JP3460499B2 - Prolonged period of vibration isolation system using canceling spring - Google Patents

Prolonged period of vibration isolation system using canceling spring

Info

Publication number
JP3460499B2
JP3460499B2 JP07189497A JP7189497A JP3460499B2 JP 3460499 B2 JP3460499 B2 JP 3460499B2 JP 07189497 A JP07189497 A JP 07189497A JP 7189497 A JP7189497 A JP 7189497A JP 3460499 B2 JP3460499 B2 JP 3460499B2
Authority
JP
Japan
Prior art keywords
spring
vibration
canceling
elastic restoring
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07189497A
Other languages
Japanese (ja)
Other versions
JPH10267080A (en
Inventor
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP07189497A priority Critical patent/JP3460499B2/en
Publication of JPH10267080A publication Critical patent/JPH10267080A/en
Application granted granted Critical
Publication of JP3460499B2 publication Critical patent/JP3460499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、除振システムの
小振幅域における固有振動を、バネ定数が一定な線形特
性を有する相殺バネを用いて簡易に長周期化させること
ができ、もって微少振動吸収性能の可及的な向上が図り
得る、相殺バネを用いた除振システムの長周期化方法に
関する。 【0002】 【従来の技術】一般に、免振ビルや除振台等に適用され
る除振システムとして、基礎や基台等の基盤上に緩衝バ
ネを介して建物や除振台等の被除振体を水平方向に相対
変位自在に設け、緩衝バネで基盤側の水平方向振動を吸
収することにより当該水平方向振動が被除振体側に伝わ
らないようにしたものが広く採用されており、上記緩衝
バネにはゴム板と鋼板とを交互に積層一体化させて形成
した積層ゴム弾性体やコイルスプリング等が多用されて
いる。 【0003】そして、小振幅から大振幅に亘って良好な
振動吸収性能を持たせる必要がある場合には、その緩衝
バネにはバネ定数が小変位時ほど小さく、大変位時ほど
大きい非線形特性を呈するものを採用している。 【0004】 【発明が解決しようとする課題】しかしながら、上記緩
衝バネを所望の非線形特性に設計製造することは困難
で、その開発並びに製造には手間がかかり、線形特性を
呈する緩衝バネに比べて製造コストが非常に高くなると
いう問題がある。 【0005】また、当該緩衝バネが被除振体の荷重を負
担しているような場合には、その荷重に耐え得る剛性を
持たせる必要があることから、非線形特性を付与するに
あたって、その小変位領域におけるバネ定数はあまり小
さくすることはできず、このため小振幅域の固有振動を
長周期化させるのに限界があり、微少振動をも嫌う研究
施設やLSI工場等の免振建物や精密除振台などの振動
吸収性能を有効に向上させることができないという問題
がある。 【0006】本発明は、上記課題に鑑みてなされたもの
であり、その目的は、基盤上に緩衝バネを介して水平方
向に相対変位可能に設けた被除振体に伝わる水平振動の
小振幅域の固有振動を、線形特性を有する相殺バネを用
いて簡易な構成で低コストで長周期化させることがで
き、もって小振幅域における振動吸収性能を可及的に向
上させることができる相殺バネを用いた除振システムの
長周期化方法を提供することにある。 【0007】 【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる相殺バネを用いた除振システムの長
周期化方法にあっては、基盤上に水平方向に相対変位自
在な被除振体を設け、該基盤と被除振体との間には水平
方向の弾性復元力特性がQ=q(x)で表せる緩衝バネ
を介在させてなる除振システムに対し、その小振幅域に
おける固有振動をバネ定数ksが一定な線形特性を有す
る相殺バネを用いて長周期化するにあたって、該相殺バ
ネは、該被除振体と該基盤とに相対変位が生じていない
状態でこれらの間に初期圧縮歪み量δ0 を与えて、取付
幅Hにて直角に取り付け、その弾性復元力Pの水平方向
成分Px が前記緩衝バネの弾性復元力Qの相殺力として
作用するように設け、該相殺バネと前記緩衝バネとを複
合させた複合バネの水平方向の弾性復元力特性R=q
(x)+Px のバネ定数が、前記相対変位の生じていな
い状態で0となる条件で、前記相殺バネの初期圧縮歪み
量δ0 と取付幅Hとバネ定数Ksとを設定することを特
徴とする。 【0008】上記構成に係る本発明の相殺バネを用いた
除振システムの長周期化方法によれば、相殺バネは基盤
と被除振体とに相対変位が生じていない状態でそれらに
直角に配置されているから、初期圧縮歪み量δ0 が与え
られていても基盤と被除振体とが相対変位していない状
態では、緩衝バネの水平方向の弾性復元力を相殺する水
平分力は生じず、相殺バネとして機能しない。一方、基
盤と被除振体とに相対変位xが生じるとその相対変位角
θに応じて水平方向分力Px =−ks・δ0 ・sinθ
が生じ、この水平分力Pxが緩衝バネの弾性復元力Qの
相殺力として働く。つまり、相殺バネはその弾性復元力
Pの水平方向分力Px がsin曲線をベースにした非線
形特性を呈して、緩衝バネの弾性復元力を低減させる。 【0009】ここで、上記相対変位xに伴う相殺バネの
歪み量δはδ0 −{(x2 +H2 1/2 −H}であり、
またsinθはx/(x2 +H2 1/2 であるから、上
記相殺力は水平方向変位xの関数として表せ、既知であ
る緩衝バネの水平方向の弾性復元力特性Q=q(x)と
組み合わせた複合バネの水平方向の弾性復元力特性R=
Q+Px も変位xの関数式として表せる。 【0010】そして、除振システムの小振幅域における
固有振動を長周期化させて微小振動の吸収性能を向上さ
せるには、複合バネにおける弾性復元力特性R=Q+P
x のバネ定数を変位x=0の振動原点付近の所望の範囲
において可能な限り0に近づければ良い。すなわち、変
位xの関数式として表せる複合バネの弾性復元力特性R
=Q+Px の変位x=0における傾きが水平になるよう
にすれば良い。 【0011】従って、複合バネの弾性復元力特性R=Q
+Px を変位xで偏微分した偏微分式にx=0を代入し
て、これが0となるバネ定数ks、初期圧縮歪み量
δ0 、取付幅Hの解を算出することで相殺バネの諸設定
を決定でき、線形バネ特性を有する相殺バネを用いて簡
易な構成でかつ低コストで、除振システムの小振幅領域
の固有振動を長周期化が図れ、もって微小振動の吸収性
能を可及的に向上させることができる。 【0012】 【発明の実施の形態】図1は本発明に係る相殺バネを用
いた除振システムの長周期化方法によって調整された精
密除振台の一実施例の概略構成を示すものであり、図2
は図1中の要部を拡大してその動作状態を誇張して示す
説明図である。 【0013】図1,2に示すように、被除振体である精
密除振台4は基盤たる基台6の上面に緩衝バネ装置2を
介して水平方向に相対変位自在に設けられ、その側方の
基台6の上面に固設された反力受け部材3との間に取り
付けられたダンパー5により小振幅時の振動が抑制され
るようになっている。 【0014】緩衝バネ装置2は互いに平行に相対移動す
る精密除振台4と基台6との間に介在され、主緩衝バネ
8と相殺バネ10とが複合されてなる。主緩衝バネ8は
ゴム板8aと鋼板8bとを順次積層してその全長に亘っ
て一様に形成してなる弾性体であり、精密除振台4の荷
重を支えて水平方向に変位可能であって、その水平変位
に伴う鉛直方向の沈み込みは殆ど生じず、無視できるも
のとなっている。 【0015】ここで、主緩衝バネ8の弾性復元力をQと
し、そのバネ特性がQ=q(x)で表せるとすると、こ
の主バネ8は上記のようにその全長に亘ってゴム板8a
と鋼板8bとを積層して一様に形成しているから、図3
に示すように水平方向のバネ特性Q=q(x)は水平変
位xに拘わらずバネ定数kがほぼ一定な線形特性を呈
し、Q=k・xと示し得る。 【0016】一方、相殺バネ10には線形特性を有する
コイルバネを用いて、精密除振台4に水平変位が生じて
いない状態で、基台6との間に鉛直方向に沿って、つま
り相対変位方向に対して直角に配設されている。 【0017】更に詳しくは、相殺バネ10は図2に示す
ように、初期圧縮歪み量(長さ)δ0 が与えられて取付
幅Hで当該基台6と精密除振台4の下部とにそれぞれユ
ニバーサルジョイント等を介してピン結合され、精密除
振台4が基台6に対して水平に相対変位したときには、
相殺バネ10の弾性復元力Pの水平方向分力Px が精密
除振台4に作用するようになっている。 【0018】つまり、精密除振台4の水平変位xに応じ
て傾斜する相殺バネ10の鉛直方向からの角度(相対変
位角)をθとすれば、精密除振台4には下式(1)に示
す相殺バネ10の水平方向分力Px が主緩衝バネ8の弾
性復元力Qの相殺力として作用するようになっており、
この相殺力のバネ特性はsin曲線をベースにした非線
形特性を呈するものとなっている。 【0019】 Px =−P・sinθ =−ks ・δ0 ・sinθ ………(1) また歪み量δは、 δ=δ0 +H −(x2 +H2 1/2 ………(2) と表せるから、相殺バネ10の弾性復元力P=ks・δ
は、 P =−ks・{δ0 +H −(x2 +H2 1/2 } ………(3) となり、かつsinθは、 sinθ=x/(x2 +H2 1/2 ………(4) であるから、上記相殺力として作用する相殺バネ10の
水平方向分力Px は、 Px =−ks ・{δ0 +H−(x2 +H2 1/2 } ・{x/(x2 +H2 1/2 } ………(5) という相対変位xの関数式(5)として示すことができ
る。 【0020】従って、主緩衝バネ8と相殺バネ10とを
複合させた緩衝バネ装置2の水平方向のバネ特性をRと
すれば、 R=Q+Px =k・x−ks ・{δ0 +H−(x2 +H2 1/2 }・{x/(x2 +H2 1/2 }=x[k−ks・{δ0 +H−(x2 +H2 1/2 } ・{1/(x2 +H2 1/2 } ………(6) と表し得る。 【0021】ここで、精密除振台4の小振幅域の振動吸
収性能、特に微小振動の吸収性能を向上させるために
は、変位x=0の振動原点付近の固有振動を可能な限り
長周期化すれば良く、そのためにはその振動原点x=0
付近でのバネ定数を可及的に0に近づける必要がある。
そこで、少なくとも当該振動原点x=0におけるバネ定
数が0になることを、相殺バネ10のバネ定数ksと初
期圧縮歪み量δ0 及び取付幅Hとを設定する上での条件
にする。 【0022】つまり、上式(6)で示される緩衝バネ装
置2の弾性復元力特性において、その振動原点である変
位x=0における傾きを0にすれば良い。すなわち、相
殺バネ10の水平方向の弾性復元力Pxにおける変位x
=0での傾き(バネ定数)と主緩衝バネ8の変位x=0
での傾き(バネ定数k)との和が0になれば良い。 【0023】ここで、相殺バネ10の水平方向の弾性復
元力Pxの傾きは、上式(5)を変位xで偏微分した偏
微分式で表せられる。 【0024】 【0025】そして、この偏微分式にx=0を代入すれ
ば、振動原点における傾きが求まる。 【0026】 【0027】一方、主緩衝バネ8の傾きはkであるか
ら、当該kと上記偏微分式にx=0を代入して求めた上
記振動原点における傾きとの和が0であるとの条件か
ら、バネ定数ksと初期圧縮歪み量δ、及び取付幅
Hとを求めれば良い。 【0028】 【0029】また、上記条件を満たすks,H,δ
の組み合わせが、複合バネの振動原点における傾き(バ
ネ定数)を0とするための解となる。 【0030】 【0031】なお、ここで上記ks,H,δ0 には複数
の組み合わせの解が求められるが、そのうちから所望の
除振領域が得られる等、除振システムの使用用途に応じ
て最も適合する非線形特性が得られる組み合わせの解を
選択すればよい。 【0032】また、上述のようにして相殺バネ10の諸
設定を決定できるが、この相殺バネ10は具体的には例
えば図4に示すように構成する。 【0033】すなわち、軸心を一致されて相互に摺動自
在に嵌合された伸縮可能な上部ロッド12と下部ロッド
14とに、それぞれアッパースプリングシート16とロ
アースプリングシート18とを一体形成し、これらのス
プリングシート16,18に上下の両端を係合させて線
形特性に優れたコイルスプリング20を設ける。上下の
ロッド12,14の端部にはピン結合用の取付孔22,
24を設け、コイルスプリング20が自然長の状態で上
下の取付孔22,24のスパンLを上記の如くに算出決
定したH+δ0 となるように各部材の寸法を設計する。
また、使用するコイルスプリング20のバネ定数は当然
ながらksにする。そして、この相殺バネ10は精密除
振台4と基台6とにそれらに水平方向の変位が生じてい
ない状態で鉛直に取り付ける。このとき、精密除振台4
側と基台6側とに設けてある相殺バネ取付用の係合ピン
のスパンはHに設定しておき、相殺バネ10を取り付け
た状態でこの相殺バネ10のコイルスプリング20には
初期圧縮歪み量(長さ)δ0 を生じさせる。 【0034】従って、以上に説明したようにこの緩衝バ
ネ装置2で緩衝される精密除振台4では、主緩衝バネ8
と相殺バネ10とを複合させた非線形特性を呈する緩衝
バネ装置2の振動原点におけるバネ定数が0であり、か
つその近辺のバネ定数も可及的に0に近いものとなって
いるから、小振幅域における精密除振台4の固有振動が
可及的に長周期化され、基台6側から精密除振台4に入
力される微小振動を有効に吸収することができるように
なる。 【0035】しかも、変位xに係わらずバネ常数ksが
一定な線形特性を呈する相殺バネ10を用い、これを精
密除振台4と除振台6との間にそれらに水平変位が生じ
ていない状態で鉛直に配置して取り付けるという簡易な
構成で済む。 【0036】また、所定のバネ定数ksに容易に設計製
作でき、かつ線形特性に優れるコイルスプリングを用い
て相殺バネ10を製造すれば、廉価にかつ高精度に緩衝
バネ装置2の特性調整を行うことができる。 【0037】また、上記所望のバネ常数ksに形成した
相殺バネ10のコイルスプリング20に初期歪み量δ
を与えた状態時の長さが上記取付幅H内にうまく収
まらないような場合も生じる。このような場合には、
に示すように弾性復元力伝達手段28を介して取付れ
ば良い。 【0038】すなわち、第1,第2シリンダ機構30,
32を弾性復元力伝達手段28として採用し、基台6と
精密除振台4との間には非圧縮性流体である油を作動流
体に用いた第1シリンダ機構30を鉛直に配する。この
第1シリンダ機構30は上記算出された取付幅Hでその
シリンダ30a側とピストン30b側とをそれぞれユニ
バーサルジョイントによるピン結合で精密除振台4と基
台6とに取り付ける一方、第2シリンダ機構32は基台
6上に寝かせて配し、そのシリンダ32a側を固定して
おき、第1シリンダ機構30の圧力室31と第2シリン
ダ機構32の圧力室33とをフレキシブルパイプでなる
連通管34で連通させる。そして、第2シリンダ機構3
2のピストン32b側にコイルスプリング20の一端2
0aを接続し、その他端20bを反力受けのブラケット
36に接続する。ブラケット36は基台6に固定してお
く。 【0039】この際、第1シリンダ機構30と第2シリ
ンダ機構32とは双方のピストン30b,32bの受圧
面積を等しくしておき、第1シリンダ機構30のピスト
ン作動ストロークがそのまま第2シリンダ機構32のピ
ストン作動ストロークになるように設定しておいても良
いが、図示例のように受圧面積を変えてピストン作動ス
トロークをその面積比に比例させるようにすることもで
きる。この場合には、当然ながら、その作動ストローク
の比に合わせてコイルスプリング20のバネ常数も設定
変更しておく必要があるが、このようにピストン受圧面
積を変えることで、使用するコイルスプリング20の長
さ等の大きさを自由に設定することが可能になり、第2
シリンダ機構32の配設スペース等の自由度が増す。 【0040】なお、第2シリンダ機構32は必ずしも基
台6上に配置する必要はなく、別途の固定系に配置する
こともでき、その設置場所の自由度も高い。また作動流
体には非圧縮性のものであれば油以外のものを用いても
良い。 【0041】また、上述の実施例では主緩衝バネ8には
線形特性を呈するものを採用しているが、非線形特性を
呈するものを採用しても何ら差し支えはない。 【0042】また、この発明は微小振動をも嫌うような
研究施設やLSI工場等における免振建物の除振システ
ムにも適用可能である。 【0043】 【発明の効果】以上、実施例で詳細に説明したように、
この発明に係る相殺バネを用いた除振システムの長周期
化方法によれば、バネ定数ksが一定な線形特性を呈す
る相殺バネを基盤と被除振体との間に、それらが相対変
位していない状態で鉛直に配して、初期圧縮歪み量δ0
を与えて、取付幅Hで取り付けて緩衝バネと複合させ、
その際、その複合バネの水平方向の弾性復元力特性にお
ける振動原点でのバネ定数が0になるという条件を満足
させて上記バネ定数ksと初期圧縮歪み量δ0 及び取付
幅Hとを設定するというだけの簡易な構成で、除振シス
テムの小振幅域における固有振動を可及的に長周期化さ
せることができ、微小振動の吸収性能に優れた除振シス
テムを廉価に提供できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration isolation system which can easily extend a natural vibration in a small amplitude range by using a canceling spring having a linear characteristic having a constant spring constant. The present invention relates to a method for prolonging the period of an anti-vibration system using a canceling spring, which can be made periodical and thus can improve micro vibration absorption performance as much as possible. 2. Description of the Related Art Generally, as a vibration isolation system applied to a vibration-isolated building, a vibration isolation table, or the like, an object such as a building or a vibration isolation table is mounted on a base such as a base or a base via a buffer spring. The vibration body is provided so as to be relatively displaceable in the horizontal direction, and a buffer spring absorbs the horizontal vibration on the base side so that the horizontal vibration is not transmitted to the vibration receiving body side. As the cushioning spring, a laminated rubber elastic body or a coil spring formed by alternately laminating and integrating a rubber plate and a steel plate is often used. When it is necessary to provide good vibration absorption performance from a small amplitude to a large amplitude, the buffer spring has a non-linear characteristic having a smaller spring constant at a small displacement and a larger spring constant at a large displacement. We adopt what we present. [0004] However, it is difficult to design and manufacture the above-mentioned shock-absorbing spring to have a desired non-linear characteristic, and it takes time and effort to develop and manufacture the shock-absorbing spring. There is a problem that the manufacturing cost becomes very high. When the cushioning spring bears the load of the object to be removed, it is necessary to have a rigidity capable of withstanding the load. The spring constant in the displacement region cannot be made too small, and there is a limit to prolonging the natural oscillation in the small amplitude range, and vibration-free buildings such as research facilities and LSI factories that dislike minute vibrations and precision There is a problem that vibration absorption performance of a vibration isolation table or the like cannot be effectively improved. The present invention has been made in view of the above problems, and has as its object to reduce the amplitude of horizontal vibration transmitted to an object to be vibration-isolated provided horizontally on a base via a buffer spring. Spring that can increase the natural frequency of the region with a simple configuration at low cost using a canceling spring having a linear characteristic and thereby improve the vibration absorption performance in the small amplitude range as much as possible. An object of the present invention is to provide a method for extending the period of a vibration isolation system using a computer. [0007] In order to achieve the above object, in a method for extending a vibration isolation system using a canceling spring according to the present invention, a relative displacement in a horizontal direction on a substrate is provided. For a vibration isolation system having a flexible vibration-isolated body and a buffer spring having a horizontal elastic restoring force characteristic expressed by Q = q (x) between the base and the vibration-isolated body, In extending the natural oscillation in the small amplitude range using a canceling spring having a linear characteristic with a constant spring constant ks, the canceling spring has no relative displacement between the vibration-receiving body and the base. In this state, an initial amount of compressive strain δ 0 is given between them, and they are mounted at right angles with a mounting width H, and the horizontal component P x of the elastic restoring force P acts as a canceling force of the elastic restoring force Q of the buffer spring. So that the offset spring and the cushioning spring are combined. Horizontal elastic restoring force characteristic R = q
(X) The initial compression strain amount δ 0 , the mounting width H, and the spring constant Ks of the canceling spring are set under the condition that the spring constant of + P x becomes 0 when the relative displacement does not occur. And [0008] According to the method of extending the vibration removing system using the canceling spring according to the present invention having the above-described configuration, the canceling spring is perpendicular to the base and the vibration-free body in a state where no relative displacement occurs between them. Even when the initial compressive strain amount δ 0 is given, the horizontal component force that offsets the horizontal elastic restoring force of the shock-absorbing spring is in a state where the base and the vibration-free body are not relatively displaced even if the initial compressive strain amount δ 0 is given. Does not occur and does not function as a canceling spring. On the other hand, when a relative displacement x occurs between the base and the vibration-isolated body, a horizontal component force P x = −ks · δ 0 · sin θ according to the relative displacement angle θ.
This horizontal component Px acts as a canceling force of the elastic restoring force Q of the buffer spring. That is, cancellation springs horizontal component force P x of the elastic restoring force P is present a non-linear characteristic is based on the sin curve, reduce the elastic restoring force of the buffer spring. Here, the amount of distortion δ of the canceling spring due to the relative displacement x is δ 0 − {(x 2 + H 2 ) 1/2 −H},
Since sin θ is x / (x 2 + H 2 ) 1/2 , the above-described canceling force can be expressed as a function of the horizontal displacement x, and the known horizontal elastic restoring force characteristic Q = q (x) of the shock-absorbing spring. Horizontal elastic restoring force characteristics R =
Q + P x can also be expressed as a function expression of the displacement x. In order to increase the period of the natural vibration in the small amplitude range of the vibration isolation system and improve the performance of absorbing the minute vibration, the elastic restoring force characteristic R = Q + P of the composite spring is required.
What is necessary is just to make the spring constant of x as close to 0 as possible in a desired range near the vibration origin of the displacement x = 0. That is, the elastic restoring force characteristic R of the composite spring that can be expressed as a function expression of the displacement x
What is necessary is to make the inclination at the displacement x = 0 of = Q + P x horizontal. Therefore, the elastic restoring force characteristic R = Q of the composite spring
By substituting x = 0 into a partial differential equation obtained by partially differentiating + P x with a displacement x, a solution of a spring constant ks, an initial compressive strain amount δ 0 , and a mounting width H at which this is zero is calculated, thereby obtaining various types of offset springs. The setting can be determined, the natural vibration in the small-amplitude region of the vibration isolation system can be lengthened with a simple configuration and at a low cost by using a canceling spring having linear spring characteristics, and the performance of absorbing minute vibrations can be improved. Can be improved. FIG. 1 shows a schematic configuration of an embodiment of a precision vibration isolation table adjusted by a method of extending a vibration isolation system using a canceling spring according to the present invention. , FIG. 2
FIG. 2 is an explanatory diagram showing an enlarged state of an essential part in FIG. 1 and exaggerating its operation state. As shown in FIGS. 1 and 2, a precision vibration isolation table 4 which is an object to be vibration-isolated is provided on a top surface of a base 6 as a base via a buffer spring device 2 so as to be relatively displaceable in a horizontal direction. Vibration at a small amplitude is suppressed by a damper 5 attached between the reaction force receiving member 3 fixed to the upper surface of the side base 6. The buffer spring device 2 is interposed between the precision vibration isolation table 4 and the base 6 which move relatively in parallel to each other, and is composed of a main buffer spring 8 and a canceling spring 10 combined. The main shock absorbing spring 8 is an elastic body formed by sequentially laminating a rubber plate 8a and a steel plate 8b and uniformly forming the rubber plate 8a over the entire length thereof. Therefore, the vertical subsidence caused by the horizontal displacement hardly occurs and is negligible. Here, assuming that the elastic restoring force of the main buffer spring 8 is Q and its spring characteristic can be expressed by Q = q (x), the main spring 8 has a rubber plate 8a over its entire length as described above.
3 and the steel plate 8b are laminated and uniformly formed.
As shown in FIG. 7, the horizontal spring characteristic Q = q (x) exhibits a linear characteristic in which the spring constant k is substantially constant irrespective of the horizontal displacement x, and can be expressed as Q = k · x. On the other hand, a coil spring having a linear characteristic is used as the canceling spring 10, and a vertical displacement between the precision vibration isolator 4 and the base 6, that is, a relative displacement, It is arranged at right angles to the direction. More specifically, as shown in FIG. 2, the offset spring 10 is provided with an initial compressive strain amount (length) δ 0 , and has a mounting width H between the base 6 and the lower part of the precision vibration isolation table 4. When the precision anti-vibration table 4 is displaced horizontally relative to the base 6,
Horizontal component force P x of the elastic restoring force P of the offset spring 10 is adapted to act on precise vibration isolation table 4. That is, if the angle (relative displacement angle) from the vertical direction of the canceling spring 10 inclined according to the horizontal displacement x of the precision vibration isolation table 4 is θ, the precision vibration isolation table 4 has the following formula (1). ), The horizontal component force P x of the canceling spring 10 acts as a canceling force of the elastic restoring force Q of the main buffer spring 8.
The spring characteristic of the canceling force exhibits a non-linear characteristic based on a sin curve. P x = −P · sin θ = -Ks ・ Δ 0・ sin θ ... (1) Also, the distortion amount δ is δ = δ 0 + H − (X 2 + H 2 ) 1/2 (2) Therefore, the elastic restoring force P of the canceling spring 10 is P = ks · δ.
Is P = −ks · {δ 0 + H − (X 2 + H 2 ) 1/2 } (3), and sin θ is sin θ = x / (x 2 + H 2 ) 1/2 ... (4) horizontal component force P x cancellation spring 10 which acts, P x = -ks · {Δ 0 + H- (x 2 + H 2 ) 1/2 } · {x / (x 2 + H 2 ) 1/2 } こ と が (5) it can. Therefore, assuming that the horizontal spring characteristic of the buffer spring device 2 in which the main buffer spring 8 and the offset spring 10 are combined is R, R = Q + P x = k × x−ks {Δ 0 + H- (x 2 + H 2 ) 1/2 } · {x / (x 2 + H 2 ) 1/2 } = x [k−ks · {δ 0 + H- (x 2 + H 2 ) 1 / 2} · {1 / (x 2 + H 2) 1/2} may represent a ......... (6). Here, in order to improve the vibration absorbing performance of the precision vibration isolation table 4 in the small amplitude range, particularly, the performance of absorbing minute vibrations, the natural vibration near the vibration origin at the displacement x = 0 should be as long as possible. The vibration origin x = 0
It is necessary to make the spring constant in the vicinity as close to zero as possible.
Therefore, the condition that at least the spring constant at the vibration origin x = 0 becomes 0 is a condition for setting the spring constant ks of the canceling spring 10, the initial amount of compressive strain δ 0, and the mounting width H. That is, in the elastic restoring force characteristic of the buffer spring device 2 represented by the above equation (6), the inclination at the displacement x = 0, which is the origin of the vibration, may be set to zero. That is, the displacement x in the horizontal elastic restoring force Px of the canceling spring 10
= 0 (spring constant) and displacement x = 0 of the main buffer spring 8
It is sufficient that the sum with the inclination (spring constant k) becomes zero. Here, the inclination of the elastic restoring force Px in the horizontal direction of the canceling spring 10 is obtained by partially differentiating the above equation (5) with the displacement x.
It can be expressed by a differential equation . Then, when x = 0 is substituted into this partial differential equation,
Thus, the inclination at the vibration origin can be obtained. On the other hand, since the inclination of the main buffer spring 8 is k, the inclination is obtained by substituting x = 0 into the k and the partial differential equation.
Is the condition that the sum with the inclination at the vibration origin is 0?
Thus, the spring constant ks, the initial compressive strain amount δ 0 , and the mounting width H may be obtained. [0028] Further, ks satisfying the above conditions, H, [delta] 0
Is a solution for setting the inclination (spring constant) at the vibration origin of the composite spring to zero. Here, a plurality of combinations of solutions are obtained for ks, H, and δ 0 , and a desired vibration isolation region can be obtained from among them, depending on the application of the vibration isolation system. What is necessary is just to select the solution of the combination from which the most suitable nonlinear characteristic is obtained. Further, various settings of the canceling spring 10 can be determined as described above. The canceling spring 10 is specifically configured as shown in FIG. 4 , for example. That is, the upper spring seat 16 and the lower spring seat 18 are integrally formed on the extensible upper rod 12 and the lower rod 14 which are fitted to each other so as to be slidable with their axes aligned. Upper and lower ends are engaged with these spring seats 16 and 18 to provide a coil spring 20 having excellent linear characteristics. At the ends of the upper and lower rods 12, 14, mounting holes 22 for pin connection are provided.
24, and the dimensions of each member are designed so that the span L of the upper and lower mounting holes 22, 24 becomes H + δ 0 calculated and determined as described above with the coil spring 20 having a natural length.
The spring constant of the coil spring 20 used is naturally set to ks. The canceling spring 10 is mounted vertically on the precision vibration isolation table 4 and the base 6 in a state where they are not displaced in the horizontal direction. At this time, the precision anti-vibration table 4
The span of the engagement pin for attaching the offset spring provided on the side and the base 6 side is set to H, and the initial compression strain is applied to the coil spring 20 of the offset spring 10 with the offset spring 10 attached. Yields the quantity (length) δ 0 . Therefore, as described above, in the precision anti-vibration table 4 buffered by the buffer spring device 2, the main buffer spring 8
Since the spring constant at the vibration origin of the buffer spring device 2 exhibiting the non-linear characteristics of the combination of the spring spring and the canceling spring 10 is 0, and the spring constant in the vicinity thereof is as close to 0 as possible, The natural vibration of the precision anti-vibration table 4 in the amplitude range is made as long as possible, and the minute vibration input from the base 6 to the precision anti-vibration table 4 can be effectively absorbed. In addition, a canceling spring 10 having a constant linear spring characteristic ks regardless of the displacement x is used, and no horizontal displacement is generated between the precise anti-vibration table 4 and the anti-vibration table 6. A simple configuration of vertically arranging and attaching in a state is sufficient. Further, if the canceling spring 10 is manufactured by using a coil spring which can be easily designed and manufactured with a predetermined spring constant ks and has excellent linear characteristics, the characteristics of the buffer spring device 2 can be adjusted at low cost and with high accuracy. be able to. The initial strain δ is applied to the coil spring 20 of the canceling spring 10 formed to have the desired spring constant ks.
In some cases, the length in the state where 0 is given does not fit well within the mounting width H. In such a case, as shown in FIG.
As shown in FIG. 5, it may be attached via the elastic restoring force transmitting means 28. That is, the first and second cylinder mechanisms 30,
32 is adopted as the elastic restoring force transmission means 28, and a first cylinder mechanism 30 using oil, which is an incompressible fluid, as a working fluid is vertically disposed between the base 6 and the precision vibration isolation table 4. The first cylinder mechanism 30 attaches the cylinder 30a side and the piston 30b side to the precision anti-vibration table 4 and the base 6 by means of a pin joint by a universal joint, respectively, with the calculated mounting width H, while the second cylinder mechanism Reference numeral 32 denotes a communication pipe 34 which is laid on the base 6 and whose cylinder 32a side is fixed, and the pressure chamber 31 of the first cylinder mechanism 30 and the pressure chamber 33 of the second cylinder mechanism 32 are formed of a flexible pipe. To communicate. And the second cylinder mechanism 3
2 has one end 2 of the coil spring 20 on the side of the piston 32b.
0a, and the other end 20b is connected to the bracket 36 for receiving the reaction force. The bracket 36 is fixed to the base 6. At this time, in the first cylinder mechanism 30 and the second cylinder mechanism 32, the pressure receiving areas of both the pistons 30b and 32b are set to be equal, and the piston operation stroke of the first cylinder mechanism 30 is directly changed to the second cylinder mechanism 32. The piston operating stroke may be set to be equal to the piston operating stroke, but the pressure receiving area may be changed to make the piston operating stroke proportional to the area ratio as in the illustrated example. In this case, of course, it is necessary to change the setting of the spring constant of the coil spring 20 in accordance with the ratio of the operation stroke. It is possible to freely set the size such as the length.
The degree of freedom such as the space for disposing the cylinder mechanism 32 is increased. The second cylinder mechanism 32 does not necessarily need to be disposed on the base 6, but can be disposed on a separate fixed system, and the degree of freedom of the installation location is high. The working fluid may be any other than oil as long as it is incompressible. In the above-described embodiment, the main cushion spring 8 having a linear characteristic is employed. However, a main cushion spring having a non-linear characteristic may be employed. The present invention can also be applied to a vibration isolation system for a vibration-isolated building in a research facility or an LSI factory that dislikes minute vibrations. As described above in detail in the embodiments,
According to the method for lengthening the period of the vibration isolating system using the canceling spring according to the present invention, the canceling spring having a linear characteristic in which the spring constant ks is constant is relatively displaced between the base and the object to be damped. The initial compression strain δ 0
, And attached with the mounting width H to be combined with the buffer spring,
At this time, the spring constant ks, the initial compressive strain amount δ 0, and the mounting width H are set by satisfying the condition that the spring constant at the origin of vibration in the horizontal elastic restoring force characteristic of the composite spring is 0. With such a simple configuration, the natural vibration in the small amplitude range of the vibration isolation system can be made as long as possible, and a vibration isolation system excellent in the performance of absorbing minute vibrations can be provided at low cost.

【図面の簡単な説明】 【図1】この発明に係るバネ特性調整方法によって調整
した緩衝バネ装置を備えた除振台の概略構成を示す図で
ある。 【図2】図1中の要部を拡大してその動作状態を誇張し
て示す説明図である。 【図3】緩衝バネの弾性復元力の特性Qと相殺バネの弾
性復元力の水平方向分力の特性Px 、およびそれらを複
合させた状態の複合バネのバネ特性性Rとの関係を概念
的に示すグラフである。 【図4】本発明で使用する相殺バネの具体的構成例を示
す図である。 【図5】本発明に係る相殺バネの他の設置例を示す概略
構成図である。 【符号の説明】 2 緩衝バネ装置 4 精密除振台 6 基台 8 主緩衝バネ 10 相殺バネ 12 上部ロッド 14 下部ロッド 16 アッパースプリングシート 18 ロアースプリングシート 20 コイルスプリング 22,24 取付孔 26 ケーシング 28 挿通孔 30 第1シリンダ機構 32 第2シリンダ機構 34 連通管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a schematic configuration of a vibration isolation table provided with a buffer spring device adjusted by a spring characteristic adjustment method according to the present invention. FIG. 2 is an explanatory diagram showing an enlarged state of a main part in FIG. 1 and exaggerating an operation state thereof. FIG. 3 conceptually illustrates a relationship between a characteristic Q of an elastic restoring force of a buffer spring, a characteristic P x of a horizontal component force of an elastic restoring force of a canceling spring, and a spring characteristic R of a composite spring in a state where they are combined. It is a graph shown typically. FIG. 4 is a diagram showing a specific configuration example of a canceling spring used in the present invention. FIG. 5 is a schematic configuration diagram showing another installation example of the canceling spring according to the present invention. [Description of Signs] 2 Buffer spring device 4 Precision anti-vibration table 6 Base 8 Main buffer spring 10 Cancellation spring 12 Upper rod 14 Lower rod 16 Upper spring seat 18 Lower spring seat 20 Coil spring 22, 24 Mounting hole 26 Casing 28 Insertion Hole 30 First cylinder mechanism 32 Second cylinder mechanism 34 Communication pipe

Claims (1)

(57)【特許請求の範囲】 【請求項1】 基盤上に水平方向に相対変位自在な被除
振体を設け、該基盤と被除振体との間には水平方向の弾
性復元力特性がQ=q(x)で表せる緩衝バネを介在さ
せてなる除振システムに対し、その小振幅域における固
有振動をバネ定数ksが一定な線形特性を有する相殺バ
ネを用いて長周期化する方法であって、 該相殺バネは、該被除振体と該基盤とに相対変位が生じ
ていない状態でこれらの間に初期圧縮歪み量δ0 を与え
て、取付幅Hにて直角に取り付け、その弾性復元力Pの
水平方向成分Px が前記緩衝バネの弾性復元力Qの相殺
力として作用するように設け、 該相殺バネと前記緩衝バネとを複合させた複合バネの水
平方向の弾性復元力特性R=q(x)+Px のバネ定数
が、前記相対変位の生じていない状態で0となる条件
で、前記相殺バネの初期圧縮歪み量δ0 と取付幅Hとバ
ネ定数Ksとを設定する、 ことを特徴とする相殺バネを用いた除振システムの長周
期化方法。
(57) [Claims 1] A vibration-removing body that is relatively displaceable in a horizontal direction is provided on a base, and a horizontal elastic restoring force characteristic is provided between the base and the vibration-receiving body. A method of extending the natural vibration in a small amplitude range using a canceling spring having a linear characteristic with a constant spring constant ks for a vibration isolation system including a buffer spring expressed by Q = q (x). Wherein the offset spring gives an initial amount of compressive strain δ 0 between the anti-vibration body and the base in a state where no relative displacement occurs between them, and is attached at a right angle with an installation width H; provided to the horizontal component P x of the elastic restoring force P acts as a canceling force of the elastic restoring force Q of the buffer spring, the horizontal direction of the elastic restoring of the phase killing spring and the buffer spring and a composite spring complexed with state the spring constant force characteristic R = q (x) + P x does not occur in the relative displacement And setting the initial compression strain amount δ 0 , the mounting width H, and the spring constant Ks of the canceling spring under the condition of 0 .
JP07189497A 1997-03-25 1997-03-25 Prolonged period of vibration isolation system using canceling spring Expired - Fee Related JP3460499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07189497A JP3460499B2 (en) 1997-03-25 1997-03-25 Prolonged period of vibration isolation system using canceling spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07189497A JP3460499B2 (en) 1997-03-25 1997-03-25 Prolonged period of vibration isolation system using canceling spring

Publications (2)

Publication Number Publication Date
JPH10267080A JPH10267080A (en) 1998-10-06
JP3460499B2 true JP3460499B2 (en) 2003-10-27

Family

ID=13473708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07189497A Expired - Fee Related JP3460499B2 (en) 1997-03-25 1997-03-25 Prolonged period of vibration isolation system using canceling spring

Country Status (1)

Country Link
JP (1) JP3460499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410561C (en) * 2006-10-19 2008-08-13 哈尔滨工业大学 Non-linear press-rod spring device
JP7178044B2 (en) * 2018-11-20 2022-11-25 国立大学法人埼玉大学 Displacement control device and seismic isolation system

Also Published As

Publication number Publication date
JPH10267080A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
US9086112B2 (en) Instrumented platform for vibration-sensitive equipment
TWI582294B (en) Seismic isolation mechanism
US5160121A (en) Shock absorbing compressional mounting apparatus
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
JP2000055117A (en) Base isolation device
JP3460499B2 (en) Prolonged period of vibration isolation system using canceling spring
AU2004269176B2 (en) Method and device for filtering and damping vibrations
JP2000186743A (en) Vibration control trestle for device to be installed
JP3465714B2 (en) Vibration energy absorbing device and manufacturing method thereof
JP2009174198A (en) Vibration control device, vibration control structure, and vibration control panel
JP2006037995A (en) Active vibration eliminating device and active vibration eliminating mount
JP3710000B2 (en) Vibration damping device for torsional damper
SU1657795A1 (en) Vibration isolator
JPH0882341A (en) Vibration isolating mount
JPS6221946B2 (en)
JPH1130278A (en) Base isolation construction
JP3252736B2 (en) Adjusting the spring characteristics of the buffer spring
JPH07150809A (en) Damping device
JP3376845B2 (en) Adjusting the spring characteristics of the buffer spring
JP3185692B2 (en) Method of adjusting spring characteristics of tuned mass damper and mechanism for adjusting spring characteristics
JPS6392850A (en) Vibration isolator
JP3386867B2 (en) Anti-vibration mechanism for ballast tamping equipment
JP2000314448A (en) Base isolation device
EP1031758A1 (en) Vibration damping assemblies
KR200387780Y1 (en) High Efficiency Complex Type Rubber Mount for the Vibration and Shock Isolation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees