JP3460529B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP3460529B2
JP3460529B2 JP24926497A JP24926497A JP3460529B2 JP 3460529 B2 JP3460529 B2 JP 3460529B2 JP 24926497 A JP24926497 A JP 24926497A JP 24926497 A JP24926497 A JP 24926497A JP 3460529 B2 JP3460529 B2 JP 3460529B2
Authority
JP
Japan
Prior art keywords
bag
battery
negative electrode
sealing
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24926497A
Other languages
Japanese (ja)
Other versions
JPH1186807A (en
Inventor
豊 福田
啓一 田中
武広 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24926497A priority Critical patent/JP3460529B2/en
Publication of JPH1186807A publication Critical patent/JPH1186807A/en
Application granted granted Critical
Publication of JP3460529B2 publication Critical patent/JP3460529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電子機器の電源等
に使用される非水電解質電池に関するものである。より
詳細には、正極、負極、電解液が封入袋に封入され、正
極と負極のリード線を夫々外部に取り出す構造を有し、
かつ、電解液の密封についての信頼性が高いことを特徴
とする非水電解質電池に関するものである。 【0002】 【従来の技術】電子機器の小型化と共に電源としての電
池の小型化、軽量化への要求が強まっている。一方、電
池に対する高エネルギー密度化、高エネルギー効率化も
求められており、Liイオン電池などの2次電池への期
待が高まっている。こうした要求に対して、例えば、特
開昭61−240564号に見られるごとく、耐酸性を
有する熱可塑性樹脂からなる袋に極板群を挿入し、この
極板群を多数個、フィルム状、シート状またはチューブ
状合成樹脂からなる袋状外装体で包み込んで密閉型鉛蓄
電池とする試みが提案されている。また、特開平3−6
2447号や特開昭57−115820号に見られるよ
うに封入袋のシートに、プラスチックフィルムの間に金
属層を挟んだ構造として密封性を向上する試みもある。 【0003】 【発明が解決しようとする課題】金属層を設けることで
密封性は大幅に向上するが、シール部分からと思われる
電解液の漏れを皆無とすることは難しく、特に、たとえ
ば100℃近い高温雰囲気にさらされた場合など、電解
液の漏れにより電池寿命が低減することもある。 【0004】 【課題を解決するための手段】本発明者らは上述の問題
を解決し、密封に対する信頼性を向上させるために種々
検討した結果、封入袋に正極、負極、電解液を封入し、
正極と負極のリード線を夫々外部に取り出す構造とし、
このリード線の取り出し部分を含めてヒートシールして
電池の形態とした後、この電池に放射線処理を施すこと
により、電解液の液漏れ防止に顕著な効果があることを
見出し、本発明を完成した。 【0005】以下、本発明を図を用いて詳細に説明す
る。電極、電解質、隔膜等が封入袋に挿入されたタイプ
の電池に於いては、図3に示す如く、直接接触する封入
袋の内側の最内層のヒートシール層10が融着されるこ
とにより封入袋が作製されている。そして、模擬的に図
2に示した如くに、封入袋に正極、負極、隔膜、電解液
が収納され、又、図4に示す如く、封入袋とリード線は
封入袋のヒートシール層10とリード線の絶縁体2が融
着されることにより一体化され、リード線が外部に取り
出されており、封入袋内部に於いてリード線が正、負極
の極板にそれぞれ接続されている。リード線と電極と
は、あらかじめ接続され、封入袋に封入される。 【0006】正極、負極極板は、集電体と呼ばれる金属
箔やエキスパンテッドメタル等の金属基材上に活物質層
が形成された構造を有する。リード線と正極、負極極板
の接続方法については特に限定されないが、この極板の
金属基材とリード線の導体とをスポット溶接や、超音波
溶接等で接続する方法が好ましく利用できる。 【0007】このリード線導体の材質には、正極接続用
には、非常に高い電位がかかるために、高電位で溶解し
ない材質のものが望ましい。そのためにアルミニウム、
またはチタン、あるいはこれらの金属の合金が好ましく
利用できる。負極接続用には過充電でリチウムが析出し
たり、過放電では、電位が高くなることからリチウムが
析出した場合形状が変化しにくい、即ちリチウムと合金
を形成しにくく、比較的高電位で溶解しにくい材質のも
のが好ましい。以上の観点から、導体の材質にはニッケ
ルまたは銅、あるいはこれらの金属の合金が好ましく利
用できる。 【0008】導体の形状については、丸型や平角導体の
単線が好ましく利用できるが、丸型の場合、電池容量が
大きい場合には、丸型の直径が大きくなるため、封入袋
の最内層のヒートシール層10の間にはさまれるリード
線の厚みが大きくなるために、リード線の最外層の絶縁
体2と封入袋の最内層のヒートシール層10との融着部
に間隙が生じやすくなり、リード線と封入袋の融着部で
の密閉の信頼性が低くなる問題がある。それに対して平
角導体を利用した場合には、電池容量増加に対しても導
体の厚みを大きくせずに幅を大きくすることで断面積を
かせぐことができるため、封入袋の最内層のヒートシー
ル層10との間にはさまれたリード線の絶縁体2との融
着部の密閉に対する信頼性の低下は起こらない。更にF
PC(フレキシブルプリント基板)等を利用した外部回
路や、電極極板との接続においても平角導体の方が接触
面積が大きく、スポット溶接や超音波溶接により、より
信頼性の高い接続を行うことが可能となる。 【0009】電解質には、プロピレンカーボネート、γ
−プチロラクトン、エチレンカーボネート、ジエチルカ
ーボネート、ジメチルカーボネート、1.2−ジメトキ
シエタン、テトラヒドロフランなどの有機溶媒にLiC
lO4、LiBF4、LiPF6、LiAsF6等の非水電
解液やリチウムイオン伝導性の固体電解質などが利用で
きる。 【0010】封入袋は、アルミ箔等の金属箔や金属蒸着
層がサンドイッチ状に挿入されたプラスチックとの貼り
合わせ材料を用いるものが好ましく、少なくとも内側の
プラスチックは電解質に溶解しないことが必要である。 【0011】本発明の重要な特徴は、封入袋に正極、負
極、電解液を封入し、正極と負極のリード線を夫々外部
に取り出す構造とし、このリード線の取り出し部分を含
めてヒートシールして電池の形態とした後、この電池に
放射線処理を施すことにある。 【0012】放射線処理を施す方法としては、電池をた
とえば所定のダンボール箱につめた後、ダンボール箱ご
とコバルトを線源とするγ線に所定の時間さらす方法が
あげられる。また、透過力の大きい電子線加速器を使用
した電子線による処理でも同様の効果が期待できる。む
ろん電池をダンボール箱等につめるのではなく、個々の
電池を直接コンベアの上にならべて、放射線処理を施す
こともできる。なお、放射線の照射量としては50KG
y〜300KGyが好ましい範囲であった。50KGy
未満の照射では密封信頼性向上の効果が充分ではなく、
他方、照射量を過大にすることは経済的効率が悪く、ま
た、ヒートシール部のプラスチックが脆くなるなど性能
低下のおそれもある。 【0013】 【実施例】以下に実施例について説明する。まず、Li
CoO2粉末(日本化学工業製)100重量部に、グラ
ファイト10重量部、ポリフッ化ビニリデン10重量部
を混合し、N−メチル−2−ピロリドンに溶解した後、
ペースト状にした。次に、このペーストを厚さ20μm
のアルミ箔の片面に塗工し、乾燥後、ローラープレスし
た。このようにして厚さ0.1mm、幅50mm、長さ
105mmの極板(5mmは未塗工部)を作製し、正極
とした。 【0014】次に、リン状天然黒鉛粉末100重量部
に、ポリフッ化ビニリデン20重量部を混合し、N−メ
チル−2−ピロリドンに溶解した後、ペースト状にし
た。このペーストを厚さ20μmの銅箔の両面に塗工
し、乾燥後、ローラープレスした。このようにして厚さ
0.10mm、幅50mm、長さ105mmの極板(5
mmは未塗工部)を作製し、負極とした。 【0015】このようにして得られた正極と負極の間に
厚み25μmのポリプロピレンの微、多孔膜の融膜をは
さみ、極板の活物質層が塗工されていないアルミ箔(正
極)と銅箔(負極)それぞれをリード線の導体部に超音
波溶接により接続し、図2に示す如く封入袋に挿入した
後、8ccの電解液を注入し、減圧含浸した後、リード
線を封入袋の間に挟み込み、封入袋の内層とリード線の
外側の絶縁体を200℃、5秒の条件でシール機により
熱融着(シール幅:10mm)し試験電池とした。電解
液としては、エチレンカーボネートとジエチルカーボネ
ートを1:1の体積比率で混合し、六フッ化リン酸リチ
ウムを1mol/リットルとなるように溶解したものを
使用した。 【0016】なお、封入袋は、表1に示した構成のシー
トを2枚の矩形状(70mm×135mm)に切断し、
PET面を外側に向けて向かい合わせ、矩形の周辺3辺
を3mm巾でヒートシールすることによって得た。 【0017】 【表1】 【0018】こうして得られた封入袋に、前述の如く正
極、負極、電解液を封入し、正極と負極のリード線を夫
々外部に取り出す構造とし、このリード線の取り出し部
分を含めてヒートシールして電池の形態とした。この電
池にγ線を100KGy照射し、密封信頼性を非照射品
と比較した。なお、密封信頼性の比較は、電池サンプル
を100℃雰囲気に放置し、重量減少、及び、電池の電
流容量の変化をトレースすることにより行った。 【0019】 【発明の効果】密封信頼性のテストの結果は、表2,表
3に示した通りである。照射品は非照射品に比べて10
0℃雰囲気での重量減少が小さく、かつ、電池の電流容
量の低下も少なく、照射により顕著に密封信頼性が向上
することがわかった。 【0020】 【表2】 【0021】 【表3】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery used as a power source for electronic equipment. In more detail, the positive electrode, the negative electrode, the electrolyte solution is sealed in a sealing bag, and has a structure in which the lead wires of the positive electrode and the negative electrode are respectively taken out,
The present invention also relates to a non-aqueous electrolyte battery characterized by high reliability in sealing an electrolyte. 2. Description of the Related Art Along with the miniaturization of electronic devices, there is an increasing demand for miniaturization and weight reduction of batteries as power sources. On the other hand, batteries are also required to have higher energy density and higher energy efficiency, and expectations for secondary batteries such as Li-ion batteries are increasing. In response to such demands, for example, as seen in JP-A-61-240564, a group of electrode plates is inserted into a bag made of an acid-resistant thermoplastic resin, and a large number of the electrode groups are formed into a film or sheet. There has been proposed an attempt to form a sealed lead-acid battery by enclosing it in a bag-like outer body made of a tubular or tubular synthetic resin. Also, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent No. 2447 and Japanese Patent Application Laid-Open No. 57-115820, there is also an attempt to improve the sealing performance by forming a structure in which a metal layer is sandwiched between plastic films in a sheet of an enclosing bag. [0003] The provision of a metal layer greatly improves the sealing performance. However, it is difficult to eliminate the leakage of the electrolyte from the sealing portion. In some cases, such as when the battery is exposed to a nearby high temperature atmosphere, the battery life may be shortened due to leakage of the electrolyte. The inventors of the present invention have conducted various studies to solve the above-mentioned problems and to improve the reliability of sealing. As a result, the present inventors have found that a positive electrode, a negative electrode, and an electrolytic solution are sealed in a sealing bag. ,
The structure of taking out the lead wires of the positive electrode and the negative electrode respectively to the outside,
After heat-sealing the battery including the portion where the lead wire is taken out to form a battery, it has been found that by applying radiation treatment to this battery, there is a remarkable effect in preventing leakage of the electrolyte, and the present invention has been completed. did. Hereinafter, the present invention will be described in detail with reference to the drawings. In a battery of a type in which an electrode, an electrolyte, a diaphragm, and the like are inserted into an encapsulation bag, as shown in FIG. 3, the encapsulation is performed by fusing the innermost heat seal layer 10 inside the encapsulation bag in direct contact. A bag has been made. Then, as shown in FIG. 2, a positive electrode, a negative electrode, a diaphragm, and an electrolytic solution are stored in the encapsulating bag, and as shown in FIG. The insulator 2 of the lead wire is integrated by fusing, the lead wire is taken out, and the lead wire is connected to the positive and negative electrode plates inside the enclosing bag. The lead wire and the electrode are connected in advance and sealed in a sealing bag. The positive and negative electrode plates have a structure in which an active material layer is formed on a metal substrate called a current collector, such as a metal foil or an expanded metal. The method of connecting the lead wire to the positive and negative electrode plates is not particularly limited, but a method of connecting the metal base material of the electrode plate and the conductor of the lead wire by spot welding, ultrasonic welding, or the like can be preferably used. [0007] Since a very high potential is applied to the positive electrode connection, a material that does not melt at a high potential is desirable for the material of the lead wire conductor. Aluminum for that,
Alternatively, titanium or an alloy of these metals can be preferably used. For the connection of the negative electrode, lithium is precipitated by overcharging, and in overdischarge, the potential is high, so the shape is not easily changed when lithium is precipitated, that is, it is difficult to form an alloy with lithium, and it is dissolved at a relatively high potential. A material that is difficult to work is preferable. From the above viewpoints, nickel or copper, or an alloy of these metals can be preferably used as the material of the conductor. As for the shape of the conductor, a single wire of a round shape or a rectangular conductor can be preferably used. However, in the case of a round shape, the diameter of the round shape increases when the battery capacity is large. Since the thickness of the lead wire interposed between the heat seal layers 10 becomes large, a gap is easily generated in a fusion portion between the insulator 2 as the outermost layer of the lead wire and the heat seal layer 10 as the innermost layer of the encapsulating bag. As a result, there is a problem that the reliability of sealing at the fusion portion between the lead wire and the sealing bag is lowered. On the other hand, when a rectangular conductor is used, it is possible to increase the cross-sectional area by increasing the width of the conductor without increasing the thickness of the conductor to increase the battery capacity. There is no reduction in the reliability with respect to the sealing of the fused portion of the lead wire sandwiched between the layer 10 and the insulator 2. Further F
When connecting to an external circuit using a PC (flexible printed circuit board) or the like, or to the electrode plate, the rectangular conductor has a larger contact area, and more reliable connection can be performed by spot welding or ultrasonic welding. It becomes possible. The electrolyte includes propylene carbonate, γ
LiCl in organic solvents such as butyrolactone, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1.2-dimethoxyethane, tetrahydrofuran, etc.
A non-aqueous electrolyte such as 10 4 , LiBF 4 , LiPF 6 , LiAsF 6 or a solid electrolyte having lithium ion conductivity can be used. The encapsulating bag is preferably made of a material that is bonded to a metal foil such as an aluminum foil or a plastic in which a metal deposition layer is inserted in a sandwich shape. At least the inner plastic must not dissolve in the electrolyte. . An important feature of the present invention is that a positive electrode, a negative electrode, and an electrolytic solution are sealed in an enclosing bag, and the lead wires of the positive electrode and the negative electrode are respectively taken out to the outside. And then subjecting the battery to radiation treatment. As a method of performing radiation treatment, for example, there is a method in which a battery is packed in a predetermined cardboard box and then the entire cardboard box is exposed to γ-rays using cobalt as a radiation source for a predetermined time. A similar effect can be expected by processing with an electron beam using an electron beam accelerator having a large transmission power. Of course, instead of packing batteries in a cardboard box or the like, individual batteries can be arranged directly on a conveyor and subjected to radiation treatment. The radiation dose is 50KG
y to 300 KGy was a preferable range. 50KGy
If the irradiation is less than this, the effect of improving the sealing reliability is not sufficient,
On the other hand, if the irradiation amount is too large, the economic efficiency is poor, and there is a possibility that the performance of the heat seal portion may be deteriorated, for example, the plastic may be brittle. An embodiment will be described below. First, Li
100 parts by weight of CoO 2 powder (manufactured by Nippon Chemical Industry), 10 parts by weight of graphite and 10 parts by weight of polyvinylidene fluoride were mixed and dissolved in N-methyl-2-pyrrolidone.
Paste. Next, this paste was applied to a thickness of 20 μm.
Was coated on one side of an aluminum foil, dried and then roller-pressed. Thus, an electrode plate having a thickness of 0.1 mm, a width of 50 mm, and a length of 105 mm (5 mm is an uncoated portion) was prepared and used as a positive electrode. Next, 20 parts by weight of polyvinylidene fluoride was mixed with 100 parts by weight of phosphorous natural graphite powder, dissolved in N-methyl-2-pyrrolidone, and then made into a paste. This paste was applied on both sides of a copper foil having a thickness of 20 μm, dried, and then roller-pressed. Thus, an electrode plate (5 mm thick, 50 mm wide, 105 mm long)
mm is an uncoated part) to prepare a negative electrode. An aluminum foil (positive electrode) on which an active material layer of an electrode plate is not coated is sandwiched between a fine and porous film of polypropylene having a thickness of 25 μm between the positive electrode and the negative electrode thus obtained. Each foil (negative electrode) was connected to the conductor portion of the lead wire by ultrasonic welding, inserted into a sealed bag as shown in FIG. 2, injected with 8 cc of an electrolytic solution, impregnated under reduced pressure, and then inserted into the sealed bag. The inner layer of the sealed bag and the insulator outside the lead wire were heat-sealed (sealing width: 10 mm) with a sealing machine at 200 ° C. for 5 seconds to form a test battery. As the electrolytic solution, a solution obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 and dissolving lithium hexafluorophosphate at 1 mol / liter was used. The enclosing bag is prepared by cutting a sheet having the structure shown in Table 1 into two rectangular shapes (70 mm × 135 mm).
It was obtained by heat-sealing the three sides of the rectangle with a width of 3 mm, with the PET faces facing outward and facing each other. [Table 1] The positive electrode, the negative electrode, and the electrolytic solution are sealed in the encapsulating bag thus obtained, and the positive electrode and the negative electrode lead wires are respectively taken out to the outside. Battery. The battery was irradiated with γ-rays at 100 KGy, and the sealing reliability was compared with a non-irradiated product. The comparison of the sealing reliability was performed by leaving the battery sample in an atmosphere at 100 ° C. and tracing a change in the current capacity of the battery and a decrease in weight. The results of the sealing reliability test are as shown in Tables 2 and 3. Irradiated products are 10 times less than non-irradiated products
It was found that the weight loss in the 0 ° C. atmosphere was small, and the current capacity of the battery was not much reduced, and the irradiation significantly improved the sealing reliability. [Table 2] [Table 3]

【図面の簡単な説明】 【図1】本発明の封入袋とリード線を用いた非水電解質
電池を示す。 【図2】封入袋の内部を模式的に示す。 【図3】封入袋の断面を示す。 【図4】封入袋のヒートシール部の拡大図を示す。 【符号の説明】 1,1′:リード線の導体 2,2′:リード線の絶縁 3:封入袋 4:封入袋のシール部(一例) 5,5′:電極 6:隔膜 7:正極集電体 7′:負極集電体 8:正極の活物質 8′:負極の活物質 9:アルミ箔 10:ヒートシール層 11:PET層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a non-aqueous electrolyte battery using an encapsulation bag and a lead wire of the present invention. FIG. 2 schematically shows the inside of an enclosing bag. FIG. 3 shows a cross section of an enclosing bag. FIG. 4 is an enlarged view of a heat sealing portion of the enclosing bag. [Description of Signs] 1, 1 ': Conductor of lead wire 2, 2': Insulation of lead wire 3: Encapsulation bag 4: Seal portion of encapsulation bag (example) 5, 5 ': Electrode 6: Diaphragm 7: Positive electrode collection Current collector 7 ': negative electrode current collector 8: positive electrode active material 8': negative electrode active material 9: aluminum foil 10: heat seal layer 11: PET layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−78604(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/00 - 2/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-78604 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 2/00-2/08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 正極、負極、電解液等が封入袋に封入さ
れ、正極と負極のリードを夫々外部に取り出す構造の非
水電解質電池であって、その封入袋が金属層と1層もし
くは多層からなるプラスチック層の貼り合わせシートで
構成されており、封入袋をヒートシールして電池の形態
とした後、放射線処理を施したことを特徴とする非水電
解質電池。
(1) A non-aqueous electrolyte battery having a structure in which a positive electrode, a negative electrode, an electrolytic solution, and the like are sealed in an encapsulating bag, and leads of the positive electrode and the negative electrode are respectively taken out. Non-aqueous electrolyte characterized in that the bag is composed of a laminated sheet of a metal layer and a plastic layer composed of one or more layers, and the sealed bag is heat-sealed to form a battery and then subjected to radiation treatment. battery.
JP24926497A 1997-09-16 1997-09-16 Non-aqueous electrolyte battery Expired - Fee Related JP3460529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24926497A JP3460529B2 (en) 1997-09-16 1997-09-16 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24926497A JP3460529B2 (en) 1997-09-16 1997-09-16 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH1186807A JPH1186807A (en) 1999-03-30
JP3460529B2 true JP3460529B2 (en) 2003-10-27

Family

ID=17190385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24926497A Expired - Fee Related JP3460529B2 (en) 1997-09-16 1997-09-16 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3460529B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460805B2 (en) * 1999-06-24 2003-10-27 日本電気株式会社 Battery manufacturing method
JP2003526884A (en) * 2000-03-06 2003-09-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method of manufacturing lithium battery
JP4993052B2 (en) * 2001-02-19 2012-08-08 大日本印刷株式会社 Lithium-ion battery packaging materials
CN103339292B (en) 2010-12-10 2017-09-22 奥克海德莱克斯控股有限公司 Multilayer water dissociation device
CN105702885B (en) * 2016-04-06 2018-04-17 东莞市安德丰电池有限公司 Encapsulating structure and its method for packing, the chemical synthesizing method of a kind of lithium ion battery
CN106025145B (en) * 2016-08-09 2018-08-10 连云港德立信电子科技有限公司 A kind of sealing of flexible package lithium cell two drain exhaust packaging technology
KR102382436B1 (en) * 2018-07-20 2022-04-04 주식회사 엘지에너지솔루션 Method for Preparing Pouch-Type Secondary Battery

Also Published As

Publication number Publication date
JPH1186807A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP3767151B2 (en) Thin battery
JPH09288996A (en) Nonaqueous electrolyte battery
JPH09288998A (en) Nonaqueous electrolyte battery
JP3505905B2 (en) Non-aqueous electrolyte battery
JP4677708B2 (en) Lead, power storage device, and lead manufacturing method
JP3240965B2 (en) Enclosure bag for non-aqueous electrolyte battery and method of manufacturing the same
JP2003346779A (en) Non-aqueous secondary battery
JP3460529B2 (en) Non-aqueous electrolyte battery
JP2010086807A (en) Nonaqueous electrolyte battery
JP3911849B2 (en) Non-aqueous electrolyte battery
JP3379417B2 (en) Enclosure bag for non-aqueous electrolyte batteries
JP3137061B2 (en) Non-aqueous electrolyte battery
JPH10289696A (en) Battery and its manufacture
KR20120006730A (en) Process for preparing lithium polymer secondary batteries employing gel polymerelectrolyte
JP4228376B2 (en) battery
JP6682203B2 (en) Secondary battery manufacturing method
JP3562129B2 (en) Encapsulation bags and lead wires for non-aqueous electrolyte batteries
JP6598933B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3601283B2 (en) Non-aqueous electrolyte battery
JP2004319098A (en) Electrochemical cell and its manufacturing method
JPH1140114A (en) Nonaqueous electrolyte battery
JP3050157B2 (en) Non-aqueous electrolyte battery
JP3092123B1 (en) Enclosure bag for non-aqueous electrolyte batteries
JP2010244865A (en) Laminated battery
JP2000149993A (en) Film-like lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees