JP3252736B2 - Adjusting the spring characteristics of the buffer spring - Google Patents

Adjusting the spring characteristics of the buffer spring

Info

Publication number
JP3252736B2
JP3252736B2 JP00331897A JP331897A JP3252736B2 JP 3252736 B2 JP3252736 B2 JP 3252736B2 JP 00331897 A JP00331897 A JP 00331897A JP 331897 A JP331897 A JP 331897A JP 3252736 B2 JP3252736 B2 JP 3252736B2
Authority
JP
Japan
Prior art keywords
spring
characteristic
spring characteristic
displacement
ideal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00331897A
Other languages
Japanese (ja)
Other versions
JPH10196715A (en
Inventor
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP00331897A priority Critical patent/JP3252736B2/en
Publication of JPH10196715A publication Critical patent/JPH10196715A/en
Application granted granted Critical
Publication of JP3252736B2 publication Critical patent/JP3252736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、互いに平行に相
対移動する2つの物体間に介在されてそれらの相対変位
を吸収する緩衝バネのバネ特性を理想の特性に可及的に
近似させることができるバネ特性の調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes it possible to make the spring characteristics of a shock-absorbing spring interposed between two objects relatively moving parallel to each other and absorbing their relative displacement as close as possible to ideal characteristics. The present invention relates to a method for adjusting a spring characteristic that can be performed.

【0002】[0002]

【従来の技術】一般に、互いに平行に相対移動する2つ
の物体に対し、それらの相対変位を吸収して振動を緩衝
することを目的として弾性体を介在させることがある
が、小振幅の振動から大振幅の振動に至るまでその振動
吸収性を良好にするためには、小変位時には柔らかく、
大変位時には固くなる非線形バネ特性を備えた弾性体を
使用することが望ましい。
2. Description of the Related Art In general, an elastic body may be interposed between two objects moving in parallel to each other for the purpose of absorbing the relative displacement and damping the vibration. In order to improve the vibration absorption up to large amplitude vibration, it is soft at small displacement,
It is desirable to use an elastic body having a non-linear spring characteristic that becomes hard at the time of large displacement.

【0003】また、特定の固有振動数の振幅を低減させ
るTMD(同調型動吸振器)などにあっては、小振幅か
ら大振幅に至るまで有効にその固有振動数の振動低減効
果を発揮させるためには、変位の大小に関わらずバネ定
数が一定な線形バネ特性を備えた弾性体を使用する必要
がある。
In a TMD (tuned type dynamic vibration absorber) that reduces the amplitude of a specific natural frequency, the effect of reducing the vibration of the natural frequency is effectively exhibited from a small amplitude to a large amplitude. Therefore, it is necessary to use an elastic body having a linear spring characteristic having a constant spring constant regardless of the magnitude of the displacement.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、弾性体
はこれをその全長に亘って一様に形成して線形バネ特性
を付与しようとしても、定性的傾向として変位が大きく
なるほどバネ定数が小さくなるので、これを補償して真
に線形バネ特性を呈する弾性体を設計製造するのは困難
で、開発並びに製造コストが高騰する。また、非線形バ
ネ特性を付与するにあたっても、所望の理想とする非線
形バネ特性に合致させて弾性体を設計製造することは困
難で、やはり開発並びに製造コストの高騰を避け難いと
いう課題がある。そして、当該課題は特にゴム製の弾性
体の場合に顕著になる。
However, even if the elastic body is formed uniformly over its entire length to give a linear spring characteristic, a qualitative tendency is that as the displacement increases, the spring constant decreases. It is difficult to design and manufacture an elastic body exhibiting truly linear spring characteristics by compensating for this, and the development and manufacturing costs rise. In addition, it is difficult to design and manufacture an elastic body in conformity with a desired ideal non-linear spring characteristic when giving a non-linear spring characteristic, and it is also difficult to avoid an increase in development and manufacturing costs. This problem is particularly remarkable in the case of a rubber elastic body.

【0005】本発明は、このような事情に鑑みてなされ
たものであり、その目的は、互いに平行に相対移動する
2つの物体間に介在されてそれらの相対変位を吸収する
緩衝バネのバネ特性を、簡易にかつ低コストで理想の特
性に可及的に近似させることができるバネ特性の調整方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide a spring characteristic of a shock-absorbing spring interposed between two objects which move relative to each other in parallel and absorbs their relative displacement. It is an object of the present invention to provide a method of adjusting spring characteristics that can approximate the ideal characteristics as easily as possible at low cost.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る緩衝バネのバネ特性の調整方法は、互
いに平行に相対移動する2つの物体間に介在されてそれ
らの相対変位xを吸収する弾性体のバネ特性Q=f
(x)が、その理想とする理想バネ特性R=g(x)と
一致せず、それらバネ特性の差(R−Q)を相殺させる
ための相殺バネ特性S=−(R−Q)が非線形性を呈す
る場合に、該両物体間にバネ定数が一定の線形特性を呈
する複数の補助バネを配設して複合させ、該複合バネ全
体としての複合バネ特性を該理想バネ特性Rに近似させ
る緩衝バネのバネ特性の調整方法であって、該補助バネ
は、想定される変位の全域で機能する1次補助バネと、
該1次補助バネでバネ特性を近似させきれていない所定
の小変位域で部分的に機能する2次補助バネとからな
り、該1次補助バネは該両物体に相対変位が生じていな
い状態で、該相対変位方向に対して弾性復元力が直角に
作用するように両物体間に初期歪み量δ1 を与えて、取
付幅H1 、バネ定数ks1 にて取り付け、該バネ定数k
1 、該初期ひずみ量δ1 、該取付幅H1 はそれぞれ下
記の(1),(2)の各条件に基づいて設定し、該2次
補助バネは該両物体に相対変位が生じていない状態で、
該相対変位方向に対して弾性復元力が直角に作用するよ
うに両物体間に初期歪み量δ2 を与えて、該取付幅
2 、該バネ定数ks2 にて取り付け、該バネ定数ks
2 、該初期ひずみ量δ2 、該取付幅H2 は下記の
(3),(4)の各条件に基づいて設定することを特徴
とするバネ特性の調整方法。
In order to achieve the above object, a method for adjusting a spring characteristic of a shock-absorbing spring according to the present invention is provided between two objects which move relative to each other in parallel with each other and determine the relative displacement x between them. Spring characteristic Q = f of elastic body to absorb
(X) does not match the ideal ideal spring characteristic R = g (x), and the offset spring characteristic S =-(RQ) for offsetting the difference (RQ) between the spring characteristics is not satisfied. In the case of exhibiting non-linearity, a plurality of auxiliary springs exhibiting a linear characteristic with a constant spring constant are arranged between the two objects and combined, and the composite spring characteristics of the composite spring as a whole are approximated to the ideal spring characteristic R. A method of adjusting a spring characteristic of a shock-absorbing spring, wherein the auxiliary spring comprises: a primary auxiliary spring that functions over the entire range of an assumed displacement;
A secondary auxiliary spring partially functioning in a predetermined small displacement range where the primary auxiliary spring cannot fully approximate the spring characteristics, and the primary auxiliary spring is in a state where there is no relative displacement between the two objects. Then, an initial amount of strain δ 1 is applied between the two objects so that the elastic restoring force acts at right angles to the relative displacement direction, and the object is mounted with a mounting width H 1 and a spring constant ks 1 .
s 1 , the initial strain amount δ 1 , and the mounting width H 1 are set based on the following conditions (1) and (2), respectively, and the secondary auxiliary spring has a relative displacement between the two objects. Without
An initial amount of strain δ 2 is applied between the two objects so that the elastic restoring force acts at right angles to the relative displacement direction, and the object is mounted with the mounting width H 2 and the spring constant ks 2 .
2. A method for adjusting a spring characteristic, wherein the initial strain amount δ 2 and the mounting width H 2 are set based on the following conditions (3) and (4).

【0007】(1).該1次補助バネは、前記バネ特性
Q=F(x)と理想バネ特性R=g(x)とが等しくな
る既知の変位点x1 まで該両物体が平行に相対変位され
たときの長さL1 を自然長とする。
(1). The primary auxiliary spring, the length of time that the spring characteristic Q = F (x) and the ideal spring characteristic R = g (x) and is known both said object to displacement point x 1 equal is parallel to relative displacement It is the L 1 and natural length.

