of sound waves of the beam.
【請求項2】請求項1の水中音響映像化装置に於いて,
前記演算処理装置は,複数回の音波の送信にわたり前記
鉛直方向に形成される前記複数の受信ビームの間で所定
の時間区間に関する相関係数を求め,前記相関係数から
前記鉛直方向に形成される前記複数の受信ビームの複数
回の音波の送信にわたる相互の相対的時間差を検出し,
前記相対的時間差を前記水平方向に形成される前記複数
の受信ビームに与えて複数回の音波の送信にわたり加算
を行なうことを特徴とする音響映像化装置。
2. The underwater acoustic imaging apparatus according to claim 1,
The arithmetic processing unit obtains a correlation coefficient for a predetermined time section between the plurality of reception beams formed in the vertical direction over a plurality of transmissions of sound waves, and is formed in the vertical direction from the correlation coefficient. Detecting a relative time difference between the plurality of receiving beams over a plurality of transmissions of the sound waves,
An acoustic imaging apparatus, wherein the relative time difference is given to the plurality of reception beams formed in the horizontal direction, and addition is performed over a plurality of transmissions of sound waves.
【請求項3】請求項2の水中音響映像化装置に於いて,
前記受波整相回路は前記鉛直方向の複数の俯角について
前記受信ビームを形成し,前記演算処理装置は,前記鉛
直方向に形成される前記複数の俯角についての前記受信
ビームのそれぞれについて,所定の時間区間に関する相
関係数を複数回の音波の送信にわたり求め,前記複数の
相関係数のうちで最大値を与えた前記受信ビームの前記
相関係数から相対的時間差を求め,該相対的時間差を前
記水平方向の前記複数の受信ビームに与えて複数回の音
波の送信にわたり加算を行なうことを特徴とする音響映
像化装置。
3. The underwater acoustic imaging apparatus according to claim 2,
The wave receiving phasing circuit forms the reception beam with respect to the plurality of depression angles in the vertical direction, and the arithmetic processing unit performs a predetermined operation on each of the reception beams with respect to the plurality of depression angles formed in the vertical direction. A correlation coefficient for a time section is determined over a plurality of transmissions of sound waves, and a relative time difference is determined from the correlation coefficient of the reception beam having the maximum value among the plurality of correlation coefficients. An acoustic imaging apparatus, wherein the addition is performed over a plurality of times of transmission of a sound wave by giving to the plurality of reception beams in the horizontal direction.
【請求項4】請求項2の水中音響映像化装置に於いて,
前記受波整相回路は前記鉛直方向の複数の俯角について
前記受信ビームを形成し,前記演算処理装置は,前記鉛
直方向に形成される前記複数の受信ビームを前記俯角に
関して指数を対応させ,前記鉛直方向に形成される前記
複数の受信ビームの間で前記俯角に対応する前記指数と
時間に関する2次元相関係数を求め,前記複数の2次元
相関係数のうちで前記2次元相関係数が最も大きい場合
の相対的時間差を求め,該相対的時間差を前記水平方向
の前記複数の受信ビームに与えて複数回の音波の送信に
わたり加算を行なうことを特徴とする音響映像化装置。
4. The underwater acoustic imaging apparatus according to claim 2,
The wave receiving phasing circuit forms the reception beam for the plurality of vertical depression angles, and the arithmetic processing unit causes the plurality of reception beams formed in the vertical direction to correspond to an index with respect to the depression angle, A two-dimensional correlation coefficient relating to the index and the time corresponding to the depression angle is obtained between the plurality of reception beams formed in the vertical direction, and the two-dimensional correlation coefficient among the plurality of two-dimensional correlation coefficients is determined. An acoustic imaging apparatus characterized in that a relative time difference in the case of the largest is obtained, the relative time difference is applied to the plurality of reception beams in the horizontal direction, and addition is performed over a plurality of transmissions of sound waves.
JP2000132847A 2000-04-27 2000-04-27 Underwater acoustic image processor Pending JP2001311770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132847A JP2001311770A (en) 2000-04-27 2000-04-27 Underwater acoustic image processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000132847A JP2001311770A (en) 2000-04-27 2000-04-27 Underwater acoustic image processor

Publications (1)

Publication Number Publication Date
JP2001311770A true JP2001311770A (en) 2001-11-09

Family

ID=18641465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132847A Pending JP2001311770A (en) 2000-04-27 2000-04-27 Underwater acoustic image processor

Country Status (1)

Country Link
JP (1) JP2001311770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417081A (en) * 2004-08-10 2006-02-15 Furuno Electric Co Forward looking sonar having first and second receiving beams

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417081A (en) * 2004-08-10 2006-02-15 Furuno Electric Co Forward looking sonar having first and second receiving beams
GB2417081B (en) * 2004-08-10 2008-01-09 Furuno Electric Co Forward-looking sonar and underwater image display system
US7369459B2 (en) 2004-08-10 2008-05-06 Furuno Electric Company, Limited Forward-looking sonar and underwater image display system

Similar Documents

Publication Publication Date Title
EP3096159B1 (en) Sonar systems and methods using interferometry and beamforming for 3d imaging
US6438071B1 (en) Method for producing a 3D image
US8767509B2 (en) Method and device for measuring a contour of the ground
CN110319811B (en) Underwater single-beam high-precision detection system and method adaptive to wave effect
KR19990078351A (en) Apparatus suitable for searching objects in water
US7768875B2 (en) Underwater sounding apparatus capable of calculating fish quantity information about fish school and method of such calculation
JP3515751B2 (en) Reconstruction method of three-dimensional submarine structure
JP5148353B2 (en) Underwater vehicle and obstacle detection device
Châtillon et al. SAMI: A low-frequency prototype for mapping and imaging of the seabed by means of synthetic aperture
CN113534161B (en) Beam mirror image focusing method for remotely positioning underwater sound source
RU2350983C2 (en) Method for determination of object submersion depth
JP2004117129A (en) Synthetic aperture sonar, method of correcting oscillation used therefor, and program thereof
US20070223311A1 (en) Device for Avoiding Obstacles for High-Speed Multi-Hulled Watercraft
JP2008076294A (en) Under-bottom-of-water survey method and instrument
KR102123232B1 (en) Apparatus for detecting depth of water using samll SONAR
JPH0385476A (en) Sea bottom searching apparatus
Sathishkumar et al. Echo sounder for seafloor object detection and classification
JP2001311770A (en) Underwater acoustic image processor
JP2017156303A (en) Water bottom altitude detection device, underwater sailing body, and water bottom altitude detection method
RU2572666C1 (en) Hydroacoustic system for imaging underwater space
RU2736231C1 (en) Method for determining sound velocity distribution
Xue et al. Integrated design of velocity measurement sonar system based on ACL and phased array ADL
RU2555204C1 (en) Method of measuring bottom coordinates with multi-beam echo sounder
CN113359182A (en) Device, method and system for quickly searching and positioning deep-sea hydrothermal nozzle
CA2794966C (en) Method and device for measuring a ground profile