JP2008157296A - Dynamic vibration absorber - Google Patents

Dynamic vibration absorber Download PDF

Info

Publication number
JP2008157296A
JP2008157296A JP2006344147A JP2006344147A JP2008157296A JP 2008157296 A JP2008157296 A JP 2008157296A JP 2006344147 A JP2006344147 A JP 2006344147A JP 2006344147 A JP2006344147 A JP 2006344147A JP 2008157296 A JP2008157296 A JP 2008157296A
Authority
JP
Japan
Prior art keywords
coil spring
weight
vibration absorber
dynamic vibration
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344147A
Other languages
Japanese (ja)
Inventor
Isamu Kawahara
勇 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP2006344147A priority Critical patent/JP2008157296A/en
Publication of JP2008157296A publication Critical patent/JP2008157296A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic vibration absorber D simplified in structure to reduce the weight and costs, miniaturized for wide use, and facilitated in the adjusting work. <P>SOLUTION: This dynamic vibration absorber comprises a base member 1 to be fitted to a vibration controlled material, and a weight 3 connected to the base member 1 so as to be relatively moved in the x-y direction by a vibration control rubber 2. A truncated conic non-linear coil spring 4 is arranged between the base member 1 and the weight 3, intersecting the axis 4a thereof with the moving direction of the weight 3. Pre-compression force in the axial direction to be applied to the coil spring 4 can be continuously adjusted by an adjusting screw 6. Only one coil spring 4 is arranged corresponding to the position of the center of gravity of the weight 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、制振対象物に付加してその振動レベルを低下させる動吸振器に関し、特に、固有振動数を調整するための構造の技術分野に属する。   The present invention relates to a dynamic vibration absorber that is added to a vibration damping object to lower its vibration level, and particularly belongs to the technical field of a structure for adjusting a natural frequency.

従来より、一般に、自動車のエンジンマウントやサスペンションメンバ、或いはステアリングホイール等の制振対象物に副振動系を付加して、その固有振動数付近の振動を吸収することにより、制振対象物の振動レベルを低下させるようにした動吸振器(ダイナミックダンパ)は公知である(例えば特許文献1、2を参照)。   Conventionally, vibrations of a vibration suppression object are generally obtained by adding a secondary vibration system to a vibration suppression object such as an engine mount, a suspension member, or a steering wheel of an automobile to absorb vibrations near its natural frequency. Dynamic dampers (dynamic dampers) that reduce the level are known (see, for example, Patent Documents 1 and 2).

また、特許文献3、4等には建築物や構造物の制振装置として動吸振器を利用することが記載されているが、このときには前記自動車部品に使用する場合とは異なり、実際に建築物等に取り付けた上で動吸振器の固有振動数を調整する必要がある。そのために例えば前記特許文献4のものでは、重錘(ウエイト)とフレームとの間に配設したコイルばねの有効長を調整する調整機構を備えている。   Patent Documents 3 and 4 describe the use of a dynamic vibration absorber as a vibration control device for a building or structure, but in this case, it is different from the case where it is used for the automobile part. It is necessary to adjust the natural frequency of the dynamic vibration absorber after being attached to an object. For this purpose, for example, the device disclosed in Patent Document 4 includes an adjustment mechanism for adjusting the effective length of a coil spring disposed between a weight and a frame.

すなわち、建築物等に固定するフレームに対して所定方向(建築物等の主振動方向)に移動可能に重錘を配設するとともに、これを間に挟んで移動方向の両側にそれぞれコイルばねを配設し、その端部を重錘に取り付け且つその軸心を該重錘の移動方向に一致させる。また、螺旋条が形成されたロッドをコイルばねに螺入し、このロッドを回転させて軸心方向に移動させることによって、コイルばねの有効長を変化させるようにしている。
特開平05−302642号公報 特開平08−258725号公報 特開平08−334148号公報 特開2001−254775号公報
That is, a weight is disposed so as to be movable in a predetermined direction (main vibration direction of a building or the like) with respect to a frame fixed to the building or the like, and coil springs are respectively provided on both sides of the moving direction with this interposed therebetween. It is disposed, its end is attached to the weight, and its axis is aligned with the moving direction of the weight. Further, the effective length of the coil spring is changed by screwing a rod formed with a spiral line into the coil spring and rotating the rod in the axial direction.
Japanese Patent Laid-Open No. 05-302642 JP 08-258725 A Japanese Patent Laid-Open No. 08-334148 JP 2001-254775 A

ところが、前記後者の従来例(特許文献3,4)は、建築物の主振動方向に少なくとも2本のコイルばねと、その有効長を調整する機構とが必要になり、動吸振器の構造が複雑になって重量やコストの増大を招くとともに、外形寸法も大きくなってしまうから、建築物等以外に使用することは難しいものである。   However, the latter conventional examples (Patent Documents 3 and 4) require at least two coil springs and a mechanism for adjusting the effective length in the main vibration direction of the building, and the structure of the dynamic vibration absorber is required. Since it becomes complicated and causes an increase in weight and cost, and the outer dimensions become large, it is difficult to use it for other than buildings.

また、実際の調整作業は所謂トライ・アンド・エラーの繰り返しであり、時間と手間がかかるところ、前記の動吸振器では、重錘を間に挟む少なくとも2本のコイルばねの有効長をそれぞれ調整しなくてはならないから、手間のかかる作業の量が実質、2倍になってしまい、極めて煩雑である。   In addition, the actual adjustment work is a so-called trial-and-error repetition, which takes time and effort. With the above-mentioned dynamic vibration absorber, the effective lengths of at least two coil springs sandwiching the weight are adjusted respectively. Therefore, the amount of time-consuming work is substantially doubled, which is extremely complicated.

本発明は、斯かる諸点に鑑みてなされたものであり、その目的は、固有振動数の調整機構を簡略化して動吸振器の軽量化、低コスト化を図るとともに、小型化によって建築物等以外にも無理なく使用できるようにし、さらに調整作業も容易化することにある。   The present invention has been made in view of such various points, and its purpose is to simplify the natural frequency adjustment mechanism to reduce the weight and cost of the dynamic vibration absorber, and to reduce the size of the building and the like. In addition to the above, it is possible to use it without difficulty and to facilitate adjustment work.

前記の目的を達成するために、本発明では、コイルばねに軸心方向の予荷重を加えると、その軸心に直交する任意の方向について略均一にばね定数が変化することに着目した。すなわち、請求項1の発明では、制振対象物に弾性体を介して移動可能にウエイトを連結してなる動吸振器を対象とし、その制振対象物とウエイトとの間に当該ウエイトの移動方向に軸心を直交させてコイルばねを配設するとともに、このコイルばねに軸心方向の予荷重を付与し且つその予荷重の大きさを連続的に調整可能な荷重調整機構を設けている。   In order to achieve the above object, the present invention focuses on the fact that when a preload in the axial direction is applied to the coil spring, the spring constant changes substantially uniformly in any direction orthogonal to the axial center. That is, according to the first aspect of the present invention, a dynamic vibration absorber formed by connecting a weight to an object to be damped through an elastic body so as to be movable is an object, and the movement of the weight between the object to be damped and the weight is performed. A coil spring is disposed with its axis orthogonal to the direction, and a load adjustment mechanism is provided that can apply a preload in the axial direction to the coil spring and continuously adjust the magnitude of the preload. .

前記の動吸振器は制振対象物への付加振動系を構成しており、その固有振動数付近の振動が入力すると、ウエイトが大きく振動することによって効果的にエネルギを消散し、制振対象物の振動レベルを低下させることができる。言い換えると、そのような振動低減作用を十分に得るためには、ウエイトの質量と該ウエイト及び制振対象物の間の連結ばね特性とによって決まる付加振動系の固有振動数を、該制振対象物の固有振動数や起振力の振動数に合わせて、正確に調整する必要がある。   The above-mentioned dynamic vibration absorber constitutes an additional vibration system to the object to be damped, and when vibration near its natural frequency is input, the weight is vibrated greatly to effectively dissipate energy, and the object to be damped. The vibration level of an object can be reduced. In other words, in order to sufficiently obtain such a vibration reducing action, the natural frequency of the additional vibration system determined by the weight mass and the connection spring characteristic between the weight and the vibration damping object is set to the vibration damping object. It is necessary to accurately adjust the frequency according to the natural frequency of the object and the frequency of the excitation force.

この点につき前記の構成では、制振対象物とウエイトとの間に当該ウエイトの移動方向(振動方向)に軸心が直交するようにコイルばねを配設しており、このコイルばねの軸心方向の予荷重の大きさを調整することで、その軸心に直交する方向(以下、軸直方向ともいう)のばね定数、即ちウエイトの移動方向(振動方向)における制振対象物との間の連結ばね定数を連続的に変化させることができる。   In this regard, in the above-described configuration, the coil spring is disposed between the damping object and the weight so that the axis is perpendicular to the moving direction (vibration direction) of the weight. By adjusting the magnitude of the preload in the direction, the spring constant in the direction perpendicular to the axis (hereinafter also referred to as the axis-to-axis direction), that is, the distance between the object to be controlled in the moving direction of the weight (vibration direction) The connection spring constant can be continuously changed.

よって、ウエイトと制振対象物との間に例えば1つ設けたコイルばねの予荷重を調整するだけで、動吸振器の固有振動数を最適な値に調整することが可能になり、この調整作業の負担は従来例(特許文献3、4)よりも格段に軽くなる。また、コイルばねやその調整機構の数が従来例の略半分で済むので、軽量化や低コスト化が図られるとともに、外形の小型化によって建築物等以外にも無理なく使用できるようになる。   Therefore, it is possible to adjust the natural frequency of the dynamic vibration absorber to an optimum value only by adjusting the preload of one coil spring provided between the weight and the object to be damped. The burden of work becomes much lighter than the conventional examples (Patent Documents 3 and 4). Further, since the number of coil springs and adjustment mechanisms thereof is substantially half that of the conventional example, the weight can be reduced and the cost can be reduced, and the outer shape can be reduced and used without difficulty.

そうしてコイルばねを1つだけにするのであれば、それはウエイトの重心位置に対応付けて配置するのが好ましく、この場合にウエイトは、コイルばねの軸心に直交する任意の方向に移動可能とすればよい(請求項5)。こうすれば、動吸振器を制振対象物に取り付ける際に、その向きを制振対象物の主たる振動方向に合わせる必要もなくなり、作業が一層、容易になる。   If only one coil spring is used, it is preferable that the coil spring is arranged in correspondence with the center of gravity of the weight. In this case, the weight can be moved in any direction orthogonal to the axis of the coil spring. (Claim 5). In this way, when attaching the dynamic vibration absorber to the vibration suppression object, it is not necessary to align the direction with the main vibration direction of the vibration suppression object, and the work is further facilitated.

また、コイルばねは圧縮コイルばねとして、それを荷重調整機構によって予圧縮するのが好ましい(請求項2)。こうすれば、予圧縮力によってコイルの両端をそれぞれウエイト側及び制振対象物側に押し付けて保持することが可能になり、構造の簡略化が図られる。尚、ウエイトを制振対象物に連結する弾性体としては所謂防振ゴムが好ましい。   The coil spring is preferably a compression coil spring and is pre-compressed by a load adjusting mechanism. If it carries out like this, it will become possible to press and hold the both ends of a coil to the weight side and the damping object side with a precompression force, respectively, and simplification of a structure will be achieved. Note that a so-called anti-vibration rubber is preferable as the elastic body for connecting the weight to the object to be damped.

また、コイルばねとしては、一般的な線形コイルばねを用いればよいが、この場合には予圧縮に伴い軸直方向のばね定数が大きくなったり、反対に小さくなったりして、調整が難しくなる虞れがあるので、荷重調整機構は、予圧縮に伴いコイルばねの軸直方向のばね定数が連続的に大きくなる範囲内において、当該コイルばねを予圧縮する構成とするのが好ましい(請求項3)。   In addition, a general linear coil spring may be used as the coil spring. In this case, the spring constant in the axial direction increases or decreases on the contrary to pre-compression, which makes adjustment difficult. Therefore, it is preferable that the load adjustment mechanism pre-compresses the coil spring within a range in which the spring constant in the axial direction of the coil spring continuously increases with pre-compression (claims). 3).

すなわち、一般に線形コイルばねの軸心方向のばね定数Kvと軸直方向のばね定数Khとの間には、以下の式(1)のような関係がある。この式(1)においてhは、図4(a)のように圧縮されているコイルばねの軸心方向の長さであり、その自由長をh0、変位量をδvとすれば、h=h0−δv である。Dはコイルばねの直径であって圧縮されても変化しないものとみなす。また、Chは、軸心方向への圧縮による軸直方向の剛性の低下度合いを示す係数である。   That is, in general, there is a relationship represented by the following equation (1) between the spring constant Kv in the axial direction of the linear coil spring and the spring constant Kh in the axial direction. In this equation (1), h is the axial length of the coil spring compressed as shown in FIG. 4 (a). If the free length is h0 and the displacement is δv, h = h0. -Δv. D is the diameter of the coil spring and is considered to be unchanged even when compressed. Ch is a coefficient indicating the degree of decrease in rigidity in the axial direction due to compression in the axial direction.

Figure 2008157296
Figure 2008157296

前記の係数Chは、図4(b)に一例を示すようにコイルばねの圧縮(δv/h0の増大)に伴い大きくなるが、その増大変化の度合いはコイルばねの自由長h0及び直径Dの比率によって異なり、h0/Dが大きくなるに連れて相乗的に大きくなる。つまり、コイルばねが細長いほど予圧縮に伴いChが急激に増大し、その軸直方向の剛性が低下する傾向がある。反対にh0/Dがあまり大きくないコイルばねであればChの増大は比較的緩やかであり、例えばh0/D=2のコイルばねにおいて予圧縮率が相対的に低い場合、Chはコイルばねの圧縮率に概ね比例して増大している。   The coefficient Ch increases with the compression of the coil spring (increase in δv / h0) as shown in FIG. 4 (b), but the degree of the increase change depends on the free length h0 and the diameter D of the coil spring. Depending on the ratio, it increases synergistically as h0 / D increases. That is, as the coil spring becomes elongated, Ch increases rapidly with pre-compression, and the rigidity in the axial direction tends to decrease. On the other hand, if the coil spring does not have a large h0 / D, the increase in Ch is relatively slow. For example, when the precompression ratio is relatively low in the coil spring with h0 / D = 2, Ch is the compression of the coil spring. It increases in proportion to the rate.

一方で、そうしてコイルばねが圧縮されるときには、これに連れて前記式(1)における(h/D)の値が相乗的に小さくなるが、これはコイルばねの軸直方向のばね定数Khが大きくなることを、即ち、前記した係数Chの変化とは反対に、コイルばねの軸心方向の圧縮に伴い軸直方向の剛性が高くなる傾向を表している。ここで、コイルばねの圧縮率をαとすれば、(h/D) = α ×(h0/D) であるから、そのように軸直方向の剛性が高くなる度合いもh0/Dの値によって影響を受けることが分かる。 On the other hand, when the coil spring is compressed in this way, the value of (h / D) 2 in the equation (1) is reduced synergistically with this, which is a spring in the axial direction of the coil spring. The fact that the constant Kh increases, that is, contrary to the change in the coefficient Ch described above, shows a tendency that the rigidity in the axial direction increases with compression in the axial direction of the coil spring. Here, if the compression rate of the coil spring and α, (h / D) 2 = α 2 × (h0 / D) because it is 2, the degree also h0 / D where such rigid direction perpendicular to the axis becomes higher It can be seen that it is affected by the value of.

そこで、h0/Dの値が異なる種々のコイルばねについて図4のようなChの変化の特性を調べた上で、その変化による影響(圧縮に伴い軸直方向剛性が低くなる傾向)が相対的に小さく、前記式(1)において(h/D)の値の変化による影響(圧縮に伴い軸直方向剛性が高くなる傾向)が相対的に大きな範囲内でコイルばねを予圧縮するように、荷重調整機構を構成すればよい。 Therefore, after examining the characteristics of the change in Ch as shown in FIG. 4 for various coil springs having different values of h0 / D, the effect of the change (the tendency that axial rigidity decreases with compression) is relative. The coil spring is pre-compressed within a range where the influence of the change in the value of (h / D) 2 in the above formula (1) (the tendency that the axial rigidity increases with compression) is relatively large. What is necessary is just to comprise a load adjustment mechanism.

そうして構成した荷重調整機構によってコイルばねを予圧縮すれば、圧縮率の増大に連れて軸直方向のばね定数が大きくなり、前記した調整作業を行い易いものであるが、より好ましいのは、コイルばねとしてプログレッシブ特性を有する非線形コイルばねを用いることである(請求項4)。このような非線形コイルばねを圧縮するときには、それに伴う軸直方向ばね定数の増大割合が線形ばねに比べて大きくなるので、調整作業をより確実に且つ容易に行うことができる。   If the coil spring is pre-compressed by the load adjustment mechanism configured as described above, the spring constant in the axial direction increases as the compression rate increases, and the adjustment work described above is easy to perform. A non-linear coil spring having progressive characteristics is used as the coil spring. When compressing such a non-linear coil spring, the rate of increase in the axial straight spring constant associated therewith is greater than that of the linear spring, so that the adjustment work can be performed more reliably and easily.

以上のような作用は、非線形コイルばねに代えて、一方向への荷重の変化に伴いこれに直交する剪断方向の弾性係数が非線形に変化するようなゴム弾性体を用いても、得られると考えられる。この観点から本発明は、制振対象物に弾性体を介して移動可能にウエイトが連結された動吸振器において前記弾性体の少なくとも1つを非線形性を有するゴム弾性体とし、これに対し前記ウエイトの移動方向と直交する方向に予荷重を付与するとともに、その予荷重の大きさを調整可能な荷重調整機構を設けたものということもできる(請求項6)。   The above action can be obtained even when a rubber elastic body is used in which the elastic modulus in the shear direction orthogonal to the change in the load in one direction changes nonlinearly in place of the nonlinear coil spring. Conceivable. From this point of view, the present invention provides at least one of the elastic bodies as a rubber elastic body having non-linearity in a dynamic vibration absorber in which a weight is connected to a vibration control object via an elastic body. It can also be said that a preload is provided in a direction orthogonal to the moving direction of the weight, and a load adjusting mechanism capable of adjusting the magnitude of the preload is provided.

以上、説明したように、本発明に係る動吸振器は、制振対象物とウエイトとの間に配置する例えば1つのコイルばねの軸心を該ウエイトの移動方向に直交させ、このコイルばねに加える予荷重の大きさを連続的に調整することで、その軸直方向のばね定数を、即ち、ウエイトの振動方向における制振対象物との間の連結ばね特性をきめ細かく変化させて、動吸振器の固有振動数を最適な値に調整することができるから、調整作業の負担が従来よりも軽くなるとともに、調整機構の簡略化によって動吸振器の軽量化、低コスト化が図られ、さらに小型化によって建築物等以外にも無理なく使用できるようになる。   As described above, the dynamic vibration absorber according to the present invention has, for example, the axial center of one coil spring arranged between the object to be controlled and the weight orthogonal to the moving direction of the weight, By continuously adjusting the magnitude of the preload to be applied, the spring constant in the direction perpendicular to the axis, that is, the characteristics of the connection spring with the object to be controlled in the vibration direction of the weight, is finely changed, and dynamic vibration absorption is achieved. The natural frequency of the device can be adjusted to an optimal value, so the burden of adjustment work becomes lighter than before, and the simplification of the adjustment mechanism reduces the weight and cost of the dynamic vibration absorber. By miniaturization, it becomes possible to use it without difficulty other than buildings.

特に、コイルばねとして非線形性を有するものを用いれば、予荷重の変更によって軸直方向のばね定数を相対的に大きく変化させることができるので、調整作業をさらに容易なものとすることができる。   In particular, if a coil spring having non-linearity is used, the spring constant in the axial direction can be changed relatively greatly by changing the preload, so that the adjustment work can be further facilitated.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1は、本発明に係る動吸振器の実施形態を示し、この動吸振器Dは、例えば真空ポンプ等のように振動を発生する機械(制振対象物:図示はせず)に取り付けられて、その振動を低減するものである。図の例では、制振対象物に固定されるベース部材1に対して4つの防振ゴム2,2,…によりウエイト3が連結されており、このウエイト3は、図の上下方向であるz方向に比較して水平方向であるx−y方向に相対移動し易く、x−y平面においては360°任意の方向に移動するようになっている。   FIG. 1 shows an embodiment of a dynamic vibration absorber according to the present invention, and this dynamic vibration absorber D is attached to a machine (vibration control object: not shown) that generates vibration, such as a vacuum pump. Therefore, the vibration is reduced. In the example of the figure, a weight 3 is connected to the base member 1 fixed to the object to be damped by four anti-vibration rubbers 2, 2,... Compared to the direction, it is relatively easy to move in the xy direction, which is the horizontal direction, and in the xy plane, it moves in any direction of 360 °.

よって、制振対象物が所定の方向に振動すると、これに取り付けられた動吸振器Dにおいてウエイト3は、主としてx−y平面内にて前記制振対象物の振動方向(x−y平面に投射した方向)に振動し、該制振対象物の振動レベルを低下させるようになる。このような振動低減作用を十分に得るためには、ウエイト3の質量と該ウエイト3及び制振対象物の間の連結ばね定数とによって決まる動吸振器Dの固有振動数を、制振対象物の固有振動数或いはその作動による起振力の振動数等に合わせて、正確に調整する必要がある。   Therefore, when the vibration suppression object vibrates in a predetermined direction, the weight 3 in the dynamic vibration absorber D attached to the vibration suppression object mainly moves within the xy plane in the vibration direction of the vibration suppression object (in the xy plane). The vibration level of the object to be controlled is lowered. In order to sufficiently obtain such a vibration reducing action, the natural frequency of the dynamic vibration absorber D determined by the mass of the weight 3 and the coupling spring constant between the weight 3 and the vibration damping object is set to the vibration damping object. It is necessary to accurately adjust the frequency according to the natural frequency or the frequency of the vibration force generated by the operation.

そこで、この実施形態ではウエイト3とベース部材1との間に、ばね定数を調整するためのコイルばね4を配設している。このコイルばね4は、z方向に延びるように、即ち、ウエイト3の振動方向(x−yの任意の方向)に軸心4aを直交させて、配設されており、このコイルばね4の軸心方向に加える予荷重の大きさを変えることによって、その軸心4aに直交する任意の方向についてのばね定数を略均一に変化させることができる。   Therefore, in this embodiment, the coil spring 4 for adjusting the spring constant is disposed between the weight 3 and the base member 1. The coil spring 4 is disposed so as to extend in the z direction, that is, with the axis 4a orthogonal to the vibration direction of the weight 3 (any direction of xy). By changing the magnitude of the preload applied in the center direction, the spring constant in any direction orthogonal to the axis 4a can be changed substantially uniformly.

以下、図2も参照して動吸振器Dの構造を説明すると、まず、ベース部材1は概略矩形状の金属製厚板からなり、4隅にそれぞれ、防振ゴム2,2,…の一方の取付ボルト2b,2b,…が螺入されるボルト穴1a,1a,…が形成されている。周方向に隣り合うボルト穴1a,1aの略中央部位、即ちベース部材1の四辺各々の略中央部位には、制振対象物への締結ボルト(図示せず)が挿通される貫通穴1b,1b,…が形成されている。また、ベース部材1の上面の略中央部位には、コイルばね4の下端が嵌め込まれる受座として比較的浅い断面円形の凹部1cが形成されている。   Hereinafter, the structure of the dynamic vibration absorber D will be described with reference to FIG. 2. First, the base member 1 is made of a substantially rectangular metal plate, and one of vibration-proof rubbers 2, 2,. Are bolt holes 1a, 1a,... Into which the mounting bolts 2b, 2b,. Through holes 1b through which fastening bolts (not shown) to the object to be damped are inserted in substantially central portions of the bolt holes 1a, 1a adjacent to each other in the circumferential direction, that is, substantially central portions of the four sides of the base member 1. 1b,... Are formed. In addition, a concave portion 1c having a relatively shallow cross-section is formed at a substantially central portion of the upper surface of the base member 1 as a receiving seat into which the lower end of the coil spring 4 is fitted.

防振ゴム2,2,…は、それぞれ概略円柱状に形成され、軸心方向の両端部にそれぞれ鋼板等からなる補強板2a,2aが加硫一体成形により配置されて、ゴム層に埋め込まれた状態になっている。これらの補強板2a,2aの略中央から軸心に沿って上下にそれぞれ取付ボルト2b,2bが延びており、その一方(上の方)が前記ベース部材1のボルト穴1aに螺入され、他方(下の方)は、後述するウエイト3の締結孔3cに挿通されて、先端側にナット5が螺合されるようになる。   The anti-vibration rubbers 2, 2,... Are each formed in a substantially cylindrical shape, and reinforcing plates 2a, 2a each made of a steel plate or the like are arranged at both ends in the axial direction by vulcanization integral molding, and embedded in the rubber layer It is in the state. Mounting bolts 2b and 2b extend vertically from the approximate center of these reinforcing plates 2a and 2a along the axis, respectively, and one of them (the upper side) is screwed into the bolt hole 1a of the base member 1, The other (the lower side) is inserted into a fastening hole 3c of the weight 3 described later, and the nut 5 is screwed to the tip side.

ウエイト3は、図1(a)のように平面視では前記ベース部材1と略同じ矩形状の金属製ブロックであり、4辺のうち互いに向かい合う何れか2辺(図では左右両側の2辺)に沿って、ウエイト3の下面から厚みの約半分くらいまでに亘り矩形断面の凹陥部3a,3aが形成されている。これらの各凹陥部3a,3aはウエイト3の側面を切り欠いて外方に向かい開口している。また、ウエイト3の上面の4隅には各々断面円形の凹部3b,3b,…が形成され、その底面から凹陥部3a,3aの天井面まで貫通するように断面円形の締結孔3c,3c,…が形成されている。   The weight 3 is a rectangular metal block that is substantially the same as the base member 1 in a plan view as shown in FIG. 1A, and any two of the four sides facing each other (two sides on the left and right sides in the figure). A concave section 3a, 3a having a rectangular cross section is formed from about the lower surface of the weight 3 to about half of the thickness. Each of these recessed portions 3a, 3a is cut out from the side surface of the weight 3 and opens outward. In addition, concave portions 3b, 3b,... Having a circular cross section are formed at the four corners of the upper surface of the weight 3, and fastening holes 3c, 3c, 3c having a circular cross section are formed so as to penetrate from the bottom surface to the ceiling surface of the recessed portions 3a, 3a. ... is formed.

それらの締結孔3c,3c,…は、各々前記ベース部材1のボルト穴1a,1a,…に対応して、上下方向に見たときに該ボルト穴1a,1a,…と合致するように形成されており、前記したが、各締結孔3cには防振ゴム2の上部の取付ボルト2bが下側から挿通され、その先端側にナット5が螺合されることによって、ウエイト3の4隅にそれぞれ防振ゴム2,2,…の上端部が締結されるようになっている。   The fastening holes 3c, 3c,... Correspond to the bolt holes 1a, 1a,... Of the base member 1 so as to match the bolt holes 1a, 1a,. As described above, the mounting bolts 2b on the upper part of the anti-vibration rubber 2 are inserted into the respective fastening holes 3c from the lower side, and the nuts 5 are screwed to the front end side thereof, whereby the four corners of the weight 3 are Are respectively fastened to the upper ends of the anti-vibration rubbers 2, 2,.

さらに、ウエイト3の下面における略中央部位(重心に対応する部位)には、コイルばね4の上部を遊嵌状態で収容する断面円形のばね収容孔3dが形成され、これに対応してウエイト3の上面略中央部位にも断面円形の凹部3eが形成されている。そして、それら凹部3e及びばね収容孔3dの間の隔壁の中央にねじ穴3fが貫通形成されている。このねじ穴3fには上方から調整ねじ6の軸部が挿入されており、この調整ねじ6の頭部を回すことによって、それを進退させることができる。   Furthermore, a spring accommodating hole 3d having a circular cross section for accommodating the upper portion of the coil spring 4 in a loosely fitted state is formed in a substantially central portion (a portion corresponding to the center of gravity) on the lower surface of the weight 3, and the weight 3 is correspondingly formed. A concave portion 3e having a circular cross section is also formed at a substantially central portion of the upper surface of the. A screw hole 3f is formed through the center of the partition between the recess 3e and the spring accommodation hole 3d. The shaft portion of the adjustment screw 6 is inserted into the screw hole 3f from above, and can be moved forward and backward by turning the head of the adjustment screw 6.

前記調整ねじ6の先端は、コイルばね4の上端に被嵌された円盤状の受座部材7の上面に当接し、この受座部材7を下方のコイルばね4と共に挟持している。調整ねじ6を回して進出させれば、受座部材7を介してコイルばね4に加わる圧縮力が大きくなり、反対に回して後退させれば圧縮力は小さくなる。コイルばね4には常に適度な予圧縮力が加えられており、これにより該コイルばね4の両端がそれぞれベース部材1側及びウエイト3側に押し付けられて、保持されている。   The tip of the adjusting screw 6 abuts on the upper surface of a disc-shaped receiving member 7 fitted on the upper end of the coil spring 4, and holds the receiving member 7 together with the lower coil spring 4. If the adjusting screw 6 is rotated to advance, the compressive force applied to the coil spring 4 via the seat member 7 increases, and if it is rotated backward, the compressive force decreases. A moderate precompression force is always applied to the coil spring 4, whereby both ends of the coil spring 4 are pressed against and held by the base member 1 side and the weight 3 side, respectively.

つまり、調整ねじ6を回して進退させることで、コイルばね4に加える軸心方向の圧縮力を連続的に調整できるようになっており、その調整ねじ6と、ウエイト3のばね収容孔3dやねじ穴3fとによって、コイルばね4への予圧縮力を連続的に調整可能な荷重調整機構が構成されている。こうしてコイルばね4への予圧縮力を調整することで、その軸直方向のばね定数、即ち付加振動系としての動吸振器Dにおけるウエイト3の制振対象物との間の連結ばね定数を連続的に変化させることができ、これにより動吸振器Dの固有振動数を制振対象物に合わせてきめ細かく調整することができる。   That is, the axial compression force applied to the coil spring 4 can be continuously adjusted by turning the adjustment screw 6 to advance and retract. The adjustment screw 6 and the spring accommodating hole 3d of the weight 3 A load adjusting mechanism capable of continuously adjusting the precompression force to the coil spring 4 is constituted by the screw hole 3f. By adjusting the precompression force to the coil spring 4 in this way, the spring constant in the direction perpendicular to the axis, that is, the connection spring constant between the weight 3 in the dynamic vibration absorber D as an additional vibration system is continuously obtained. Thus, the natural frequency of the dynamic vibration absorber D can be finely adjusted according to the object to be controlled.

特に、この実施形態では、コイルばね4として非線形性を有する所謂円錐ばねを用いているため、圧縮により軸心方向のばね定数が増大するのに伴いその軸直方向のばね定数が比較的大きく(線形コイルばねよりも大きく)増大するようになり、前記のようにコイルばね4の軸直方向の(つまり、ウエイト3がx−y方向に振動するときの)ばね定数を調整して、動吸振器Dの固有振動数を制振対象物に合わせる作業が容易に行える。   In particular, in this embodiment, since a so-called conical spring having nonlinearity is used as the coil spring 4, the spring constant in the axial direction is relatively large as the spring constant in the axial direction increases due to compression ( And the dynamic constant is adjusted by adjusting the spring constant in the axial direction of the coil spring 4 (that is, when the weight 3 vibrates in the xy direction) as described above. The work of matching the natural frequency of the device D with the object to be controlled can be easily performed.

図3は、実際に制振対象物に取り付けた動吸振器Dの振動低減効果が調整によって変化する様子を示したものであり、調整ねじ6が締め込まれてコイルばね4の予圧縮率が高くなるに連れて、その軸直方向のばねも硬くなり、最も効果的に振動を低減する周波数、即ち動吸振器Dの固有振動数が徐々に高周波側に移行することが分かる。すなわち、まず、この実験では防振ゴム2,2,…のばね特性を考慮して、動吸振器Dの固有振動数が概ね50Hzになるように、ウエイト3の質量を設定する。   FIG. 3 shows how the vibration reduction effect of the dynamic vibration absorber D actually attached to the object to be controlled changes due to the adjustment. The adjustment screw 6 is tightened and the precompression rate of the coil spring 4 is increased. As it becomes higher, the spring in the axial direction becomes harder, and it can be seen that the frequency at which vibration is most effectively reduced, that is, the natural frequency of the dynamic vibration absorber D gradually shifts to the high frequency side. That is, first, in this experiment, the mass of the weight 3 is set so that the natural frequency of the dynamic vibration absorber D is approximately 50 Hz in consideration of the spring characteristics of the anti-vibration rubbers 2, 2,.

そして、調整ねじ6を殆ど締め込まず、コイルばね4の両端を保持する程度の予圧縮力を加えた状態では、図に実線のグラフaで示すように約47Hzにて振動低減効果が最も高くなり、動吸振器Dの固有振動数が約47Hzであることが分かる。それから調整ねじ6を締め込むに連れて、破線のグラフb、一点鎖線のグラフcの順に固有振動数は徐々に高周波側に移行し、調整ねじ6をいっぱいまで締め込めば、二点差線のグラフdのように固有振動数は57Hzくらいになっている。   When the pre-compression force that holds both ends of the coil spring 4 is applied with almost no tightening of the adjusting screw 6, the vibration reduction effect is the highest at about 47 Hz as shown by the solid line a in the figure. Thus, it can be seen that the natural frequency of the dynamic vibration absorber D is about 47 Hz. Then, as the adjusting screw 6 is tightened, the natural frequency gradually shifts to the high frequency side in the order of the broken line graph b and the alternate long and short dash line graph c, and if the adjusting screw 6 is fully tightened, a two-point difference line graph is obtained. Like d, the natural frequency is about 57 Hz.

つまり、この実験に用いた動吸振器Dによれば、調整ねじ6を回してコイルばね4への予圧縮力を変化させることで、動吸振器Dの固有振動数を大体10Hzくらいの幅で連続的に変化させることができ、制振対象物の振動特性に合わせるのに十分な調整代が得られることが分かる。   In other words, according to the dynamic vibration absorber D used in this experiment, the natural frequency of the dynamic vibration absorber D is set to a width of about 10 Hz by turning the adjusting screw 6 to change the precompression force to the coil spring 4. It can be seen that it can be continuously changed, and a sufficient adjustment margin can be obtained to match the vibration characteristics of the object to be controlled.

したがって、この実施形態に係る動吸振器Dによると、ウエイト3の重心位置に対応付けてコイルばね4を、その軸心4aがウエイト3の主な振動方向(x−y方向)と直交するように1つだけ配設するとともに、このコイルばね4に軸心方向に加える予圧縮力を連続的に調整することによって、その軸直方向であるウエイト3の振動方向における制振対象物との間の連結ばね定数をきめ細かく調整することができ、この制振対象物に合わせて動吸振器Dの固有振動数を最適な値とすることができる。   Therefore, according to the dynamic vibration absorber D according to this embodiment, the coil spring 4 is associated with the center of gravity of the weight 3 so that the axis 4a thereof is orthogonal to the main vibration direction (xy direction) of the weight 3. And by continuously adjusting the pre-compression force applied to the coil spring 4 in the axial direction, the distance between the coil 3 and the object to be controlled in the vibration direction of the weight 3 which is the direction perpendicular to the axis is determined. The connection spring constant can be finely adjusted, and the natural frequency of the dynamic vibration absorber D can be set to an optimum value in accordance with the object to be damped.

その際に必要な作業は、1つのコイルばね4への予圧縮力が変化するように調整ねじ6を回すだけでよく、所謂トライ・アンド・エラーを繰り返して合わせ込む必要はあっても、従来までのように2本以上のコイルばねについてそれぞれ調整を行うのに比べれば、作業の負担はかなり軽くなる。   All that is necessary is to turn the adjusting screw 6 so that the precompression force applied to one coil spring 4 changes. Even though it is necessary to repeatedly perform so-called trial and error, Compared with the case where each of the two or more coil springs is adjusted as described above, the work load is considerably reduced.

また、コイルばね4はウエイト3の重心位置に対応付けて配置しており、ウエイト3自体はx−y平面において360°任意の方向に移動(振動)するようになっているから、動吸振器Dを制振対象物に取り付ける際に、その向きを制振対象物の主振動方向に合わせる必要もなく、作業は一層、容易なものとなる。   Further, the coil spring 4 is arranged in correspondence with the center of gravity of the weight 3, and the weight 3 itself moves (vibrates) in an arbitrary direction of 360 ° in the xy plane. When D is attached to the object to be damped, it is not necessary to match its direction with the main vibration direction of the object to be damped, and the work becomes even easier.

さらに、前記の実施形態では、コイルばね4やその調整機構6を含めて動吸振器Dの構造は非常に簡略なものであり、従来例(特許文献3、4)に比べて軽量化、低コスト化が図られるとともに、外形も十分に小さくなって例えば真空ポンプ等のような機械にも無理なく使用することができる。   Furthermore, in the above-described embodiment, the structure of the dynamic vibration absorber D including the coil spring 4 and its adjustment mechanism 6 is very simple, which is lighter and lower in weight than the conventional examples (Patent Documents 3 and 4). In addition to cost reduction, the outer shape is sufficiently small and can be used without difficulty in a machine such as a vacuum pump.

(他の実施形態)
尚、本発明の構成は、前記実施形態に限定されるものではなく、その他の種々の実施形態を包含するものである。すなわち、前記の実施形態では、コイルばね4として一端から他端に向かい徐々に拡径する所謂円錐ばねを用いているが、これに限らず、非線形性を有するコイルばねであれば例えば樽状や鼓状のものでもよく、それ以外にも、軸心方向にピッチ角や線径を異ならせたものであってもよい。
(Other embodiments)
In addition, the structure of this invention is not limited to the said embodiment, The other various embodiment is included. That is, in the above-described embodiment, a so-called conical spring that gradually increases in diameter from one end to the other end is used as the coil spring 4. A drum-shaped one may be used, and other than that, a pitch angle and a wire diameter may be different in the axial direction.

また、前記の実施形態では、圧縮に伴い軸心方向のばね定数が大きくなるプログレッシブ特性の非線形コイルばね4を用いているが、これに限らず、圧縮に伴いばね定数が小さくなるデグレッシブ特性のものを用いることも可能である。   Further, in the above-described embodiment, the nonlinear coil spring 4 having a progressive characteristic in which the spring constant in the axial direction increases with compression is used. However, the present invention is not limited to this, and has a progressive characteristic in which the spring constant decreases with compression. It is also possible to use one.

また、前記の実施形態では、圧縮コイルばね4を用いているが、これに限らず、引張コイルばねも使用可能である。但し、引張コイルばねを用いるのであれば、その両端をそれぞれウエイト3及び制振対象物側に取り付ける構造が必要になるので、構造の簡略化という観点からは圧縮コイルばねの方が好ましい。   Moreover, in the said embodiment, although the compression coil spring 4 is used, not only this but a tension coil spring can also be used. However, if a tension coil spring is used, a structure in which both ends thereof are attached to the weight 3 and the object to be damped respectively is required, and therefore a compression coil spring is preferable from the viewpoint of simplifying the structure.

さらに、非線形コイルばねに限らず、より一般的な線形コイルばねを用いることも可能であり、コスト面では有利である。但し、線形コイルばねの場合は予荷重の変化に対する軸直方向のばね定数の変化が一様でなく、予荷重を増やしている途中でばね定数が大きくなったり、小さくなったりすることがあるので、そうならないようにコイルの寸法形状や調整機構による予圧縮率等の範囲を設定しなくてはならない。   Furthermore, not only a non-linear coil spring but also a more general linear coil spring can be used, which is advantageous in terms of cost. However, in the case of a linear coil spring, the change in the spring constant in the axial direction with respect to the change in the preload is not uniform, and the spring constant may increase or decrease during the increase of the preload. In order to prevent this from happening, it is necessary to set a range such as a coil shape and a pre-compression ratio by an adjusting mechanism.

すなわち、上述の請求項3に係る発明の説明において説明したが、コイルばねの自由長及び直径の比率を適切に設定するとともに、このコイルばねについて図4(b)のような係数Chの変化特性を調べ、コイルばねの予圧縮に伴い係数Chの値が大きくなることの影響(圧縮に伴い軸直方向剛性が低くなる傾向)よりも、式(1)における(h/D) の値が小さくなることの影響(圧縮に伴い軸直方向剛性が高くなる傾向)が大きな範囲内で、コイルばねを予圧縮するように、調整ねじ6の長さやコイルばね4との相対位置等を設定すればよい。 That is, as explained in the description of the invention according to claim 3 above, the ratio of the free length and the diameter of the coil spring is set appropriately, and the change characteristic of the coefficient Ch as shown in FIG. The value of (h / D) 2 in the equation (1) is larger than the effect of increasing the value of the coefficient Ch with pre-compression of the coil spring (the tendency that the axial rigidity decreases with compression). The length of the adjusting screw 6 and the relative position with respect to the coil spring 4 are set so that the coil spring is pre-compressed within the range in which the influence of the reduction (the tendency to increase the axial rigidity with compression) is large. That's fine.

また、前記の実施形態では、コイルばね4を1つだけ用いているが、2つ以上、用いることも可能である。この場合には同軸に配置するのが好ましい。   In the above embodiment, only one coil spring 4 is used. However, two or more coil springs can be used. In this case, it is preferable to arrange them coaxially.

さらにまた、コイルばね4に代えて、一方向への荷重の変化に伴いこれに直交する剪断方向の弾性係数が非線形に変化するようなゴム弾性体、即ち例えば前記実施形態における防振ゴム2を利用することも考えられる。但し、この場合には予荷重の変化に対するゴム弾性体の剪断弾性係数の変化が比較的小さいことから、調整代を確保するためには、前記実施形態のようにコイルばねを使用する方が好ましい。   Furthermore, instead of the coil spring 4, a rubber elastic body in which the elastic modulus in the shearing direction orthogonal to the change in the load in one direction changes nonlinearly, that is, for example, the vibration isolating rubber 2 in the above embodiment is used. It can also be used. However, in this case, since the change in the shear elastic modulus of the rubber elastic body with respect to the change in the preload is relatively small, it is preferable to use a coil spring as in the above-described embodiment in order to secure the adjustment allowance. .

以上、説明したように、本発明に係る動吸振器は、構造の簡略化によって軽量化、低コスト化が図られるとともに、小型化によって用途が広がり、しかも調整作業が容易になるものなので、比較的小型の機械の制振に特に好適である。   As described above, the dynamic vibration absorber according to the present invention can be reduced in weight and cost by simplification of the structure, and can be used in a wider range by downsizing, and can be easily adjusted. It is particularly suitable for vibration control of a small-sized machine.

本発明に係る動吸振器を平面視で示す図(a)と、そのb-b線断面図(b)である。FIG. 2A is a plan view of a dynamic vibration absorber according to the present invention, and FIG. 動吸振器の分解斜視図である。It is a disassembled perspective view of a dynamic vibration absorber. 調整ねじを締めたときに固有振動数が変化する様子を示すグラフ図である。It is a graph which shows a mode that a natural frequency changes when an adjustment screw is tightened. 線形コイルばねを予圧縮した状態を示す説明図(a)と、これに伴いコイルばねの軸直方向剛性が低下する様子を示すグラフ図(b)である。It is explanatory drawing (a) which shows the state which pre-compressed the linear coil spring, and a graph (b) which shows a mode that the axial direction rigidity of a coil spring falls in connection with this.

符号の説明Explanation of symbols

D 動吸振器
1 ベース部材(制振対象物側)
2 防振ゴム(弾性体)
3 ウエイト
4 コイルばね
4a 軸心
3 調整ねじ(荷重調整機構)
D Dynamic vibration absorber 1 Base member (damping object side)
2 Anti-vibration rubber (elastic body)
3 Weight 4 Coil spring 4a Axle 3 Adjustment screw (Load adjustment mechanism)

Claims (6)

制振対象物に弾性体を介して移動可能にウエイトが連結されてなる動吸振器であって、
前記制振対象物とウエイトとの間には、該ウエイトの移動方向に軸心を直交させてコイルばねが配設され、
前記コイルばねに軸心方向の予荷重を付与するとともに、その予荷重の大きさを連続的に調整可能な荷重調整機構が設けられている、ことを特徴とする動吸振器。
A dynamic vibration absorber in which a weight is connected to a vibration control object through an elastic body,
Between the vibration suppression object and the weight, a coil spring is disposed with its axis orthogonal to the moving direction of the weight,
A dynamic vibration absorber is provided, wherein a load adjusting mechanism capable of continuously adjusting the magnitude of the preload while applying a preload in the axial direction to the coil spring.
コイルばねが圧縮コイルばねであり、
荷重調整機構は前記コイルばねを予圧縮するものである、請求項1に記載の動吸振器。
The coil spring is a compression coil spring;
The dynamic vibration absorber according to claim 1, wherein the load adjustment mechanism pre-compresses the coil spring.
コイルばねが線形コイルばねであり、
荷重調整機構は、予圧縮に伴いコイルばねの軸心に直交する方向のばね定数が連続的に大きくなる範囲内において、当該コイルばねを予圧縮するように構成されている、請求項2に記載の動吸振器。
The coil spring is a linear coil spring;
The load adjusting mechanism is configured to pre-compress the coil spring within a range in which a spring constant in a direction orthogonal to the axis of the coil spring increases continuously with pre-compression. Dynamic vibration absorber.
コイルばねがプログレッシブ特性を有する非線形コイルばねである、請求項2に記載の動吸振器。   The dynamic vibration absorber according to claim 2, wherein the coil spring is a non-linear coil spring having progressive characteristics. ウエイトは、コイルばねの軸心に直交する任意の方向に移動可能とされ、
前記コイルばねが、前記ウエイトの重心位置に対応して1つだけ配置されている、請求項1〜4のいずれか1つに記載の動吸振器。
The weight can be moved in any direction orthogonal to the axis of the coil spring,
The dynamic vibration absorber according to any one of claims 1 to 4, wherein only one of the coil springs is disposed corresponding to the position of the center of gravity of the weight.
制振対象物に弾性体を介して移動可能にウエイトが連結されてなる動吸振器であって、
前記弾性体の少なくとも1つが非線形性を有するゴム弾性体であり、
前記防振ゴムに対し前記ウエイトの移動方向と直交する方向に予荷重を付与するとともに、その予荷重の大きさを連続的に調整可能な荷重調整機構が設けられている、ことを特徴とする動吸振器。
A dynamic vibration absorber in which a weight is connected to a vibration control object through an elastic body,
At least one of the elastic bodies is a rubber elastic body having nonlinearity,
A preload is applied to the anti-vibration rubber in a direction perpendicular to the moving direction of the weight, and a load adjusting mechanism capable of continuously adjusting the size of the preload is provided. Dynamic vibration absorber.
JP2006344147A 2006-12-21 2006-12-21 Dynamic vibration absorber Pending JP2008157296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344147A JP2008157296A (en) 2006-12-21 2006-12-21 Dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344147A JP2008157296A (en) 2006-12-21 2006-12-21 Dynamic vibration absorber

Publications (1)

Publication Number Publication Date
JP2008157296A true JP2008157296A (en) 2008-07-10

Family

ID=39658439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344147A Pending JP2008157296A (en) 2006-12-21 2006-12-21 Dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JP2008157296A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793306A (en) * 2010-03-12 2010-08-04 浣石 Continuously variable-rigidity chaos vibration isolation device
JP2012013136A (en) * 2010-06-30 2012-01-19 Kurashiki Kako Co Ltd Flexible joint
KR101242589B1 (en) 2011-03-31 2013-03-19 윤성필 Method for manufacturing elastic body supporter for vibration damping rubber member
JP2014024602A (en) * 2012-06-22 2014-02-06 Nippon Express Co Ltd Freight transportation pallet device
CN104696428A (en) * 2015-02-13 2015-06-10 柳州金鸿橡塑有限公司 Rubber power vibration absorber
JP2016505778A (en) * 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind turbine generator with damping module or device, structural segment for structure, and damping module
JP2018025297A (en) * 2016-07-28 2018-02-15 株式会社防震製作所 Base isolation device
CN108894956A (en) * 2018-09-10 2018-11-27 青岛万宝压缩机有限公司 Absorbing compressor
CN109927598A (en) * 2017-12-15 2019-06-25 本田技研工业株式会社 Damping unit
CN112392809A (en) * 2020-11-30 2021-02-23 重庆建安仪器有限责任公司 Shock absorber mounting structure convenient to dismouting
CN112406504A (en) * 2020-11-20 2021-02-26 东风汽车集团有限公司 Engine suspension vibration reduction structure, system and automobile

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119220U (en) * 1979-02-15 1980-08-23
JPS6177442U (en) * 1984-10-29 1986-05-24
JPH05302642A (en) * 1992-04-24 1993-11-16 Toyoda Gosei Co Ltd Dynamic damper
JPH08258725A (en) * 1995-03-22 1996-10-08 Tokai Rika Co Ltd Vibration damping device of steering wheel
JPH08334148A (en) * 1995-06-06 1996-12-17 Tokico Ltd Damping device
JPH10184789A (en) * 1996-12-27 1998-07-14 Ohbayashi Corp Spring property adjusting method for buffer spring
JPH10196715A (en) * 1997-01-10 1998-07-31 Ohbayashi Corp Spring characteristics adjustment method of buffer spring
JP2001254775A (en) * 2000-03-15 2001-09-21 Asahi Kasei Corp Vibration control device and method of adjusting it
JP2005155268A (en) * 2003-11-28 2005-06-16 Daiwa House Ind Co Ltd Vibration control device of dwelling house

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119220U (en) * 1979-02-15 1980-08-23
JPS6177442U (en) * 1984-10-29 1986-05-24
JPH05302642A (en) * 1992-04-24 1993-11-16 Toyoda Gosei Co Ltd Dynamic damper
JPH08258725A (en) * 1995-03-22 1996-10-08 Tokai Rika Co Ltd Vibration damping device of steering wheel
JPH08334148A (en) * 1995-06-06 1996-12-17 Tokico Ltd Damping device
JPH10184789A (en) * 1996-12-27 1998-07-14 Ohbayashi Corp Spring property adjusting method for buffer spring
JPH10196715A (en) * 1997-01-10 1998-07-31 Ohbayashi Corp Spring characteristics adjustment method of buffer spring
JP2001254775A (en) * 2000-03-15 2001-09-21 Asahi Kasei Corp Vibration control device and method of adjusting it
JP2005155268A (en) * 2003-11-28 2005-06-16 Daiwa House Ind Co Ltd Vibration control device of dwelling house

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793306A (en) * 2010-03-12 2010-08-04 浣石 Continuously variable-rigidity chaos vibration isolation device
JP2012013136A (en) * 2010-06-30 2012-01-19 Kurashiki Kako Co Ltd Flexible joint
KR101242589B1 (en) 2011-03-31 2013-03-19 윤성필 Method for manufacturing elastic body supporter for vibration damping rubber member
JP2014024602A (en) * 2012-06-22 2014-02-06 Nippon Express Co Ltd Freight transportation pallet device
AU2013354259B2 (en) * 2012-12-04 2017-02-02 Wobben Properties Gmbh Vibration-limiting module and device, structural segment for a structural installation, and wind turbine having a vibration-limiting module
JP2016505778A (en) * 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind turbine generator with damping module or device, structural segment for structure, and damping module
US10024378B2 (en) 2012-12-04 2018-07-17 Wobben Properties Gmbh Vibration-limiting module and device, structural segment for a structural installation, and wind turbine having a vibration-limiting module
CN104696428A (en) * 2015-02-13 2015-06-10 柳州金鸿橡塑有限公司 Rubber power vibration absorber
JP2018025297A (en) * 2016-07-28 2018-02-15 株式会社防震製作所 Base isolation device
CN109927598A (en) * 2017-12-15 2019-06-25 本田技研工业株式会社 Damping unit
CN108894956A (en) * 2018-09-10 2018-11-27 青岛万宝压缩机有限公司 Absorbing compressor
CN112406504A (en) * 2020-11-20 2021-02-26 东风汽车集团有限公司 Engine suspension vibration reduction structure, system and automobile
CN112392809A (en) * 2020-11-30 2021-02-23 重庆建安仪器有限责任公司 Shock absorber mounting structure convenient to dismouting
CN112392809B (en) * 2020-11-30 2022-02-01 重庆建安仪器有限责任公司 Shock absorber mounting structure convenient to dismouting

Similar Documents

Publication Publication Date Title
JP2008157296A (en) Dynamic vibration absorber
JP5037493B2 (en) Anti-vibration support device
JP5027037B2 (en) Vibration control device
EP1784583A1 (en) Fastening means preventing the transmission of shocks and vibrations
US4012071A (en) Cab mounting device
WO1993009302A1 (en) Resilient supporting device for operator cabin
JP2000266118A (en) Mount
JP2003106370A (en) Damping device
KR20080037804A (en) Module type tuned mass damper
US9353825B2 (en) Vibration absorbing apparatus
JP4759527B2 (en) Vibration control device
JP2006153280A (en) Vibration isolator
JP6871645B1 (en) Anti-vibration device for mounting precision equipment
JP2007263341A (en) Vibration control device
US11624420B1 (en) Isolation system and method
JP2001234969A (en) Dynamic damper
JP6207320B2 (en) Vibration isolator
JP2007064353A (en) Swing damping device
JP3738370B2 (en) Vibration isolator for robot
JP4648248B2 (en) Vibration reduction device
KR101672128B1 (en) Slab vibration reduction device for structure with slab
JP3300305B2 (en) Articulated bridge fall prevention device
JP2005246404A (en) Vibration reducing apparatus
JPH025138Y2 (en)
JP6669558B2 (en) Anti-vibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Effective date: 20110119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Effective date: 20110712

Free format text: JAPANESE INTERMEDIATE CODE: A02