【0008】L1 =(x1 2 +H1 2 1/2 (2).該補助バネの弾性復元力P1 =−ks1 ・δの
前記相対変位方向分力P1xの極値およびその変位点は、
前記バネ特性Q=f(x)と理想バネ特性R=g(x)
との差を相殺する1次相殺バネ特性S1 =−(R−Q)
の既知の極値およびその変位点x2 (0<x2 <x1
に一致させる。
[0008] L 1 = (x 1 2 + H 1 2) 1/2 (2). The extreme value of the relative displacement direction component force P 1x of the elastic restoring force P 1 = −ks 1 · δ of the auxiliary spring and its displacement point are as follows:
The spring characteristic Q = f (x) and the ideal spring characteristic R = g (x)
And a first-order canceling spring characteristic S 1 = − (RQ)
Known extremum and its displacement point x 2 (0 <x 2 <x 1 )
To match.

【0009】P1x=−P1 ・{x/(x2 +H1 2
1/2 } (3).該2次補助バネは、前記1次補助バネによって
補正された1次補正バネ特性Q1 =F1 (x)をさらに
理想バネ特性R=g(x)に近似させたい所定の小変位
域における最大変位点x3 まで該両物体が平行に相対変
位されたときの長さL2 を自然長とする。
[0009] P 1x = -P 1 · {x / (x 2 + H 1 2)
1/2 } (3). The secondary auxiliary spring is in a predetermined small displacement range where the primary correction spring characteristic Q 1 = F 1 (x) corrected by the primary auxiliary spring is to be further approximated to the ideal spring characteristic R = g (x). the length L 2 when the both objects to the maximum displacement point x 3 is parallel to relative displacement and natural length.

【0010】L2 =(x3 2 +H2 2 1/2 (4).該2次補助バネの弾性復元力P2 =−ks2
δの前記相対変位方向分力P2xの極値およびその変位点
は、前記1次補正バネ特性Q1 =f1 (x)と理想バネ
特性R=g(x)との差を相殺する2次相殺バネ特性S
2 =−(R−Q1 )から得られる既知の極値およびその
変位点x4 (0<x4 <x3 )に一致させる。
[0010] L 2 = (x 3 2 + H 2 2) 1/2 (4). Elastic restoring force of the secondary auxiliary spring P 2 = −ks 2.
The extreme value of the relative displacement direction component force P 2x of δ and its displacement point offset the difference between the primary correction spring characteristic Q 1 = f 1 (x) and the ideal spring characteristic R = g (x) 2 Next offset spring characteristic S
2 = - to match the (R-Q 1) of known obtained from extreme value and its displacement point x 4 (0 <x 4 < x 3).

【0011】P2x=−P2 ・{x/(x2 +H2 2
1/2 } 本発明の作用について説明すると、緩衝バネのバネ特性
Q=f(x)が理想バネ特性R=g(x)に一致してい
ない場合、当該緩衝バネのバネ特性Qと理想バネ特性R
との差(R−Q)を可及的に相殺し得る補助バネを2つ
の物体間に取り付けて緩衝バネと複合させれば、その複
合バネ全体としての複合バネ特性を理想バネ特性Rに可
及的に一致させ得る。この際、上記差(R−Q)を相殺
する相殺バネ特性S=−(R−Q)が上に凸あるいは下
に凸な非線形性を呈すると、これをバネ定数が一定な線
形バネで直接的に相殺することはできない。そこで、線
形バネ特性を有する1次補助バネと2次補助バネとを2
つの物体間にその相対変位方向に直交する方向にそれぞ
れ初期歪み量δ1 ,δ2 を与えて配し、相対変位xに応
じて1次,2次補助バネを傾斜させるようにして、当該
1次,2次補助バネの弾性復元力P1 ,P2 の相対変位
方向の分力P1x,P2xで上記バネ特性差(R−Q)を相
殺させる。ここで、2次補助バネは1次補助バネでは補
正しきれない所定の小変位部分の領域をさらに補正する
ものとする。
[0011] P 2x = -P 2 · {x / (x 2 + H 2 2)
To explain the operation of the present invention, when the spring characteristic Q = f (x) of the buffer spring does not match the ideal spring characteristic R = g (x), the spring characteristic Q of the buffer spring and the ideal spring Characteristic R
By attaching an auxiliary spring that can cancel out the difference (R−Q) as much as possible between the two objects and combining it with the buffer spring, the composite spring characteristics of the composite spring as a whole can be changed to the ideal spring characteristic R. Can be matched as far as possible. At this time, if the canceling spring characteristic S =-(RQ) for canceling the difference (RQ) exhibits an upwardly convex or downwardly convex nonlinearity, this is directly converted by a linear spring having a constant spring constant. Cannot be offset. Therefore, a primary auxiliary spring and a secondary auxiliary spring having linear spring characteristics
Initial strain amounts δ 1 , δ 2 are respectively provided between two objects in a direction orthogonal to the relative displacement direction, and the primary and secondary auxiliary springs are inclined in accordance with the relative displacement x. The above-mentioned spring characteristic difference (RQ) is canceled by the component forces P 1x and P 2x in the relative displacement directions of the elastic restoring forces P 1 and P 2 of the secondary and secondary auxiliary springs. Here, it is assumed that the secondary auxiliary spring further corrects a region of a predetermined small displacement portion which cannot be completely corrected by the primary auxiliary spring.

【0012】つまり、当該相殺力として作用する1次,
2次補助バネの相対変位方向の分力P1x,P2xにsin
曲線をベースにした非線形性を与えて、相対変位してい
ないときには相殺力としての上記相対変位方向の分力P
1x,P2xを生じさせない。
That is, the primary, acting as the canceling force,
The component forces P 1x and P 2x in the relative displacement direction of the secondary auxiliary spring are sin
By giving a non-linearity based on a curve, when there is no relative displacement, the component force P in the relative displacement direction as a canceling force is used.
1x and P2x are not generated.

【0013】また、1次補助バネは、既知である緩衝バ
ネのバネ特性Q=f(x)と理想バネ特性R=g(x)
とから、これらが交わる変位点x1 を算出して、当該変
位点x1 で1次補助バネが自然長になるようにその長さ
1 を決定し、当該変位点x1 での相対変位方向の分力
を0にする。また、既知であるバネ特性Q=f(x)と
理想バネ特性R=g(x)とから、それらの差(R−
Q)を相殺する1次相殺バネ特性S=−(R−Q)の極
値とその変位点x2 (0<x2 <x1 )とを算出し、当
該極値とその変位点x2 に相対変位方向の分力P1xの極
値と変位点とを一致させて、上記初期ひずみ量δ1 、取
付幅H1 、バネ定数ks1 とをそれぞれ逆に算出して求
め、緩衝バネと1次補助バネとを複合させた状態の1次
補正バネ特性Q1 =f1 (x)を理想バネ特性に可及的
に近似させる。
The primary auxiliary spring has a spring characteristic Q = f (x) and an ideal spring characteristic R = g (x) of a known buffer spring.
From, calculates the displacement point x 1 which they intersect, primary auxiliary spring in the displacement point x 1 determines its length L 1 such that the natural length, the relative displacement in the displacement point x 1 The component force in the direction is set to zero. Further, based on the known spring characteristic Q = f (x) and the ideal spring characteristic R = g (x), the difference (R−
The extreme value of the primary canceling spring characteristic S = − (RQ) that cancels out Q) and its displacement point x 2 (0 <x 2 <x 1 ) are calculated, and the extreme value and its displacement point x 2 are calculated. to thereby match the extreme displacement point of the relative displacement direction of the component force P 1x, the initial strain amount [delta] 1, the attachment width H 1, determined by calculating the inverse, respectively and a spring constant ks 1, a buffer spring The primary correction spring characteristic Q 1 = f 1 (x) in a state of being combined with the primary auxiliary spring is made as close as possible to the ideal spring characteristic.

【0014】2次補助バネは、上記1次補助バネでは補
正しきれない小変位部分の領域で機能させ、1次補正バ
ネ特性では未だずれのある部分を上記1次補助バネと同
様に設定して、さらに部分的に補正する。
The secondary auxiliary spring functions in an area of a small displacement portion which cannot be completely corrected by the primary auxiliary spring, and a portion which is still shifted in the primary correction spring characteristic is set in the same manner as the primary auxiliary spring. And partially correct it.

【0015】すなわち、1次補正バネ特性Q1 =F
1 (x)をさらに理想バネ特性R=g(x)に近似させ
たい所定の小変位域における最大変位点x3 まで変位し
たときの2次補助バネの長さL2 をその自然長にする。
また、既知である1次補正バネ特性Q1 =f1 (x)と
理想バネ特性R=g(x)とから、それらの差(R−Q
1)を相殺する2次相殺バネ特性S2 =−(R−Q1
の極値とその変位点x4 (0<x4 <x3 )とを算出
し、当該極値とその変位点x4 に2次補助バネの相対変
位方向の分力P2x の極値と変位点とを一致させて、上
記初期ひずみ量δ2 、取付幅H2 、バネ定数ks2 とを
それぞれ逆に算出して求め、緩衝バネと1次補助バネ並
びに2次補助バネとを複合させた状態の最終的な複合バ
ネ特性を理想バネ特性に可及的に近似させる。
That is, the primary correction spring characteristic Q 1 = F
To 1 further ideal spring characteristics R = g the length of the second auxiliary spring when displaced to the maximum displacement point x 3 in a predetermined small displacement region desired to be approximated to (x) L 2 (x) to its natural length .
Further, based on the known primary correction spring characteristic Q 1 = f 1 (x) and the ideal spring characteristic R = g (x), the difference (R−Q
Secondary canceling spring characteristic S 2 = − (R−Q 1 ) to cancel 1 )
And its displacement point x 4 (0 <x 4 <x 3 ) are calculated, and the extreme value and its displacement point x 4 are calculated with the extreme value of the component force P 2x in the relative displacement direction of the secondary auxiliary spring. The initial displacement amount δ 2 , the mounting width H 2 , and the spring constant ks 2 are calculated in reverse to obtain the initial strain amount δ 2 , and the buffer spring is combined with the primary auxiliary spring and the secondary auxiliary spring. The final composite spring characteristics in the closed state are made as close as possible to the ideal spring characteristics.

【0016】従って、以上のように本発明の緩衝バネの
バネ特性調整方法では、互いに平行に相対移動する2つ
の物体間に介在されてそれらの相対変位を吸収する緩衝
バネのバネ特性を、線形バネ特性を有する1次,2次補
助バネを用いて簡易にかつ低コストで理想の特性に可及
的に近似させることができる。
Therefore, as described above, in the spring characteristic adjusting method of the present invention, the spring characteristic of the buffer spring interposed between the two objects that move relatively in parallel to each other and absorbs the relative displacement between them is linear. Using primary and secondary auxiliary springs having spring characteristics, it is possible to approximate the ideal characteristics as easily as possible at low cost.

【0017】[0017]

【発明の実施の形態】図1はTMD(同調型動吸振器)
が備えられた除振台の当該TMDに、本発明に係るバネ
特性調整方法によって調整した緩衝バネ装置を装着する
場合の一実施例の概略構成を示すものであり、図2は図
1中の要部を拡大してその動作状態を誇張して示す説明
図で、(a)は小変位時、(b)は大変位時について示
すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a TMD (tuning type dynamic vibration absorber).
FIG. 2 shows a schematic configuration of an embodiment in which a shock absorbing spring device adjusted by the spring characteristic adjusting method according to the present invention is mounted on the TMD of the vibration isolating table provided with. FIGS. 5A and 5B are enlarged explanatory views showing an operation state of a main part in an exaggerated manner, in which FIG.

【0018】図1,2に示すように、TMD1は除振台
6の上面に緩衝バネ装置2を介して取り付けられた付加
質量4と、同じく上面に固設された反力受け部材3と、
この反力受け部材5と付加質量4との間に介設されて振
動を減衰させるダンパー5とからなる。
As shown in FIGS. 1 and 2, the TMD 1 includes an additional mass 4 mounted on the upper surface of a vibration isolation table 6 via a buffer spring device 2, a reaction force receiving member 3 also fixed on the upper surface,
A damper 5 is provided between the reaction force receiving member 5 and the additional mass 4 to attenuate vibration.

【0019】緩衝バネ装置2は互いに平行に相対移動す
る2つの物体としての付加質量4と除振台6との間に介
在され、主緩衝バネ8と1次補助バネ10並びに2次補
助バネ11とが複合されてなる。主緩衝バネ8はゴム板
8aと鋼板8bとを順次積層してその全長に亘って一様
に形成してなる弾性体であり、付加質量4の荷重を支え
て水平方向に変位可能であって、その水平変位に伴う鉛
直方向の沈み込みは殆ど生じず、無視できるものとなっ
ている。
The shock absorbing spring device 2 is interposed between an additional mass 4 as two objects which move relatively in parallel to each other and a vibration isolator 6, and includes a main shock absorbing spring 8, a primary auxiliary spring 10, and a secondary auxiliary spring 11. And are combined. The main buffer spring 8 is an elastic body formed by sequentially laminating a rubber plate 8a and a steel plate 8b and uniformly forming it over its entire length, and is capable of supporting the load of the additional mass 4 and being horizontally displaceable. However, the vertical subsidence caused by the horizontal displacement hardly occurs and is negligible.

【0020】ここで、主緩衝バネ8の弾性復元力をQと
し、そのバネ特性がQ=f(x)で表せるとすると、こ
の主バネ8は上記のようにその全長に亘ってゴム板と鋼
板とを積層して一様に形成しているから、図3に示すよ
うにバネ特性Q=f(x)は上に凸な非線形性を示し、
小変位で固く、大変位で柔らかいものとなっている。
Here, assuming that the elastic restoring force of the main shock-absorbing spring 8 is Q and its spring characteristics can be expressed by Q = f (x), the main spring 8 is connected to the rubber plate over its entire length as described above. As shown in FIG. 3, the spring characteristic Q = f (x) shows an upwardly convex non-linearity because the steel plate and the steel plate are uniformly formed.
It is hard with small displacement and soft with large displacement.

【0021】ところが、前述したように除振台4の固有
振動を小振幅から大振幅に至るまで良好にTMD1で吸
収させるためには、緩衝バネ装置2のバネ特性はその変
位に対して弾性復元力がリニアに変化する線形特性を呈
するのが望ましく、その理想とする理想バネ特性R=g
(x)は図3に示すように直線的な線形特性であるのが
良い。
However, as described above, in order for the natural vibration of the vibration isolation table 4 to be favorably absorbed by the TMD 1 from a small amplitude to a large amplitude, the spring characteristics of the buffer spring device 2 must be elastically restored with respect to the displacement. It is desirable to exhibit a linear characteristic in which the force changes linearly, and the ideal ideal spring characteristic R = g
(X) is preferably a linear characteristic as shown in FIG.

【0022】従って、主緩衝バネ8と一次補助バネ10
および2次補助バネ11とが複合されてなる緩衝バネ装
置2の複合バネ特性を理想バネ特性Rに近づけるために
は、1次,2次補助バネ10,11によって主緩衝バネ
8のバネ特性Qと理想バネ特性Rとの差(R−Q)を相
殺させて補正する必要がある。すなわち、当該バネ特性
の差(R−Q)を相殺し得るような下に凸な非線形性を
呈する相殺バネ特性S=−(R−Q)を1次,2次補助
バネ10,11で創生できれば緩衝バネ装置2の複合バ
ネ特性Tを理想バネ特性Rに合致させることが可能にな
る。
Therefore, the main buffer spring 8 and the primary auxiliary spring 10
In order to make the composite spring characteristic of the buffer spring device 2 composed of the primary and secondary auxiliary springs 11 close to the ideal spring characteristic R, the primary and secondary auxiliary springs 10 and 11 make the spring characteristic Q of the main buffer spring 8. It is necessary to compensate for the difference (R−Q) between the difference and the ideal spring characteristic R. That is, the primary and secondary auxiliary springs 10 and 11 create a canceling spring characteristic S =-(RQ) exhibiting a downwardly convex non-linearity that can cancel the difference (RQ) of the spring characteristics. If produced, the composite spring characteristic T of the buffer spring device 2 can be matched with the ideal spring characteristic R.

【0023】そこで、本実施例では、上記1次補助バネ
10と2次補助バネ11とを以下のように設定して主緩
衝バネ8と組み合わせ、その複合させた状態の水平方向
の複合バネ特性Tを理想バネ特性Rに可及的に近似させ
る。
Therefore, in the present embodiment, the primary auxiliary spring 10 and the secondary auxiliary spring 11 are set as follows and combined with the main buffer spring 8, and the composite spring characteristic in the horizontal direction in the composite state is shown. T is made as close as possible to the ideal spring characteristic R.

【0024】すなわち、1次補助バネ10と2次補助バ
ネ11とには線形特性を有するコイルバネを用いて、付
加質量4に水平変位が生じていない状態で、除振台6と
付加質量4との間に鉛直方向に沿って、つまり相対変位
方向に対して直角に配設する。
That is, a coil spring having a linear characteristic is used for the primary auxiliary spring 10 and the secondary auxiliary spring 11, and the vibration damping table 6 and the additional mass 4 are connected to each other when the additional mass 4 is not horizontally displaced. Are disposed along the vertical direction, that is, at right angles to the direction of relative displacement.

【0025】まず、1次補助バネ10について先に詳述
する。
First, the primary auxiliary spring 10 will be described in detail.

【0026】図2(b)に示すように、1次補助バネ1
0には初期歪み量(長さ)δ1 を与えて取付幅H1 で当
該除振台6と付加質量4の下部とにそれぞれユニバーサ
ルジョイント等を介してピン結合し、付加質量4が除振
台6に対して水平に相対変位したときには、1次補助バ
ネ10の弾性復元力P1 の水平方向分力P1xが付加質量
4に作用するようにする。また、ここでは理想バネ特性
Rよりも主緩衝バネ8のバネ特性Qの方が上回っている
から、1次補助バネ10の水平方向分力はP1xは主緩衝
バネ8の弾性復元力Qを打ち消すように逆向きに作用さ
せる必要があり、このため1次補助バネ10の初期歪み
量δ1 は圧縮量として付与する。
As shown in FIG. 2B, the primary auxiliary spring 1
The initial vibration amount (length) δ 1 is given to 0, and the vibration isolation table 6 and the lower portion of the additional mass 4 are pin-coupled to each other via a universal joint or the like with a mounting width H 1 , and the additional mass 4 is subjected to vibration isolation. When it is displaced horizontally relative to the table 6, a horizontal component P 1x of the elastic restoring force P 1 of the primary auxiliary spring 10 acts on the additional mass 4. Further, here, the spring characteristic Q of the main buffer spring 8 is higher than the ideal spring characteristic R, and the horizontal component force P 1x of the primary auxiliary spring 10 is the elastic restoring force Q of the main buffer spring 8. It is necessary to act in the opposite direction so as to cancel each other. For this reason, the initial strain amount δ 1 of the primary auxiliary spring 10 is given as a compression amount.

【0027】つまり、付加質量4の水平変位量xに応じ
て傾斜する1次補助バネ10の鉛直方向からの角度をθ
1 とすれば、付加質量4には下式(1)に示す1次補助
バネ10の水平方向分力P1xが主緩衝バネ8の弾性復元
力Qの相殺力として作用するようになっており、この相
殺力のバネ特性はsin曲線をベースにした下に凸な非
線形特性となっている。
That is, the angle of the primary auxiliary spring 10 inclined according to the horizontal displacement amount x of the additional mass 4 from the vertical direction is θ
If it is set to 1 , the horizontal component force P 1x of the primary auxiliary spring 10 shown in the following equation (1) acts on the additional mass 4 as a canceling force of the elastic restoring force Q of the main buffer spring 8. The spring characteristic of the canceling force is a downwardly convex non-linear characteristic based on a sin curve.

【0028】P1x=−P1 sinθ1 =−ks1 ・δ1 ・sinθ1 ………(1) また歪み量δ1 は、 δ=δ1 +H1 −(x2 +H1 2 1/2 ………(2) と表せるから、1次補助バネ10の弾性復元力P1 =k
1 ・δは、 P1 =−ks1 ・{δ1 +H1 −(x2 +H1 2 1/2 }……(3) となり、かつsinθ1 は、 sinθ1 =x/(x2 +H1 2 1/2 ………(4) であるから、上記相殺力として作用する相対変位方向分
力P1x は、 P1x=−ks1 ・{δ1 +H1 −(x2 +H1 2 1/2 }・{x/(x2 +H1 2 1/2 }………(5) という相対変位xの関数式(5)として示すことがで
き、該式(5)が上記相殺バネ特性S=−(Q−R)に
可及的に近似するようにks1 ,δ1 ,H1 を設定すれ
ば良い。
P 1x = −P 1 sin θ 1 = −ks 1 · δ 1 · sin θ 1 (1) Also, the distortion amount δ 1 is δ = δ 1 + H 1 − (x 2 + H 1 2 ) 1 / 2 ... (2), the elastic restoring force P 1 = k of the primary auxiliary spring 10
s 1 · δ is P 1 = −ks 1 · {δ 1 + H 1- (x 2 + H 1 2 ) 1/2 } (3), and sin θ 1 is sin θ 1 = x / (x 2 + H 1 2 ) 1/2 (4) Therefore, the relative displacement direction component force P 1x acting as the canceling force is P 1x = −ks 1 · {δ 1 + H 1 − (x 2 + H 1 2 ) 1/2 } · {x / (x 2 + H 1 2 ) 1/2 } (5) can be expressed as a functional expression (5) of relative displacement x, and the expression (5) is Ks 1 , δ 1 , and H 1 may be set so as to be as close as possible to the canceling spring characteristic S = − (Q−R).

【0029】ここで、バネ特性Q=F(x)と理想バネ
特性R=g(x)とが一致する変位点x1 では1次補助
バネ10の相対変位方向の分力は0、つまりδ1 =0に
する必要があるから、式(2)においてx=x1 でδ1
=0とすると、 δ1 =(x1 2 +H1 2 1/2 −H1 ………(6) が得られ、補助バネの初期歪み量(長さ)が分かる。そ
して、この式(6)を式(5)に代入して示すと、 P1x=−ks1 ・{(x1 2 +H1 2 1/2 −(x2 +H1 2 1/2 } ・{x/(x2 +H1 2 1/2 }………(7) となる。ここで、当該相対移動方向分力P1xと相殺バネ
特性S=−(Q−R)との双方の極値(この場合では極
小値)を一致させるという条件に基づき、既知であるS
=−(Q−R)からその極値(Smin )とその変位点x
2 とを求めて、当該変位点x2 を上記式(7)の偏微分
式(下式(8))に代入すれば、その値は0であるか
ら、H1 が下式(9)に示す如く求まる。
[0029] Here, the relative displacement direction of the component force of the spring characteristic Q = F (x) and the ideal spring characteristic R = g (x) in the displacement points x 1 and coincides primary auxiliary spring 10 0, i.e. δ since it is necessary to 1 = 0, δ 1 in the formula (2) with x = x 1
= 0 and when, δ 1 = (x 1 2 + H 1 2) 1/2 -H 1 ......... (6) is obtained, the initial strain of the auxiliary spring (length) can be seen. When shown by substituting the equation (6) into equation (5), P 1x = -ks 1 · {(x 1 2 + H 1 2) 1/2 - (x 2 + H 1 2) 1/2}・ {X / (x 2 + H 1 2 ) 1/2 } (7) Here, based on the condition that both extreme values (in this case, minimum values) of the relative movement direction component force P 1x and the canceling spring characteristic S = − (Q−R) are matched, a known S is used.
= − (Q−R) to its extreme value (S min ) and its displacement point x
Seeking and 2, the displacement point x 2 Substituting the partial differential equation of the equation (7) (the following formulas (8)), since the value is 0, the H 1 is the following formula (9) Obtained as shown.

【0030】[0030]

【数1】 (Equation 1)

【0031】[0031]

【数2】 (Equation 2)

【0032】また、式(8)を変形すればバネ常数ks
1 は下式(10)に示すように表せるから、これにすで
に求めたx2 ,H1 ,およびSの極値(Smin )とをそ
れぞれ代入することで、当該バネ常数ks1 が求まる。
By transforming equation (8), the spring constant ks
Since 1 can be expressed as shown in the following equation (10), the spring constant ks 1 can be obtained by substituting the already obtained x 2 , H 1 , and the extreme value (S min ) of S, respectively.

【0033】[0033]

【数3】 (Equation 3)

【0034】次ぎに、2次補助バネ11について詳述す
る。この2次補助バネ11は所定の小変位域0≦x≦x
3 で部分的に機能するもので、基本的には上記1次補助
バネ10の場合と同様の設定をするが、ここでは、上述
のように極値を一致させて1次補正バネ特性Q1と理想
バネ特性Rとを交差させたときに、その交差点の変位点
2 よりも小変位部分の領域に残る補正しきれていない
バネ特性を更に補正するようになっていて、x3 =x2
になっている。
Next, the secondary auxiliary spring 11 will be described in detail. This secondary auxiliary spring 11 has a predetermined small displacement range 0 ≦ x ≦ x
3 partially functions, and basically sets the same as in the case of the primary auxiliary spring 10. However, here, as described above, the extreme values are made to coincide with each other so that the primary correction spring characteristic Q1 when crossed and the ideal spring characteristics R, than its displacement point x 2 of intersection be adapted to further correct the spring characteristics not completely corrected remain in the area of the small displacement portion, x 3 = x 2
It has become.

【0035】すなわち、2次補助バネ11には初期歪み
量(長さ)δ2 を与えて取付幅H2で当該除振台6と付
加質量4の下部とにそれぞれピン結合し、付加質量4が
除振台6に対して水平に相対変位したときには、2次補
助バネ11の弾性復元力P2の水平方向分力P2xが付加
質量4に作用するようにする。また、ここでは上記1次
補助バネ10で補正した状態の1次補正バネ特性Q1
図3(a),(b)に示すように小変位域で理想バネ特
性Rよりも未だ上回っている場合を想定して、2次補助
バネ11の初期歪み量δ2 は圧縮量として付与する例で
説明する。なお図3(b)は同図(a)における0≦x
≦x2 (=x3 )の範囲を拡大して示したものであ
る。。
That is, the secondary auxiliary spring 11 is given an initial amount of strain (length) δ 2 , and is pin-connected to the vibration isolating table 6 and the lower portion of the additional mass 4 with the mounting width H 2 , respectively. Is horizontally displaced relative to the anti-vibration table 6, the horizontal component P 2x of the elastic restoring force P 2 of the secondary auxiliary spring 11 acts on the additional mass 4. Further, where one supplementary spring characteristics in a state in which correction in the primary auxiliary spring 10 is Q 1 is FIG. 3 (a), it exceeds still than ideal spring characteristic R in the small displacement region, as shown in (b) Assuming a case, an example will be described in which the initial distortion amount δ 2 of the secondary auxiliary spring 11 is given as a compression amount. Note that FIG. 3B shows 0 ≦ x in FIG.
The range of ≦ x 2 (= x 3 ) is shown in an enlarged manner. .

【0036】ここで、付加質量4の水平変位量xに応じ
て傾斜する2次補助バネ11の鉛直方向からの角度をθ
2 とすれば、付加質量4には下式(11)に示す2次補
助バネ11の水平方向分力P2xが、上記1次補助バネ1
0で補正された1次補正バネ特性Q1 のもとでの弾性復
元力に対する2次相殺力として作用するようになってお
り、この2次相殺力のバネ特性はsin曲線をベースに
した上に凸な非線形特性となっていて、この2次相殺力
を1次補正バネ特性Q1 と理想バネ特性Rとの差の2次
相殺バネ特性S2 =−(R−Q1 )に一致させるように
する。
Here, the angle from the vertical direction of the secondary auxiliary spring 11 inclined according to the horizontal displacement amount x of the additional mass 4 is represented by θ.
Assuming that 2 , the additional mass 4 includes the horizontal component force P 2x of the secondary auxiliary spring 11 shown in the following equation (11).
It acts as a secondary canceling force against the elastic restoring force under the primary corrected spring characteristic Q 1 corrected by 0. The spring characteristic of this secondary canceling force is based on a sin curve. The secondary canceling force matches the secondary canceling spring characteristic S 2 = − (R−Q 1 ) of the difference between the primary correction spring characteristic Q 1 and the ideal spring characteristic R. To do.

【0037】P2x=−P2 sinθ2 =−ks2 ・δ2 ・sinθ2 ………(11) また歪み量δ2 は、 δ=δ2 +H2 −(x2 +H2 2 1/2 ………(12) と表せるから、1次補助バネ10の弾性復元力P2 =k
2 ・δは、 P2 =−ks2 ・{δ2 +H2 −(x2 +H2 2 1/2 }…(13) となり、かつsinθ2 は、 sinθ2 =x/(x2 +H2 2 1/2 ………(14) であるから、上記相殺力として作用する相対変位方向分
力P1xは、 P2x=−ks2 ・{δ2 +H2 −(x2 +H2 2 1/2 }・{x/(x2 +H2 2 1/2 }………(15) という相対変位xの関数式(15)として示すことがで
き、該式(15)が上記相殺バネ特性S2 =−(R−Q
1 )に可及的に近似するようにks2 ,δ2 ,H2 を設
定すれば良い。
P 2x = −P 2 sin θ 2 = −ks 2 · δ 2 · sin θ 2 (11) The distortion amount δ 2 is δ = δ 2 + H 2 − (x 2 + H 2 2 ) 1 / 2 ... (12), the elastic restoring force P 2 = k of the primary auxiliary spring 10
s 2 · δ is P 2 = −ks 2 · {δ 2 + H 2 − (x 2 + H 2 2 ) 1/2 } (13), and sin θ 2 is sin θ 2 = x / (x 2 + H) 2 2 ) 1/2 (14) Therefore, the relative displacement direction component force P 1x acting as the canceling force is P 2x = −ks 2 · {δ 2 + H 2 − (x 2 + H 2 2 ) 1/2 } · {x / (x 2 + H 2 2 ) 1/2 } (15) can be expressed as a functional expression (15) of the relative displacement x, and the expression (15) cancels the above-mentioned offset. Spring characteristic S 2 = − (R−Q
Ks 2 , δ 2 , and H 2 may be set so as to be as close as possible to 1 ).

【0038】ここで、バネ特性Q1 =F1 (x)と理想
バネ特性R=g(x)とが一致する変位点x3 (=
2 )では、1次補助バネ10の相対変位方向の分力は
0、つまりδ2 =0にする必要があるから、式(2)に
おいてx=x3 でδ2 =0とすると、 δ2 =(x3 2 +H2 2 1/2 −H2 ………(16) が得られ、補助バネの初期歪み量(長さ)が分かる。そ
して、この式(16)を式(15)に代入して示すと、 P2x=−ks2 ・{(x3 2 +H2 2 1/2 −(x2 +H2 2 1/2 } ・{x/(x2 +H2 2 1/2 }………(17) となる。ここで、当該相対移動方向分力P2xと相殺バネ
特性S2 =−(Q1 −R)との双方の極値(この場合で
は極小値)を一致させるという条件に基づき、既知であ
るS2 =−(Q1 −R)からその極値(S2 min )とそ
の変位点x4 とを求めて、当該変位点x4 を上記式(1
7)の偏微分式(下式(18))に代入すれば、その値
は0であるから、H2 が下式(19)に示す如く求ま
る。
Here, the displacement point x 3 (= the displacement point where the spring characteristic Q 1 = F 1 (x) and the ideal spring characteristic R = g (x) coincide with each other.
x 2 ), the component force in the relative displacement direction of the primary auxiliary spring 10 needs to be 0, that is, δ 2 = 0. Therefore, if x = x 3 and δ 2 = 0 in the equation (2), δ 2 = (x 3 2 + H 2 2) 1/2 -H 2 ......... (16) is obtained, the initial strain of the auxiliary spring (length) can be seen. When shown by substituting the equation (16) into equation (15), P 2x = -ks 2 · {(x 3 2 + H 2 2) 1/2 - (x 2 + H 2 2) 1/2}・ {X / (x 2 + H 2 2 ) 1/2 } (17) Here, based on a condition that both extreme values (in this case, minimum values) of the relative moving direction component force P 2x and the canceling spring characteristic S 2 = − (Q 1 −R) are matched, a known S value is used. 2 = - seeking (Q 1 -R) from its extreme value (S 2 min) and the displacement point x 4, the formula the displacement point x 4 (1
Substituting the partial differential equation (the following formulas (18)) of the 7), since the value is 0, H 2 is obtained as shown in the following equation (19).

【0039】[0039]

【数4】 (Equation 4)

【0040】[0040]

【数5】 (Equation 5)

【0041】また、式(18)を変形すればバネ常数k
2 は下式(20)に示すように表せるから、これにす
でに求めたx4 ,H2 ,およびS2の極値(S2 min
をそれぞれ代入することで、当該バネ常数ks2 が求ま
る。
By transforming equation (18), the spring constant k
Since s 2 can be expressed as shown in the following equation (20), the extreme values (S 2 min ) of x 4 , H 2 , and S2 which have already been obtained therefrom are obtained.
, The spring constant ks 2 is obtained.

【0042】[0042]

【数6】 (Equation 6)

【0043】以上のようにして、1次補助バネ10およ
び2次補助バネ11の諸設定を決定できるが、これらの
1次,2次補助バネ10,11は具体的には例えば図4
(a)に示すように構成する。
As described above, various settings of the primary auxiliary spring 10 and the secondary auxiliary spring 11 can be determined. These primary and secondary auxiliary springs 10 and 11 are specifically described in, for example, FIG.
The configuration is as shown in FIG.

【0044】すなわち、軸心を一致されて相互に摺動自
在に嵌合された伸縮可能な上部ロッド12と下部ロッド
14とに、それぞれアッパースプリングシート16とロ
アースプリングシート18とを一体形成し、これらのス
プリングシート16,18に上下の両端を係合させて線
形特性に優れたコイルスプリング20を設ける。上下の
ロッド12,14の端部にはピン結合用の取付孔22,
24を設け、コイルスプリング20が自然長の状態で上
下の取付孔22,24のスパンLを上記の如く算出した
1 +δ1 あるいはH2 +δ2 なるように各部材の寸法
を設計する。また、使用するコイルスプリング20のバ
ネ定数は当然ながらks1 あるいはks2 にする。そし
て、これらの1次,2次補助バネ10,11は付加質量
4と除振台6とにそれらに水平方向の変位が生じていな
い状態で鉛直に取り付ける。このとき、付加質量4側と
除振台6側とに設けてある補助バネ取付用の係合ピンの
スパンはH1 ,H2 に設定しておき、1次,2次補助バ
ネ10,11を取り付けた状態でこれらの1次,2次補
助バネ10,11のコイルスプリング20には初期圧縮
歪み量(長さ)δ1 ,δ2 を生じさせる。また、特に2
次補助バネ11の場合には、変位x3 (=x2 )まで変
位して自然長まで伸びた後は、引張力が作用しないよう
にスプリング20とアッパースプリングシート16とが
離間して係合が離脱されるようにしておく。
That is, the upper spring seat 16 and the lower spring seat 18 are integrally formed on the extensible upper rod 12 and the lower rod 14, which are fitted to each other so that the axes thereof are aligned with each other and are slidable, The upper and lower ends are engaged with these spring seats 16 and 18 to provide a coil spring 20 having excellent linear characteristics. At the ends of the upper and lower rods 12, 14, mounting holes 22 for pin connection are provided.
24, and the dimensions of each member are designed such that the span L of the upper and lower mounting holes 22 and 24 is H 1 + δ 1 or H 2 + δ 2 calculated as described above with the coil spring 20 having a natural length. The spring constant of the coil spring 20 to be used of course to ks 1 or ks 2. These primary and secondary auxiliary springs 10 and 11 are vertically attached to the additional mass 4 and the vibration isolating table 6 in a state where they are not displaced in the horizontal direction. At this time, the span of the engaging pin for attaching the auxiliary spring provided on the additional mass 4 side and the vibration isolation table 6 side is set to H 1 and H 2 , and the primary and secondary auxiliary springs 10 and 11 are set. The primary and secondary auxiliary springs 10, 11 generate initial compressive strain amounts (lengths) δ 1 , δ 2 in the coil springs 20 in a state where the first and second auxiliary springs 10 and 11 are attached. In particular, 2
In the case of the next auxiliary spring 11, after being displaced to the displacement x 3 (= x 2 ) and extending to the natural length, the spring 20 and the upper spring seat 16 are separated from each other so that no tensile force acts. Should be removed.

【0045】従って、以上に説明したようにこの緩衝バ
ネ装置2のバネ特性調整方法によれば、水平に相対変位
する付加質量4と除振台6との間に介在させる主緩衝バ
ネ8のバネ特性Qが、その理想とするバネ特性Rに一致
していない場合に、変位に係わらずバネ常数が一定な線
形バネ特性を呈する1次補助バネ10と2次補助バネ1
1とを用いて、これらを付加質量4と除振台6との間に
それらに水平変位が生じていない状態で鉛直に配置して
取り付けるという簡易な構成で、主緩衝バネ8と当該1
次,2次補助バネ10,11とを複合させた状態の複合
バネ特性Tを所望の理想バネ特性Rに可及的に近似させ
ることができる。
Therefore, as described above, according to the spring characteristic adjusting method of the cushioning spring device 2, the spring of the main cushioning spring 8 interposed between the additional mass 4 and the vibration isolator 6 which are relatively displaced horizontally. When the characteristic Q does not match the ideal spring characteristic R, the primary auxiliary spring 10 and the secondary auxiliary spring 1 exhibit linear spring characteristics in which the spring constant is constant regardless of displacement.
1 with a simple configuration in which they are vertically mounted between the additional mass 4 and the vibration isolation table 6 without horizontal displacement occurring between them, and the main damping spring 8 and the 1
Next, the composite spring characteristic T in a state where the secondary and secondary auxiliary springs 10 and 11 are combined can be made as close as possible to the desired ideal spring characteristic R.

【0046】また、所定のバネ定数に容易に設計製作で
き、かつ線形バネ特性に優れるコイルスプリングを用い
て1次補助バネ10と2次補助バネ11とを製造すれ
ば、廉価にかつ高精度にバネ特性の調整を行うことがで
きる。
Further, if the primary auxiliary spring 10 and the secondary auxiliary spring 11 are manufactured by using a coil spring which can be easily designed and manufactured to a predetermined spring constant and has excellent linear spring characteristics, it is inexpensive and highly accurate. Adjustment of the spring characteristics can be performed.

【0047】なお、これまでの説明では、主緩衝バネ8
のバネ特性Qが理想バネ特性Rよりも上回っている例を
示したが、逆に主緩衝バネ8のバネ特性Qが理想バネ特
性Rよりも下回っている場合には、付加質量4と除振台
6との間に引っ張り力を作用させるように補助バネ1
0,11を構成すれば良い。
In the above description, the main buffer spring 8
The spring characteristic Q of the main shock absorber 8 is higher than the ideal spring characteristic R. On the contrary, if the spring characteristic Q of the main buffer spring 8 is lower than the ideal spring characteristic R, Auxiliary spring 1 for applying a pulling force to table 6
0 and 11 may be configured.

【0048】具体的には、例えば図4(b)に示すよう
に、下部ロッド14の上側部分を筒状のケーシング26
に形成して、このケーシ26ングの上壁に開口した挿通
孔28からその内部に上部ロッド12の下側部分を挿入
し、この上部ロッド12の下端にはロアースプリングシ
ート18を一体的に設けてケーシング26の内壁面に沿
って摺動させ、ケーシンクグ26の上壁をアッパースプ
リングシート16にして、両スプリングシート16,1
8間に上下両端部を一体的に固定してコイルスプリング
20を設ける。
More specifically, for example, as shown in FIG.
And a lower portion of the upper rod 12 is inserted into a lower portion of the upper rod 12 through an insertion hole 28 opened in an upper wall of the case 26, and a lower spring seat 18 is integrally provided at a lower end of the upper rod 12. The casing 26 is slid along the inner wall surface of the casing 26 so that the upper wall of the casing 26 is used as the upper spring seat 16 so that the two spring seats 16, 1
The coil spring 20 is provided by integrally fixing the upper and lower ends between the coil springs 8.

【0049】そして、図4(a)の場合と同様にコイル
スプリング20が自然長の状態で上下の取付孔22,2
4のスパンL1 ,L2 を上記の如く算出したH1 +δ1
あるいはH2 +δ2 なるように各部材の寸法を設計す
る。また、使用するコイルスプリング20のバネ定数は
当然ながらks1 ,ks2 にする。そして、この補助バ
ネ10,11は付加質量4と建物6とにそれらに水平方
向の変位が生じていない状態で鉛直に取り付ける。この
とき、付加質量4側と除振台6側とに設けてある補助バ
ネ取付用の係合ピンのスパンはH1 ,H2 に設定してお
き、補助バネ10,11を取り付けた状態でこの補助バ
ネ10,11のコイルスプリング20には初期伸び歪み
量(長さ)δ1 をδ2 を生じさせる。
Then, as in the case of FIG. 4A, the upper and lower mounting holes 22 and 2 are set with the coil spring 20 having the natural length.
The spans L 1 and L 2 of No. 4 are calculated as H 1 + δ 1 as described above.
Alternatively, the dimensions of each member are designed to be H 2 + δ 2 . The spring constant of the coil spring 20 used is naturally set to ks 1 and ks 2 . The auxiliary springs 10 and 11 are vertically attached to the additional mass 4 and the building 6 in a state where no horizontal displacement occurs in the additional mass 4 and the building 6. At this time, the spans of the auxiliary pins for attaching the auxiliary springs provided on the additional mass 4 side and the vibration isolation table 6 side are set to H 1 and H 2 , and the auxiliary springs 10 and 11 are attached. The coil springs 20 of the auxiliary springs 10 and 11 cause an initial elongation strain (length) δ 1 to δ 2 .

【0050】また、上記図示例ではTMDを備えた除振
台の当該TMDに本発明のバネ特性調整方法を適用する
場合を例示したが、このバネ特性調整方法はこれに限ら
ず、平行に相対変位する2物体間に設けられる緩衝バネ
装置の全般に対して適用可能である。すなわち、相対変
位方向は例えば鉛直方向等でもかまわないし、主緩衝バ
ネ8は空気バネ等の弾性体であってもよい。
In the illustrated example, the case where the spring characteristic adjusting method of the present invention is applied to the vibration isolating table provided with the TMD is illustrated. However, the spring characteristic adjusting method is not limited to this, and the spring characteristic adjusting method is not limited thereto. The present invention is applicable to all types of cushioning spring devices provided between two displaced objects. That is, the relative displacement direction may be, for example, a vertical direction, and the main buffer spring 8 may be an elastic body such as an air spring.

【0051】[0051]

【発明の効果】以上、実施例で詳細に説明したように、
この発明によれば、平行に相対変位する2つの物体間に
介在させる主緩衝バネのバネ特性Qがその理想とするバ
ネ特性Rに一致していない場合に、変位に係わらずバネ
常数が一定な線形バネ特性を呈する1次補助バネと2次
補助バネとを当該補助バネを2つの物体間にそれらに水
平変位が生じていない状態でその相対変位方向に対して
直角に配置して取り付けるという簡易な構成で、これら
主緩衝バネと1次,2次補助バネとを複合させた状態の
複合バネ特性を所望の理想バネ特性Rに可及的に近似さ
せることができる。 また、所定のバネ定数に容易に設
計・製作でき、かつ線形バネ特性に優れるコイルスプリ
ングを用いて補助バネを製造すれば、廉価にかつ高精度
にバネ特性の調整を行うことができる。
As described above in detail in the embodiments,
According to the present invention, when the spring characteristic Q of the main buffer spring interposed between the two objects relatively displaced in parallel does not match the ideal spring characteristic R, the spring constant is constant regardless of the displacement. A simple arrangement in which a primary auxiliary spring and a secondary auxiliary spring exhibiting linear spring characteristics are mounted between two objects at right angles to the direction of relative displacement thereof without horizontal displacement occurring between them. With such a configuration, it is possible to approximate the composite spring characteristic in a state in which the main buffer spring and the primary and secondary auxiliary springs are combined to the desired ideal spring characteristic R as much as possible. In addition, if the auxiliary spring is manufactured using a coil spring that can be easily designed and manufactured to have a predetermined spring constant and has excellent linear spring characteristics, the spring characteristics can be adjusted at low cost and with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るバネ特性調整方法によって調整
した緩衝バネ装置を、除振台のTMDに適用した場合の
概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration in a case where a buffer spring device adjusted by a spring characteristic adjusting method according to the present invention is applied to a TMD of a vibration isolation table.

【図2】図1中の要部を拡大してその動作状態を誇張し
て示す説明図であり、(a)は小変位時を、(b)は大
変位時を示すものである。
FIGS. 2A and 2B are enlarged explanatory views showing an operation state of a main part in FIG. 1, in which FIG. 2A shows a small displacement, and FIG. 2B shows a large displacement.

【図3】同図(a)は緩衝バネのバネ特性Qとその理想
バネ特性R、およびその差を相殺する1次相殺バネ特性
性S1 との関係を概念的に示すグラフであり、同図
(b)は同図(a)における0≦x≦x2 の範囲を拡大
して示す図である。
[3] FIG. (A) is a graph conceptually showing a relationship between the spring characteristic Q of the buffer spring and that ideal spring characteristics R, and a primary offset spring characteristics of S 1 to offset the difference, the FIG. 2B is an enlarged view showing the range of 0 ≦ x ≦ x 2 in FIG.

【図4】補助バネの具体的構成例を示す図で、同図
(a)は圧縮側に初期歪み量を与える場合の補助バネを
示し、同図(b)は伸び側に初期歪み量を与える場合の
補助バネを示すものである。
4A and 4B are diagrams showing a specific configuration example of an auxiliary spring. FIG. 4A shows an auxiliary spring when an initial distortion amount is applied to a compression side, and FIG. It shows an auxiliary spring when giving.

【符号の説明】[Explanation of symbols]

2 緩衝バネ装置 4 付加質量 6 除振台 8 主緩衝バネ 10 1次補助バネ 11 2次補助バネ 12 上部ロッド 14 下部ロッド 16 アッパースプリングシート 18 ロアースプリングシート 20 コイルスプリング 22,24 取付孔 26 ケーシング 28 挿通孔 Reference Signs List 2 buffer spring device 4 additional mass 6 anti-vibration table 8 main buffer spring 10 primary auxiliary spring 11 secondary auxiliary spring 12 upper rod 14 lower rod 16 upper spring seat 18 lower spring seat 20 coil spring 22, 24 mounting hole 26 casing 28 Insertion hole

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 互いに平行に相対移動する2つの物体間
に介在されてそれらの相対変位xを吸収する弾性体のバ
ネ特性Q=f(x)が、その理想とする理想バネ特性R
=g(x)と一致せず、それらバネ特性の差(R−Q)
を相殺させるための相殺バネ特性S=−(R−Q)が非
線形性を呈する場合に、該両物体間にバネ定数が一定の
線形特性を呈する複数の補助バネを配設して複合させ、
該複合バネ全体としての複合バネ特性を該理想バネ特性
Rに近似させる緩衝バネのバネ特性の調整方法であっ
て、 該補助バネは、想定される変位の全域で機能する1次補
助バネと、該1次補助バネでバネ特性を近似させきれな
い所定の小変位域で部分的に機能する2次補助バネとか
らなり、 該1次補助バネは該両物体に相対変位が生じていない状
態で、該相対変位方向に対して弾性復元力が直角に作用
するように両物体間に初期歪み量δ1 を与えて、取付幅
1 、バネ定数ks1 にて取り付け、該バネ定数k
1 、該初期ひずみ量δ1 、該取付幅H1 はそれぞれ下
記の(1),(2)の各条件に基づいて設定し、該2次
補助バネは該両物体に相対変位が生じていない状態で、
該相対変位方向に対して弾性復元力が直角に作用するよ
うに両物体間に初期歪み量δ2 を与えて、該取付幅
2 、該バネ定数ks2 にて取り付け、該バネ定数ks
2 、該初期ひずみ量δ2 、該取付幅H2 は下記の
(3),(4)の各条件に基づいて設定することを特徴
とするバネ特性の調整方法。 (1).該1次補助バネは、前記バネ特性Q=F(x)
と理想バネ特性R=g(x)とが等しくなる既知の変位
点x1 まで該両物体が平行に相対変位されたときの長さ
1 を自然長とする。 L1 =(x1 2 +H1 2 1/2 (2).該補助バネの弾性復元力P1 =−ks1 ・δの
前記相対変位方向分力P1x の極値およびその変位点
は、前記バネ特性Q=f(x)と理想バネ特性R=g
(x)との差を相殺する1次相殺バネ特性S1 =−(R
−Q)の既知の極値およびその変位点x2 (0<x2
1 )に一致させる。 P1x =−P1 ・{x/(x2 +H1 2 1/2 } (3).該2次補助バネは、前記1次補助バネによって
補正された1次補正バネ特性Q1 =F1 (x)をさらに
理想バネ特性R=g(x)に近似させたい所定の小変位
域における最大変位点x3 まで該両物体が平行に相対変
位されたときの長さL2 を自然長とする。 L2 =(x3 2 +H2 2 1/2 (4).該2次補助バネの弾性復元力P2 =−ks2
δの前記相対変位方向分力P2xの極値およびその変位点
は、前記1次補正バネ特性Q1 =f1 (x)と理想バネ
特性R=g(x)との差を相殺する2次相殺バネ特性S
2 =−(R−Q1 )から得られる既知の極値およびその
変位点x4 (0<x4 <x3 )に一致させる。 P2x =−P2 ・{x/(x2 +H2 2 1/2
A spring characteristic Q = f (x) of an elastic body which is interposed between two objects relatively moving in parallel with each other and absorbs their relative displacement x is an ideal ideal spring characteristic R
= G (x) does not match, and the difference between the spring characteristics (R−Q)
When the canceling spring characteristic S = − (RQ) for canceling the non-linearity exhibits non-linearity, a plurality of auxiliary springs exhibiting a linear characteristic with a constant spring constant are arranged between the two objects and combined.
A method of adjusting a spring characteristic of a buffer spring that approximates the composite spring characteristic of the composite spring as a whole to the ideal spring characteristic R, wherein the auxiliary spring functions as a primary auxiliary spring that functions over the entire range of an assumed displacement. A secondary auxiliary spring that partially functions in a predetermined small displacement range in which the primary auxiliary spring cannot fully approximate the spring characteristics. The primary auxiliary spring is in a state where no relative displacement occurs between the two objects. An initial strain amount δ 1 is applied between the two objects so that the elastic restoring force acts at right angles to the relative displacement direction, and the object is mounted with a mounting width H 1 and a spring constant ks 1 .
s 1 , the initial strain amount δ 1 , and the mounting width H 1 are set based on the following conditions (1) and (2), respectively, and the secondary auxiliary spring has a relative displacement between the two objects. Without
An initial amount of strain δ 2 is applied between the two objects so that the elastic restoring force acts at right angles to the relative displacement direction, and the object is mounted with the mounting width H 2 and the spring constant ks 2 .
2. A method for adjusting a spring characteristic, wherein the initial strain amount δ 2 and the mounting width H 2 are set based on the following conditions (3) and (4). (1). The primary auxiliary spring has the spring characteristic Q = F (x)
An ideal spring characteristic R = g (x) and the length L 1 to a natural length when the both objects is parallel to the relative displacement to a known displacement point x 1 equal. L 1 = (x 1 2 + H 1 2) 1/2 (2). The extreme value of the component force P 1x in the relative displacement direction of the elastic restoring force P 1 = −ks 1 · δ of the auxiliary spring and its displacement point are determined by the spring characteristic Q = f (x) and the ideal spring characteristic R = g.
(X) and a first-order canceling spring characteristic S 1 = − (R
-Q) and its displacement point x 2 (0 <x 2 <
x 1 ). P 1x = -P 1 · {x / (x 2 + H 1 2) 1/2} (3). The secondary auxiliary spring is in a predetermined small displacement range where the primary correction spring characteristic Q 1 = F 1 (x) corrected by the primary auxiliary spring is to be further approximated to the ideal spring characteristic R = g (x). the length L 2 when the both objects to the maximum displacement point x 3 is parallel to relative displacement and natural length. L 2 = (x 3 2 + H 2 2) 1/2 (4). Elastic restoring force of the secondary auxiliary spring P 2 = −ks 2.
The extreme value of the relative displacement direction component force P 2x of δ and its displacement point offset the difference between the primary correction spring characteristic Q 1 = f 1 (x) and the ideal spring characteristic R = g (x) 2 Next offset spring characteristic S
2 = - to match the (R-Q 1) of known obtained from extreme value and its displacement point x 4 (0 <x 4 < x 3). P 2x = −P 2 · {x / (x 2 + H 2 2 ) 1/2 }
JP00331897A 1997-01-10 1997-01-10 Adjusting the spring characteristics of the buffer spring Expired - Fee Related JP3252736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00331897A JP3252736B2 (en) 1997-01-10 1997-01-10 Adjusting the spring characteristics of the buffer spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00331897A JP3252736B2 (en) 1997-01-10 1997-01-10 Adjusting the spring characteristics of the buffer spring

Publications (2)

Publication Number Publication Date
JPH10196715A JPH10196715A (en) 1998-07-31
JP3252736B2 true JP3252736B2 (en) 2002-02-04

Family

ID=11554018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00331897A Expired - Fee Related JP3252736B2 (en) 1997-01-10 1997-01-10 Adjusting the spring characteristics of the buffer spring

Country Status (1)

Country Link
JP (1) JP3252736B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157296A (en) * 2006-12-21 2008-07-10 Kurashiki Kako Co Ltd Dynamic vibration absorber
CN114838074B (en) * 2022-05-30 2023-08-18 黑龙江大学 Constant tension buffer mechanism based on hinge zero-stiffness spring

Also Published As

Publication number Publication date
JPH10196715A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
Shekhar et al. Performance of non-linear isolators and absorbers to shock excitations
KR102200949B1 (en) Anti-vibration mount using multi-springs
Bakre et al. Optimum multiple tuned mass dampers for base-excited damped main system
US5884736A (en) Active dual reaction mass absorber for vibration control
EP3004682B1 (en) Self-tuned mass damper and system comprising the same
WO2017024904A1 (en) Piezoelectric active vibration isolation mechanism and method of reducing the inherent frequency of a vibration system thereof
EP0499119A1 (en) Isolator mount assembly
Chowdhury et al. The optimal design of dynamic systems with negative stiffness inertial amplifier tuned mass dampers
US6315094B1 (en) Passive virtual skyhook vibration isolation system
Mohanty et al. Nonlinear dynamics of piezoelectric-based active nonlinear vibration absorber using time delay acceleration feedback
Du et al. Effects of isolators internal resonances on force transmissibility and radiated noise
JP5889119B2 (en) Parallel link type multi-degree-of-freedom vibration isolator
US6598545B2 (en) Vibration damper for optical tables and other structures
JP3252736B2 (en) Adjusting the spring characteristics of the buffer spring
Sheng et al. On the characteristics and practical parameters selection of a quasi-zero-stiffness isolator
JP4708747B2 (en) Design method of multiple dynamic vibration absorber
Wagner et al. Dynamic vibration absorbers and its applications
JP3376845B2 (en) Adjusting the spring characteristics of the buffer spring
Aldrich et al. Design of passive piezoelectric damping for space structures
WO2019106892A1 (en) Composite vibration control body and metal spring equipped composite vibration control body using same
JP3185692B2 (en) Method of adjusting spring characteristics of tuned mass damper and mechanism for adjusting spring characteristics
JP3465714B2 (en) Vibration energy absorbing device and manufacturing method thereof
JP3460499B2 (en) Prolonged period of vibration isolation system using canceling spring
Fredette et al. Innovative elastomeric shear leg mount concepts for quasi-zero stiffness isolation
JPH03117743A (en) Damping device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees