JP3461997B2 - Organic solvent for electrolyte, lithium secondary battery and electric double layer capacitor - Google Patents

Organic solvent for electrolyte, lithium secondary battery and electric double layer capacitor

Info

Publication number
JP3461997B2
JP3461997B2 JP05672196A JP5672196A JP3461997B2 JP 3461997 B2 JP3461997 B2 JP 3461997B2 JP 05672196 A JP05672196 A JP 05672196A JP 5672196 A JP5672196 A JP 5672196A JP 3461997 B2 JP3461997 B2 JP 3461997B2
Authority
JP
Japan
Prior art keywords
organic solvent
electrolytic solution
electric double
double layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05672196A
Other languages
Japanese (ja)
Other versions
JPH09251861A (en
Inventor
智治 中野
和司 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP05672196A priority Critical patent/JP3461997B2/en
Priority to US08/777,867 priority patent/US5750730A/en
Priority to DE19700656A priority patent/DE19700656B4/en
Publication of JPH09251861A publication Critical patent/JPH09251861A/en
Application granted granted Critical
Publication of JP3461997B2 publication Critical patent/JP3461997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
等の二次電池や、電気二重層コンデンサ等のコンデンサ
の電解液の媒体として好適な電解液用有機溶媒、この有
機溶媒を溶媒とする電解液が充填されたリチウム二次電
池及びこの有機溶媒を溶媒とする電解液が充填された電
気二重層コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic solvent for an electrolytic solution, which is suitable as a medium for an electrolytic solution of a secondary battery such as a lithium secondary battery or a capacitor such as an electric double layer capacitor, and uses this organic solvent as a solvent. The present invention relates to a lithium secondary battery filled with an electrolytic solution and an electric double layer capacitor filled with an electrolytic solution containing the organic solvent as a solvent.

【0002】[0002]

【従来の技術】近年、LSIをはじめとする電子技術の
発展はめざましく、各種機器の飛躍的な小型化、軽量化
が図られ、リチウム二次電池等の二次電池や電気二重層
コンデンサ等のコンデンサに用いる電解液への性能上の
要求も高まっている。
2. Description of the Related Art In recent years, electronic technologies such as LSI have been remarkably developed, various devices have been dramatically reduced in size and weight, and rechargeable batteries such as lithium rechargeable batteries and electric double layer capacitors have been developed. The performance requirements for the electrolytic solution used for the capacitor are also increasing.

【0003】たとえば、より高エネルギー密度が得ら
れ、しかもより優れた貯蔵性とを備えた電池としてリチ
ウム電池への期待はますます高まっている。一次電池の
分野では既にリチウム電池による小型軽量電池が実用化
されているが、その用途分野は一次電池であるが故に限
られたものであった。一方、二次電池の分野では、負極
に金属リチウムを用いた場合、その優れた特性にもかか
わらず、デンドライト状のリチウムの析出のため十分な
充放電サイクル寿命が得られていないといった課題があ
った。そこで、リチウムをドープ、脱ドープできる炭素
材料が注目され、開発が活発に行われている。またそれ
に適した電解液を構成する有機溶媒についても種々検討
されている。この有機溶媒には、プロピレンカーボネー
トやエチレンカーボネート等にジエチルカーボネート等
を混合したものが代表的である。
[0003] For example, expectations for lithium batteries as batteries having higher energy density and more excellent storage properties are increasing. In the field of primary batteries, small and lightweight batteries based on lithium batteries have already been put into practical use, but the fields of use were limited because they were primary batteries. On the other hand, in the field of secondary batteries, when metallic lithium is used for the negative electrode, despite the excellent characteristics, there is a problem that sufficient charge / discharge cycle life cannot be obtained due to the deposition of dendrite-like lithium. It was Therefore, a carbon material capable of doping and dedoping lithium has attracted attention and has been actively developed. In addition, various studies have been made on organic solvents that are suitable for the electrolytic solution. A typical example of this organic solvent is a mixture of propylene carbonate, ethylene carbonate and the like with diethyl carbonate and the like.

【0004】また、活性炭と電解液との界面に形成され
る電気二重層に蓄積される電気エネルギーを利用して、
ファラッドオーダの電気容量を瞬時に充放電できる電気
二重層コンデンサも、半導体メモリーの急速な需要の伸
びに伴い、瞬時停電時のメモリーのバックアップ用電源
として大きな注目を集めている。また、瞬時に大容量の
電気が取り出せることから、電気自動車用電源としての
期待も高まっている。従来、この電気二重層コンデンサ
の電解液としては、硫酸や水酸化カリウム等の水溶液系
電解液、プロピレンカーボネート、ブチレンカーボネー
ト、γ−ブチロラクトン、アセトニトリルおよびジメチ
ルホルムアミド等の有機溶媒にテトラアルキルアンモニ
ウム塩等の電解質を溶解させた有機溶媒系電解液が知ら
れている。
Further, by utilizing the electric energy accumulated in the electric double layer formed at the interface between the activated carbon and the electrolytic solution,
Electric double-layer capacitors, which can charge and discharge farad-order electric capacity instantly, have also attracted a great deal of attention as a backup power source for memories during momentary power outages due to the rapid growth in demand for semiconductor memories. Further, since a large amount of electricity can be taken out instantly, expectations for it as a power source for electric vehicles are also increasing. Conventionally, as the electrolytic solution of this electric double layer capacitor, an aqueous solution electrolytic solution such as sulfuric acid or potassium hydroxide, an organic solvent such as propylene carbonate, butylene carbonate, γ-butyrolactone, acetonitrile and dimethylformamide, and a tetraalkylammonium salt or the like. Organic solvent-based electrolytic solutions in which an electrolyte is dissolved are known.

【0005】[0005]

【発明が解決しようとする課題】しかし、リチウム二次
電池の場合でいえば、これら従来の有機溶媒を用いた場
合、充放電の際に酸化還元による分解反応のため十分な
充放電サイクル寿命が得られず、二次電池として不十分
であった。また、電気二重層コンデンサの場合でいえ
ば、有機溶媒系電解液を用いた場合でも、単セル当たり
の耐電圧は2.5Vであり、メモリーバックアップや電
気自動車用電源等の用途には不十分であった。耐電圧を
3.0V以上に高めることができればコンデンサの小型
化を実現できるが、従来の電気二重層コンデンサに2.
5V以上の電圧を印加すると電解液の電気分解、特に溶
媒の分解により重合反応やガス発生を起こし、液漏れや
外装ケースの膨張、直流抵抗の増加あるいは容量の減少
といった不都合が生じる。これらリチウム二次電池や電
気二重層コンデンサに用いる電解液用有機溶媒に対する
要求を満足させるため、より酸化還元電位幅の広い、具
体的には、酸化電位がより貴側に、還元電位がより卑側
にある溶媒を開発することが求められている。
However, in the case of a lithium secondary battery, when these conventional organic solvents are used, a sufficient charge / discharge cycle life is obtained due to a decomposition reaction by redox during charge / discharge. It was not obtained, and it was insufficient as a secondary battery. Moreover, in the case of an electric double layer capacitor, the withstand voltage per unit cell is 2.5 V even when an organic solvent-based electrolytic solution is used, which is insufficient for applications such as memory backup and electric vehicle power supplies. Met. If the withstand voltage can be increased to 3.0 V or more, downsizing of the capacitor can be realized.
When a voltage of 5 V or more is applied, electrolysis of the electrolytic solution, particularly decomposition of the solvent causes a polymerization reaction or gas generation, which causes inconveniences such as liquid leakage, expansion of the outer case, increase in DC resistance or decrease in capacity. In order to satisfy the requirements for organic solvents for electrolytes used in these lithium secondary batteries and electric double layer capacitors, the oxidation-reduction potential range is wider, specifically, the oxidation potential is more noble and the reduction potential is more noble. There is a need to develop an on-site solvent.

【0006】[0006]

【課題を解決するための手段】本発明者らはかかる問題
点を解消すべく鋭意研究した結果、本発明に至った。す
なわち本発明は、下記一般式(1)で示される含フッ素
環状カーボネートからなる電解液用有機溶媒[一般式
(1)でR1〜R4のうち1つはCFH 2 またはCF 2
であり、残りは水素である含フッ素環状カーボネートを
除く。];この有機溶媒を溶媒とする電解液が充填され
てなるリチウム二次電池;並びに、この有機溶媒を溶媒
とする電解液が充填されてなる電気二重層コンデンサで
ある。一般式(1)
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, the present invention relates to an organic solvent for an electrolytic solution comprising a fluorine-containing cyclic carbonate represented by the following general formula (1) [general formula:
In (1), one of R1 to R4 is CFH 2 or CF 2 H
And the balance is hydrogen-containing cyclic carbonate
except. ] A lithium secondary battery filled with an electrolytic solution containing this organic solvent as a solvent; and an electric double layer capacitor filled with an electrolytic solution containing this organic solvent as a solvent. General formula (1)

【0007】[0007]

【化2】 [Chemical 2]

【0008】〔式中、R1〜R4のうち少なくとも1つ
は−CHF−X基(Xは水素、フッ素または炭素数が1
〜4のアルキル基)であり、残りは水素または炭素数が
1〜4のアルキル基である。〕
[In the formula, at least one of R 1 to R 4 is a —CHF—X group (X is hydrogen, fluorine or a carbon number of 1
˜4 alkyl groups), and the rest are hydrogen or alkyl groups having 1 to 4 carbon atoms. ]

【0009】[0009]

【発明の実施の形態】以下、この発明を詳細に記載す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0010】一般式(1)において、R1〜R4の炭素
数が1〜4のアルキル基または−CHF−X中のXの炭
素数が1〜4のアルキル基の具体例としては、メチル
基、エチル基、n−もしくはi−プロピル基およびn
−、i−もしくはt−ブチル基があげられる。またR1
〜R4のうち少なくとも1つは−CHF−X基である
が、分子量を考慮すると1つだけ−CHF−X基である
のが好ましい。
In the general formula (1), specific examples of the alkyl group having 1 to 4 carbon atoms of R1 to R4 or the alkyl group having 1 to 4 carbon atoms of X in --CHF-X include a methyl group, Ethyl group, n- or i-propyl group and n
Examples thereof include a-, i- or t-butyl group. Also R1
At least one of R4 to R4 is a -CHF-X group, but considering the molecular weight, only one is preferably a -CHF-X group.

【0011】本発明で用いる含フッ素環状カーボネート
(a)の具体例としては、4−(モノフルオロメチル)
−5−メチル−1,3−ジオキソラン−2−オン、4−
(モノフルオロメチル)−4−メチル−1,3−ジオキ
ソラン−2−オン、4−(モノフルオロメチル)−5,
5−ジメチル−1,3−ジオキソラン−2−オン、4−
(1−フルオロエチル)−1,3−ジオキソラン−2−
オン、4−(1−フルオロn−プロピル)−1,3−ジ
オキソラン−2−オン、4−(1−フルオロn−ブチ
ル)−1,3−ジオキソラン−2−オン等があげられ
る。
Specific examples of the fluorine-containing cyclic carbonate (a) used in the present invention include 4- (monofluoromethyl)
-5-methyl-1,3-dioxolan-2-one, 4-
(Monofluoromethyl) -4-methyl-1,3-dioxolan-2-one, 4- (monofluoromethyl) -5,
5-dimethyl-1,3-dioxolan-2-one, 4-
(1-Fluoroethyl) -1,3-dioxolane-2-
On, 4- (1-fluoro n-propyl) -1,3-dioxolan-2-one, 4- (1-fluoro n-butyl) -1,3-dioxolan-2-one and the like can be mentioned.

【0012】本発明では、必要により、含フッ素環状カ
ーボネート(a)とともに鎖状炭酸エステル、鎖状カル
ボン酸エステル、環状もしくは鎖状エーテル、ラクトン
化合物、ニトリル化合物およびアミド化合物から選ばれ
る1種以上の化合物(b)を副溶媒として含有させるこ
とができる。鎖状炭酸エステルとしては、たとえばジメ
チルカーボネート、メチルエチルカーボネートおよびジ
エチルカーボネートがあげられ、鎖状カルボン酸エステ
ルとしては、たとえば酢酸メチルおよびプロピオン酸メ
チルがあげられる。また、環状もしくは鎖状エーテルと
しては、たとえばテトラヒドロフラン、1,3−ジオキ
ソラン、1,2−ジメトキシエタンがあげられ、ラクト
ン化合物としては、たとえばγ−ブチロラクトンがあげ
られ、ニトリル化合物としては、たとえばアセトニトリ
ルがあげられ、アミド化合物としては、たとえばジメチ
ルホルムアミドがあげられる。
In the present invention, if necessary, one or more kinds selected from a chain carbonate, a chain carboxylic acid ester, a cyclic or chain ether, a lactone compound, a nitrile compound and an amide compound together with the fluorine-containing cyclic carbonate (a). The compound (b) can be contained as an auxiliary solvent. Examples of the chain carbonic acid ester include dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, and examples of the chain carboxylic acid ester include methyl acetate and methyl propionate. Further, examples of the cyclic or chain ether include tetrahydrofuran, 1,3-dioxolane, and 1,2-dimethoxyethane, examples of the lactone compound include γ-butyrolactone, and examples of the nitrile compound include acetonitrile. Examples of the amide compound include dimethylformamide.

【0013】上記化合物(b)を用いる場合、好ましい
ものは電解液の用途により異なることがあるので注意を
要する。たとえばリチウム二次電池用電解液の場合は、
(b)のうち、鎖状炭酸エステルおよび鎖状カルボン酸
エステルが好ましい。また、電気二重層コンデンサ用電
解液の場合は、(b)のうち、鎖状炭酸エステル、環状
および鎖状エーテル、ラクトン、ニトリルおよびアミド
が好ましい。
When the above compound (b) is used, it should be noted that the preferred one may differ depending on the use of the electrolytic solution. For example, in the case of an electrolyte solution for a lithium secondary battery,
Among (b), chain carbonic acid ester and chain carbonic acid ester are preferable. Further, in the case of the electrolytic solution for an electric double layer capacitor, among (b), chain carbonic acid ester, cyclic and chain ether, lactone, nitrile and amide are preferable.

【0014】上記化合物(b)の混合比としては、含フ
ッ素環状カーボネート(a)に対し重量比で通常b/a
=(0.1〜2)/1であり、好ましくはb/a=
(0.5〜1.5)/1であり、特に好ましくはb/a
=(0.5〜1)/1である。
The mixing ratio of the above compound (b) is usually b / a by weight ratio with respect to the fluorine-containing cyclic carbonate (a).
= (0.1-2) / 1, preferably b / a =
(0.5 to 1.5) / 1, particularly preferably b / a
= (0.5-1) / 1.

【0015】また上記溶媒を用いた有機電解液の調製に
あたり電解質としては特に限定はなく、電解液の用途
毎、従来用いられているものと同様でよい。リチウム二
次電池の場合でいえば、たとえば、LiBF4、LiP
F6、LiAsF6、LiClO4、LiCF3SO3、L
iN(CF3SO2)2等を使用できる。また、電気二重
層コンデンサの場合でいえば、たとえば、テトラアルキ
ルアンモニウムのテトラフルオロホウ酸塩、ヘキサフル
オロリン酸塩、過塩素酸塩、ヘキサフルオロ砒素酸塩、
トリフルオロメタンスルホン酸塩等を使用できる。
There are no particular restrictions on the electrolyte used in the preparation of the organic electrolytic solution using the above-mentioned solvent, and it may be the same as that conventionally used for each application of the electrolytic solution. In the case of a lithium secondary battery, for example, LiBF4, LiP
F6, LiAsF6, LiClO4, LiCF3SO3, L
iN (CF3SO2) 2 or the like can be used. In the case of an electric double layer capacitor, for example, tetraalkyl ammonium tetrafluoroborate, hexafluorophosphate, perchlorate, hexafluoroarsenate,
Trifluoromethane sulfonate and the like can be used.

【0016】[0016]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明するが、本発明はこれに限定されるものではな
い。 まず、有機電解液を構成する有機溶媒について、
電気化学的な安定性を評価した。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited thereto. First, regarding the organic solvent that constitutes the organic electrolytic solution,
The electrochemical stability was evaluated.

【0017】(実施例5〜6)4−(1−フルオロエチ
ル)−1,3−ジオキソラン−2−オンにLiPF6を
0.65モル/Lの割合で溶解したもの(実施例5)お
よび(C2H5)4NBF4を0.65モル/Lの割合で溶
解したもの(実施例6)を調製した。
(Examples 5 to 6) LiPF6 dissolved in 4- (1-fluoroethyl) -1,3-dioxolan-2-one at a rate of 0.65 mol / L (Example 5) and ( A solution (Example 6) in which C2H5) 4NBF4 was dissolved at a rate of 0.65 mol / L was prepared.

【0018】(比較例1〜4)比較として、プロピレン
カーボネートにLiPF6を0.65モル/Lの割合で
溶解したもの(比較例1)、(C2H5)4NBF4を0.
65モル/Lの割合で溶解したもの(比較例2)、およ
び4−(トリフルオロメチル)−1,3−ジオキソラン
−2−オンにLiPF6を0.65モル/Lの割合で溶
解したもの(比較例3)、(C2H5)4NBF4を0.6
5モル/Lの割合で溶解したもの(比較例4)を調製し
た。
(Comparative Examples 1 to 4) For comparison, a solution of LiPF6 dissolved in propylene carbonate at a ratio of 0.65 mol / L (Comparative Example 1) and (C2H5) 4NBF4 of 0.1% were used.
What was melt | dissolved in the ratio of 65 mol / L (Comparative Example 2), and what melt | dissolved LiPF6 in the ratio of 0.65 mol / L in 4- (trifluoromethyl) -1,3-dioxolan-2-one ( Comparative Example 3), (C2H5) 4NBF4 0.6
What melt | dissolved in the ratio of 5 mol / L (Comparative Example 4) was prepared.

【0019】(評価1)評価は、3極式セルを用いた電
位走査法により行った。作用極および対極には白金を、
参照極には銀−塩化銀を用いた。100mV/秒で掃引
し、酸化側、還元側で電流の立ち上がりが観測された電
位を、それぞれ酸化電位および還元電位とした。SCE
基準に換算した結果を表1に示す。
(Evaluation 1) The evaluation was carried out by a potential scanning method using a three-electrode cell. Platinum for the working electrode and the counter electrode,
Silver-silver chloride was used for the reference electrode. The potential at which the rising of the current was observed on the oxidation side and the reduction side after sweeping at 100 mV / sec was taken as the oxidation potential and the reduction potential, respectively. SCE
Table 1 shows the results converted into the standard.

【0020】[0020]

【表1】 [Table 1]

【0021】表1の結果から、実施例5、6で用いた4
−(1−フルオロエチル)−1,3−ジオキソラン−2
−オンは比較例1、2で用いたプロピレンカーボネート
と比較して、酸化電位がより貴側に、還元電位がより卑
側に広がっており、酸化還元電位幅が広がったことがわ
かる。また、比較例3、4で用いており、メチル基がす
べてフッ素化された4−(トリフルオロメチル)−1,
3−ジオキソラン−2−オンでは、酸価電位が卑側に、
還元電位が貴側に移動して酸価還元電位幅が狭くなって
おり好ましくない。
From the results shown in Table 1, 4 used in Examples 5 and 6
-(1-Fluoroethyl) -1,3-dioxolane-2
In comparison with the propylene carbonate used in Comparative Examples 1 and 2, the -one has an oxidation potential that spreads to the noble side and a reduction potential to the base side, and the oxidation-reduction potential width has expanded. Further, used in Comparative Examples 3 and 4, 4- (trifluoromethyl) -1, in which all methyl groups were fluorinated,
In 3-dioxolan-2-one, the acid value potential is on the base side,
The reduction potential shifts to the noble side and the acid value reduction potential width becomes narrow, which is not preferable.

【0022】次に、リチウム二次電池としての特性を評
価した。 (実施例8)図1は本実施例で作成したリチウム二次電
池の半断面図である。図1において、1はグラファイ
ト、2は正極活物質成型体、3は多孔質セパレータ、4
は負極缶、5は正極缶、6はガスケットである。図1に
示す二次電池を以下の手順で作成した。LiCoO2に
導電剤としてアセチレンブラックおよび結着剤としてポ
リエチレン粉末を混合して加圧成型して作製した正極活
物質成型体2をステンレス製正極缶5の底面に置いたニ
ッケル製ネット上に圧着した。次に前記成型体上にポリ
プロピレン製多孔質セパレータ3を載置した後4−(1
−フルオロエチル)−1,3−ジオキソラン−2−オン
とジエチルカーボネートの等容量混合溶媒に1.0モル
/Lの濃度でLiPF6を溶解させた有機電解液を注入
し、ガスケット6を挿入した。その後グラファイト1を
密着させたステンレス製負極缶4をセパレーター3上に
載置し、正極缶5の開口端部分をを内方へ折曲し封口部
分をガラスハーメチックシールして、図1に示すよう
な、有機電解液が正極活物質成型体2、グラファイト1
およびセパレータ3に含浸されたリチウム二次電池を作
成した。
Next, the characteristics as a lithium secondary battery were evaluated. (Embodiment 8) FIG. 1 is a half sectional view of a lithium secondary battery prepared in this embodiment. In FIG. 1, 1 is graphite, 2 is a positive electrode active material molded body, 3 is a porous separator, 4
Is a negative electrode can, 5 is a positive electrode can, and 6 is a gasket. The secondary battery shown in FIG. 1 was produced by the following procedure. A positive electrode active material molded body 2 prepared by mixing LiCoO2 with acetylene black as a conductive agent and polyethylene powder as a binder and pressure-molding was pressed onto a nickel net placed on the bottom surface of a stainless positive electrode can 5. Next, after placing the polypropylene porous separator 3 on the molded body, 4- (1
-Fluoroethyl) -1,3-dioxolan-2-one and diethyl carbonate were mixed with an equal volume of an organic electrolyte solution in which LiPF6 was dissolved at a concentration of 1.0 mol / L, and a gasket 6 was inserted. After that, the stainless steel negative electrode can 4 to which the graphite 1 is adhered is placed on the separator 3, the opening end of the positive electrode can 5 is bent inward, and the sealing part is glass hermetically sealed, as shown in FIG. The organic electrolyte is a positive electrode active material molded body 2 and graphite 1.
And the lithium secondary battery with which the separator 3 was impregnated was created.

【0023】(比較例5)参考比較例として上記有機電
解液組成物の代わりに、プロピレンカーボネートとジメ
チルカーボネートの等容量混合溶媒に1.0モル/Lの
濃度でLiPF6を溶解させた電解液組成物を用いて同
様に操作して、図1と同じ構成のリチウム二次電池を作
成した。
(Comparative Example 5) As a reference comparative example, instead of the above-mentioned organic electrolytic solution composition, an electrolytic solution composition in which LiPF6 was dissolved at a concentration of 1.0 mol / L in an equal volume mixed solvent of propylene carbonate and dimethyl carbonate. A lithium secondary battery having the same structure as that shown in FIG. 1 was prepared in the same manner as described above.

【0024】(評価2)以上の実施例8および比較例5
のリチウム二次電池に対し、以下のようにサイクル特性
を比較した。
(Evaluation 2) Above Example 8 and Comparative Example 5
The following cycle characteristics were compared with the lithium secondary battery of.

【0025】上限電圧を4.2Vに設定して1mAで1
0時間定電流、定電圧充電し、続いて1mAの低電流で
終止電圧3.0Vまで放電し、これを充放電の1サイク
ルとしてこのような充放電を所定サイクル数繰り返し
た。図2は、そのときの充放電効率をサイクル数に対し
てプロットしたものである。
The upper limit voltage is set to 4.2 V and 1 mA at 1 mA
A constant current and a constant voltage were charged for 0 hours, and subsequently, the battery was discharged to a final voltage of 3.0 V with a low current of 1 mA, and this charging and discharging was repeated as a predetermined number of cycles. FIG. 2 is a plot of the charging / discharging efficiency at that time with respect to the number of cycles.

【0026】図2に示す通り、実施例8は比較例5に対
し良好な充放電を示し、優れた充放電特性を示すことが
わかる。
As shown in FIG. 2, it can be seen that Example 8 shows better charge / discharge than Comparative Example 5, and exhibits excellent charge / discharge characteristics.

【0027】次に、電気二重層コンデンサとしての特性
を評価した。
Next, the characteristics of the electric double layer capacitor were evaluated.

【0028】(実施例10)図3は本実施例で作成した
電気二重層コンデンサの構成の半断面図である。図3に
おいて、7は負極側ケース、8はアルミ溶射層、9は分
極性電極、10はセパレータ、11はガスケット、12
は正極側ケースである。図3に示す電気二重層コンデン
サを以下の手順で作成した。分極性電極9の材料として
活性炭繊維(比表面積2500m2/g)を使用し、こ
れに集電体としてアルミ溶射層8をプラズマ溶射によっ
て形成した。これを、正極側ケース12と負極側ケース
7に溶接した後、4−(1−フルオロエチル)−1,3
−ジオキソラン−2−オンに0.65モル/Lの(C2
H5)4NBF4を溶解させた電解液を含浸させる。次に
負極側の電極9上にポリプロピレン性の多孔膜からなる
セパレータ10を重ね、その上に正極側ケース12を重
ね合わせ、負極側ケース7の周囲にガスケット11をか
ぶせ、正極側ケース12の周辺をプレスによりかしめて
封口し、図3に示すような、電解液が分極性電極9およ
びセパレータ10に含浸されたコイン型の電気二重層コ
ンデンサを作成した。
(Embodiment 10) FIG. 3 is a half sectional view of the structure of the electric double layer capacitor prepared in this embodiment. In FIG. 3, 7 is a negative electrode side case, 8 is an aluminum sprayed layer, 9 is a polarizable electrode, 10 is a separator, 11 is a gasket, and 12
Is the case on the positive electrode side. The electric double layer capacitor shown in FIG. 3 was produced by the following procedure. Activated carbon fiber (specific surface area 2500 m 2 / g) was used as the material of the polarizable electrode 9, and the aluminum sprayed layer 8 was formed by plasma spraying on this as a current collector. After welding this to the positive electrode side case 12 and the negative electrode side case 7, 4- (1-fluoroethyl) -1,3
-Dioxolan-2-one with 0.65 mol / L of (C2
H5) Impregnate with an electrolytic solution in which 4NBF4 is dissolved. Next, a separator 10 made of a polypropylene porous film is laid on the negative electrode 9 and a positive case 12 is laid on it. A gasket 11 is put around the negative case 7 to surround the positive case 12. Was caulked with a press and sealed to prepare a coin-type electric double layer capacitor in which the polarizable electrode 9 and the separator 10 were impregnated with the electrolytic solution as shown in FIG.

【0029】(比較例6)参考比較例として上記有機電
解液組成物の代わりに、プロピレンカーボネートに0.
65モル/Lの濃度で(C2H5)4NBF4を溶解させた
電解液組成物を用いて同様に操作して、図3と同じ構成
の電気二重層コンデンサを作成した。
(Comparative Example 6) As a reference comparative example, propylene carbonate was used in place of the above-mentioned organic electrolytic solution composition.
An electric double layer capacitor having the same constitution as that shown in FIG. 3 was prepared in the same manner by using an electrolytic solution composition in which (C2 H5) 4 NBF4 was dissolved at a concentration of 65 mol / L.

【0030】(評価3)上記のようにして作製した電気
二重層コンデンサの初期特性として、電気容量と内部抵
抗を測定した。その後、コンデンサを70℃で3.3V
の電圧を印加しながら1000時間放置し、1000時
間経過後のコンデンサの容量と内部抵抗を測定した。電
気容量は3.3Vで充電したコンデンサを定電流で放電
させ、その時の放電曲線から測定した。また、内部抵抗
はLCRメータ(周波数1KHz)で測定した。結果を
表2に示す。
(Evaluation 3) As the initial characteristics of the electric double layer capacitor manufactured as described above, the electric capacity and the internal resistance were measured. After that, the capacitor is 3.3V at 70 ℃.
The sample was allowed to stand for 1000 hours while applying the voltage of 1, and the capacity and internal resistance of the capacitor after 1000 hours were measured. The electric capacity was measured by discharging a capacitor charged at 3.3V with a constant current and measuring the discharge curve at that time. The internal resistance was measured with an LCR meter (frequency 1 KHz). The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】表2からわかるように、実施例10のコン
デンサは、70℃で従来より高い3.3Vを印可して1
000時間保持した後でも、比較例6と比べ容量、内部
抵抗ともに変化率が小さく、高い電圧印可状態で長期に
わたる使用に耐えることができる。
As can be seen from Table 2, the capacitor of Example 10 was applied with 3.3 V, which is higher than before, at 70 ° C.
Even after being held for 000 hours, the rate of change in both capacity and internal resistance was small compared to Comparative Example 6, and it was possible to withstand long-term use in a high voltage applied state.

【0033】[0033]

【発明の効果】以上説明した様に、含フッ素環状カーボ
ネートからなる本発明の電解液用有機溶媒は優れた酸化
還元電位幅を持つためリチウム二次電池等の二次電池や
電気二重層コンデンサ等のコンデンサに用いる電解液用
の有機溶媒として好適である。また、たとえばリチウム
二次電池用の有機溶媒として用いた場合、電池のサイク
ル特性を飛躍的に向上させることができ、また電気二重
層コンデンサ用の有機溶媒として用いた場合、高い電圧
印可状態で長期にわたる使用が可能であるため、その工
業価値の大なるものである。
As described above, since the organic solvent for an electrolytic solution of the present invention comprising a fluorine-containing cyclic carbonate has an excellent oxidation-reduction potential range, secondary batteries such as lithium secondary batteries, electric double layer capacitors, etc. It is suitable as an organic solvent for the electrolytic solution used in the capacitor. In addition, when used as an organic solvent for a lithium secondary battery, for example, the cycle characteristics of the battery can be dramatically improved, and when used as an organic solvent for an electric double layer capacitor, it can be used for a long time under a high voltage applied state. Since it can be used over a wide range, its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で作成したリチウム二次電池
の半断面図である。
FIG. 1 is a half sectional view of a lithium secondary battery prepared in an example of the present invention.

【図2】 各種有機溶媒を用いた電池の充放電サイクル
特性の比較を示す図である。
FIG. 2 is a diagram showing a comparison of charge / discharge cycle characteristics of batteries using various organic solvents.

【図3】 本発明の実施例で作成した電気二重層コンデ
ンサの半断面図である。
FIG. 3 is a half cross-sectional view of an electric double layer capacitor created in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 グラファイト 2 正極活物質成型体 3 多孔質セパレータ 4 負極缶 5 正極缶 6 ガスケット △・・・実施例8のサイクル数vs充放電効率測定値 □・・・比較例5のサイクル数vs充放電効率測定値 7 負極側ケース 8 アルミ溶射層 9 分極性電極 10 セパレータ 11 ガスケット 12 正極側ケース 1 graphite 2 Positive electrode active material molded body 3 Porous separator 4 negative electrode can 5 positive electrode can 6 gasket Δ: Cycle number vs. charge / discharge efficiency measurement value of Example 8 □ ... Cycle number vs. charge / discharge efficiency measurement value of Comparative Example 5 7 Negative electrode side case 8 Aluminum sprayed layer 9-minute polar electrode 10 separators 11 gasket 12 Positive side case

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式(1)で示される含フッ素環
状カーボネート(a)からなる電解液用有機溶媒。[一
般式(1)でR1〜R4のうち1つはCFH 2 またはC
2 Hであり、残りは水素である含フッ素環状カーボネ
ートを除く。]一般式(1) 【化1】 〔式中、R1〜R4のうち少なくとも1つは−CHF−
X基(Xは水素、フッ素または炭素数が1〜4のアルキ
ル基)であり、残りは水素または炭素数が1〜4のアル
キル基である。〕
1. An organic solvent for an electrolytic solution, which comprises a fluorine-containing cyclic carbonate (a) represented by the following general formula (1). [one
In the general formula (1), one of R1 to R4 is CFH 2 or C
Fluorine-containing cyclic carbon dioxide which is F 2 H and the rest is hydrogen
Excludes ] General formula (1) [In the formula, at least one of R1 to R4 is -CHF-
X group (X is hydrogen, fluorine or an alkyl group having 1 to 4 carbon atoms), and the rest are hydrogen or an alkyl group having 1 to 4 carbon atoms. ]
【請求項2】 副溶媒として、鎖状炭酸エステル、鎖状
カルボン酸エステル、環状もしくは鎖状エーテル、ラク
トン化合物、ニトリル化合物およびアミド化合物から選
ばれる1種以上の化合物(b)を、含フッ素環状カーボ
ネート(a)に対し重量比で、b/a=(0.1〜2)
/1含有する請求項1記載の電解液用有機溶媒。
2. A fluorine-containing cyclic compound containing at least one compound (b) selected from a chain carbonic acid ester, a chain carboxylic acid ester, a cyclic or chain ether, a lactone compound, a nitrile compound and an amide compound as an auxiliary solvent. Weight ratio to carbonate (a), b / a = (0.1-2)
The organic solvent for an electrolytic solution according to claim 1, which comprises / 1.
【請求項3】 リチウム二次電池の電解液用有機溶媒で
ある請求項1または2記載の電解液用有機溶媒。
3. The organic solvent for an electrolytic solution according to claim 1, which is an organic solvent for an electrolytic solution of a lithium secondary battery.
【請求項4】 請求項3記載の有機溶媒を溶媒とする電
解液が充填されてなるリチウム二次電池。
4. A lithium secondary battery filled with an electrolytic solution containing the organic solvent according to claim 3.
【請求項5】 電気二重層コンデンサの電解液用有機溶
媒である請求項1または2記載の電解液用有機溶媒。
5. The organic solvent for an electrolytic solution according to claim 1, which is an organic solvent for an electrolytic solution of an electric double layer capacitor.
【請求項6】 請求項5記載の有機溶媒を溶媒とする電
解液が充填されてなる電気二重層コンデンサ。
6. An electric double layer capacitor filled with an electrolytic solution containing the organic solvent according to claim 5.
JP05672196A 1996-01-10 1996-02-19 Organic solvent for electrolyte, lithium secondary battery and electric double layer capacitor Expired - Fee Related JP3461997B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05672196A JP3461997B2 (en) 1996-01-10 1996-02-19 Organic solvent for electrolyte, lithium secondary battery and electric double layer capacitor
US08/777,867 US5750730A (en) 1996-01-10 1996-12-31 Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
DE19700656A DE19700656B4 (en) 1996-01-10 1997-01-10 Fluorine-containing dioxolane compounds and their use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-20452 1996-01-10
JP2045296 1996-01-10
JP05672196A JP3461997B2 (en) 1996-01-10 1996-02-19 Organic solvent for electrolyte, lithium secondary battery and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH09251861A JPH09251861A (en) 1997-09-22
JP3461997B2 true JP3461997B2 (en) 2003-10-27

Family

ID=26357412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05672196A Expired - Fee Related JP3461997B2 (en) 1996-01-10 1996-02-19 Organic solvent for electrolyte, lithium secondary battery and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3461997B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463926B2 (en) * 1999-11-15 2003-11-05 セントラル硝子株式会社 Electrolyte for electrochemical devices
KR100371403B1 (en) * 2000-01-10 2003-02-07 주식회사 엘지화학 New electrolytes and lithium ion battery using the same
KR100433000B1 (en) * 2000-08-05 2004-05-24 삼성에스디아이 주식회사 Polymer electrolyte composition containing a novel monomer and polymer electrolyte prepared from the same
JP4537035B2 (en) * 2003-01-09 2010-09-01 三星エスディアイ株式会社 Non-aqueous electrolyte and lithium secondary battery
JP4264567B2 (en) * 2004-11-05 2009-05-20 ソニー株式会社 Secondary battery
JP4349321B2 (en) * 2004-12-10 2009-10-21 ソニー株式会社 battery
JP4839673B2 (en) * 2005-05-12 2011-12-21 ソニー株式会社 Secondary battery electrolyte and secondary battery
EP2339684B1 (en) 2005-06-10 2013-01-09 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution, nonaqueous electrolyte secondary cell, and carbonate compounds
JP5068449B2 (en) * 2005-11-15 2012-11-07 三星エスディアイ株式会社 Lithium secondary battery
WO2008084846A1 (en) 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor
US20110159382A1 (en) * 2009-05-08 2011-06-30 Toru Matsui Nonaqueous solvent, and nonaqueous electrolyte solution and nonaqueous secondary battery using the same
JP6228975B2 (en) * 2012-07-13 2017-11-08 ソルヴェイ(ソシエテ アノニム) Carbonyl fluoride compound having triple bond, method for producing the same, and use thereof
JP6740147B2 (en) * 2017-02-01 2020-08-12 トヨタ自動車株式会社 Non-aqueous electrolyte and method for manufacturing non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH09251861A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
US6495293B1 (en) Non-aqueous electrolyte comprising a fluorinated solvent
KR100570359B1 (en) The hybrid battery
JP3060107B2 (en) Flame retardant non-aqueous electrolyte and secondary battery using the same
US5750730A (en) Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
EP1329975B1 (en) Non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
Boltersdorf et al. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives
JP3461997B2 (en) Organic solvent for electrolyte, lithium secondary battery and electric double layer capacitor
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4904616B2 (en) Electrolytic solution and electrochemical element using the same
JP3437794B2 (en) Flame retardant non-aqueous electrolyte and secondary battery using the same
JP3867756B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2019175577A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2005285492A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
WO2001080345A1 (en) Non-aqueous electrolyte and lithium secondary battery
JPH09286785A (en) Fluorine-containing dioxolane, organic solvent for electrolysis, lithium secondary cell and electric double layer capacitor
JP2008258031A (en) Polymer secondary battery
JP2001052965A (en) Non-aqueous electrolyte solution for capacitor, electrode, and capacitor using the same
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7395816B2 (en) Non-aqueous electrolytes for batteries and lithium secondary batteries
JP4190207B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JPH11273734A (en) Flame resistant nonaqueous electrolytic solution and secondary battery using it
JP6894751B2 (en) Non-aqueous electrolyte for batteries, additives for batteries, and lithium secondary batteries
JP2001143749A (en) Electrochemical element including non-aqueous electrolyte
WO2013069790A1 (en) Non-aqueous electrolyte secondary cell
JP7070979B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees