JP3460322B2 - Backwashing method for membrane separation device using internal pressure type tubular membrane module - Google Patents

Backwashing method for membrane separation device using internal pressure type tubular membrane module

Info

Publication number
JP3460322B2
JP3460322B2 JP20609494A JP20609494A JP3460322B2 JP 3460322 B2 JP3460322 B2 JP 3460322B2 JP 20609494 A JP20609494 A JP 20609494A JP 20609494 A JP20609494 A JP 20609494A JP 3460322 B2 JP3460322 B2 JP 3460322B2
Authority
JP
Japan
Prior art keywords
membrane
water
tubular membrane
tubular
backwash water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20609494A
Other languages
Japanese (ja)
Other versions
JPH0852329A (en
Inventor
繁樹 沢田
喜興 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20609494A priority Critical patent/JP3460322B2/en
Publication of JPH0852329A publication Critical patent/JPH0852329A/en
Application granted granted Critical
Publication of JP3460322B2 publication Critical patent/JP3460322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、浄水、下水処理水等
の除濁、除菌や、医薬、食品等の用水の無菌化や、上下
水、産業廃水の固液分離、溶存物の分離に使用される内
圧型管状膜モジュールによる膜分離装置の逆洗方法に関
する。 【0002】 【従来の技術】中空糸膜や、それより太いチューブラ膜
を使用した内圧型管状膜モジュールによる膜分離装置は
単位モジュール当りの有効膜面積が大きいため、効率が
良く、用水処理や、食品、医薬のプロセス処理に多用さ
れている。特に近年は河川水の表流水中のコロイド物質
の除去、上水やRO供給水を生産する用途にも用いられ
ている。この膜分離装置の管状膜モジュールは図示のよ
うに垂直な筒形シェル1と、筒形シェル内の上部仕切板
と下部仕切板とに上端と下端を連結した垂直な配置の多
数本の管状膜(図では便宜上、その1本のみを示した)
2とからなり、管状膜の中空部は上部仕切板上の上室
3、及び下部仕切板の下の下室4と連通し、筒形シェル
内の上部仕切板と下部仕切板との間は、原水が管状膜の
中空部を流れる際に膜を透過した透過水が流入する透過
室5を構成する。そして、図3の従来のデッドエンド型
膜分離装置の場合は、弁V1 の開で原水を給水ポンプP
1 により給水管6から下室4に供給して中空糸の管状膜
を上向流させ、上向流する間に管状膜のMF膜や、UF
膜を透過し、筒形シェル内の透過室5に流入した透過水
は取出管7で取出し、貯槽等に貯溜する。尚、上室3か
らは管状膜を透過しなかった濃縮水が排出される。 【0003】こうして膜分離を行うと、管状膜の中空部
膜面にケーク層が形成されて原水の流路がせばまると共
に、透過水の透過率が低下し、膜分離効率が低下する。
このため従来は透過室5内に逆洗水を注入する供給管8
を筒形シェルに1個取付け、給水管6の弁V1 と、取出
管7の弁V2 を閉じ、逆洗供給管8と、逆洗排水管9の
弁V3 ,V4 を開き、逆洗用ポンプP2 を運転し、供給
管8から逆洗水として透過水を透過室5に注入し、管状
膜に外から内に逆方向に逆洗水を透過させて中空部の膜
面に生じたケークを剥離し、排水管9から洗浄排水と一
緒に排出させる。 【0004】 【発明が解決しようとする課題】しかし、筒形シェル内
の上下の仕切板間に支持された管状膜のほゞ全長の中空
部膜面に形成されているケークの全部を透過室5に注入
した逆洗水で一度に剥離し、排水管9から排出すること
は管状膜の長さが短い場合はともかく、長さが1m、或
いはそれ以上長くなると困難で、剥離したケークが中空
部の途中に再付着するなどして逆洗不良となり、遂には
中空部がケーク層で閉塞して膜分離が行えなくなる事例
が生じた。 【0005】 【課題を解決するための手段】本発明は、上記問題点を
解消するために開発されたもので、筒形シェル内に取付
けられた多数本の管状膜からなる管状膜モジュールと、
該管状膜モジュールの管状膜の中空部内に原水を供給す
る給水管と、原水が管状膜の中空部を流れる際に膜を透
過して筒形シェル内に流入した透過水を筒形シェルの外
に排水する透過水の取出管とを備えた内圧型管状膜モジ
ュールによる膜分離装置において、上記筒形シェルに上
下方向に複数の逆洗水の供給管を接続し、管状膜モジュ
ールを逆洗する際に逆洗水が管状膜の中空部から流出す
る流出側端部に近い供給管から逆洗水を筒形シェル内に
供給し、次いでこの供給管と、順次流出側端部に近い供
給管とから逆洗水を供給するようにしたことを特徴とす
る。尚、筒形シェルに設けた上下方向に複数の逆洗水の
供給管の1つが透過水の排水管を兼ねていることが好ま
しい。 【0006】 【実施例】図1は図3の従来例と同じデッドエンド型膜
分離装置の一実施例、図2はクロスフロー型膜分離装置
の一実施例であって、図3の従来例と相違する主な点
は、筒形シェル1の透過室5に上段、中段、下段の3個
所に、透過室5に通じる逆洗水の供給管11,12,1
3を設けたことである。そして、下段の供給管13は透
過水の取出管7を兼ねている。 【0007】図1のデッドエンド型膜分離装置の場合
は、前述したように給水管6の弁V1を開にし、原水を
給水ポンプP1 で給水管から下室4に供給して管状膜の
中空部を上向流させ、上向流する間に管状膜を透過し、
透過室5に流入した透過水は取出管7で取出し、貯槽等
に貯溜する。 【0008】上記膜分離工程では、原水は筒形シェルの
下室4を経て管状膜の中空部に下端から流入するが、逆
洗工程では洗浄排水は管状膜の中空部の下端から下室4
を経て排水される。このため、本発明の方法に則り逆洗
工程を行うには、給水管6の弁V1 と、透過水の取出管
7の弁V2 を閉、供給管8の弁V3 、及び排水管9の弁
4 を開にし、(中段と上段の供給管の弁V12,V11
閉)、逆洗用ポンプP2 を運転し、下段の供給管13か
ら透過室5に逆洗水を注入する。透過室内は逆洗水で充
満するが、逆洗水は下段の供給管13から注入されたた
め、管状膜の中空部に形成されたケーク層のうち、主と
して下部のものが膜面から剥離し、下室4を経て排水管
9から排水される。これにより管状膜の中空部の下部は
ケーク層の剥離により中部、上部に比較して通水抵抗は
小になり、そこを流れる逆洗水の流速は早まる。 【0009】こうして所定時間、下段の供給管13から
の逆洗を行ったら弁V3 は開にしたまゝ中段の供給管1
2の開閉弁V12を開にし、下段、中段の両供給管12,
13から透過室に逆洗水を注入して逆洗を行う。これに
より管状膜の中空部の中段に形成されたケーク層が中段
の供給管12から供給される逆洗水によって剥離され
る。そして、下段の供給管13から供給された逆洗水は
管状膜の下部を透過してその中空部に入り、早い流速で
下室4に向かって流れるため、管状膜の中空部の中段か
ら剥離したケーク層は下段の内面に付着することなく流
速を早めて下室に流入し、排水管9から排水される。 【0010】下段と中段の供給管13,12からの逆洗
を所定時間行ったら弁V3 ,V12は開にしたまゝ上段の
供給管11の開閉弁V11を開にし、下段、中段、上段の
供給管11,12,13から透過室に逆洗水を注入して
逆洗を行う。これにより管状膜の中空部の上部に形成さ
れたケーク層が上段の供給管11から供給される逆洗水
によって剥離される。そして、中段と下段の供給管1
2,13から供給された逆洗水は管状膜の中段と下部を
透過してその中空部に入り、早い流速で下室4に向かっ
て流れるため、管状膜の中空部の上部から剥離したケー
ク層は中段や下段の内面に付着することなく流速を早め
て下室に流入し、排水管9から排水される。 【0011】こうして、筒形シェル1に上下方向に複数
の逆洗水の供給管を接続し、逆洗水が管状膜の中空部か
ら流出する流出側端部、図1の実施例では下端部に近い
供給管13から逆洗水を筒形シェル内に供給し、次いで
この供給管13と、順次流出側端部に近い供給管12や
11とから逆洗水を供給することによって、管状膜の長
さが1m、或いはそれ以上長くても、管状膜の中空部の
膜面に付着したケーク層を確実に剥離できる。 【0012】図2のクロスフロー型膜分離装置でも筒形
シェル1の透過室5には上段、中段、下段の3個所に室
に通じる逆洗水の供給管11,12,13が設けてあ
り、上段の供給管11は透過室の取出管7を兼ねる。ク
ロスフロー型の場合は、筒形シェルの上室3と下室4は
循環ポンプP3 を有する循環管10で接続され、膜分離
工程を行う際は、循環管10に給水ポンプP1 、給水管
6で供給される原水は筒形シェルの上室3に流入し、管
状膜の中空部を下向流し、膜を透過しなかった濃縮水
は、循環管で循環流する。管状膜の中空部を下向流する
際に膜を透過して透過室に流入した透過水は弁V2 の開
により取出管7から取出す。 【0013】逆洗水の排水管9は弁V4 を介して筒形シ
ェルの上室3に接続し、逆洗水は管状膜の中空部の上端
から上室3、排水管9を経て排出される。従って、逆洗
工程を行うときは、ポンプP1 ,P3 を停め、弁V1
5 を閉、V3 ,V4 を開にし(弁V12,V13も閉)、
ポンプP2 の運転で逆洗水を上段の供給管11から透過
室に供給する。これにより透過室内は逆洗水で充満する
が、逆洗水は上段の供給管11から注入されたため、管
状膜の中空部に形成されたケーク層のうち、主として上
部のものが膜面から剥離し、上室4を経て排水管9から
排水される。そして、管状膜の中空部の上部はケーク層
の剥離により中部、下部に比較して通水抵抗は小にな
り、そこを上向きに流れる逆洗水の流速は早まる。 【0014】こうして所定時間、上段の供給管11から
の逆洗を行ったら弁V3 は開にしたまゝ中段の供給管1
2の開閉弁V12を開にし、上段、中段の両供給管11,
12,13から透過室に逆洗水を注入して逆洗を行う。
これにより管状膜の中空部の中段に形成されたケーク層
が中段の供給管12から供給される逆洗水によって剥離
される。そして、上段の供給管11から供給された逆洗
水は管状膜の上部を透過してその中空部に入り、早い流
速で上室3に向かって流れるため、管状膜の中空部の中
段から剥離したケーク層は上段の内面に付着することな
く流速を早めて上室に流入し、排水管9から排水され
る。 【0015】上段と中段の供給管11,12からの逆洗
を所定時間行ったら弁V3 ,V12は開にしたまゝ下段の
供給管13の開閉弁V13を開にし、下段、中段、上段の
供給管11,12,13から透過室に逆洗水を注入して
逆洗を行う。これにより管状膜の中空部の下部に形成さ
れたケーク層が下段の供給管13から供給される逆洗水
によって剥離される。そして、中段と上段の供給管1
1,12,13から供給された逆洗水は管状膜の中段と
上部を透過してその中空部に入り、早い流速で上室3に
向かって流れるため、管状膜の中空部の下部から剥離し
たケーク層は中段や上段の内面に付着することなく流速
を早めて上室に流入し、排水管9から排水される。 【0016】こうして、筒形シェル1に上下方向に複数
の逆洗水の供給管を接続し、逆洗水が管状膜の中空部か
ら流出する流出側端部、図2の実施例では上端部に近い
供給管11から逆洗水を筒形シェル内に供給し、次いで
この供給管11と、順次流出側端部に近い供給管12や
11とから逆洗水を供給することによって、管状膜の長
さが1m、或いはそれ以上長くても、管状膜の中空部の
膜面に付着したケーク層を確実に剥離できる。 【0017】デッドエンド型膜分離装置で、管状膜の中
空部の上端から筒形シェルの上室に逆洗水が流出するタ
イプのものは、上段の供給管から逆洗水を透過室に供給
し、次に上段と中段の供給管から逆洗水を透過室に供給
し、最後に上段、中段、下段の供給管から逆洗水を透過
室に供給すればよい。逆にクロスフロー型膜分離装置
で、管状膜の中空部の下端から筒形シェルの下室に逆洗
水が流出するタイプのものは下段の供給管から逆洗水を
透過室に供給し、次に下段と中段の供給管から逆洗水を
透過室に供給し、最後に下段、中段、上段の供給管から
逆洗水を透過室に供給すればよい。 【0018】図示の各実施例では筒形シェルの透過室に
上下方向に3本の逆洗水供給管を略々等間隔に接続した
が、接続すべき逆洗水供給管の数は3本に限定されず、
2本でも、4本或いはそれ以上でもよく、透過室の上下
方向の長さ、ひいては管状膜の長さに基づいて適切に定
めればよい。又、モジュールの配置は、上下方向に設置
した例を示したが、配置方向は上下方向に限定されるも
のではなく、水平や、斜め配置でもよい。 【0019】 【発明の効果】以上で明らかなように、本発明では中空
糸膜や、チューブラ膜に逆方向に逆洗水を透過させて中
空部の膜面に付着したケーク層を剥離する際に、剥離し
たケークが排水管に向かって中空部を流れて行く途中
で、再び膜面に付着するのを防止し、剥離したケークを
確実に排水管に排出できる。従って、逆洗水による逆洗
の洗浄効果は抜群である。そして、管状膜の長さが大で
も確実に逆洗が行えるため、管状膜のスケールアップが
可能になり、膜分離効率の大きい内圧型管状膜による膜
分離装置を提供できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the clarification and sterilization of purified water and sewage treated water, the sterilization of water for medicines, foods, etc. The present invention relates to a method for backwashing a membrane separation device using an internal pressure type tubular membrane module used for solid-liquid separation of wastewater and separation of dissolved matter. 2. Description of the Related Art A membrane separation apparatus using an internal pressure type tubular membrane module using a hollow fiber membrane or a thicker tubular membrane has a large effective membrane area per unit module, so that it is efficient and can be used for water treatment, It is frequently used in food and pharmaceutical processing. Particularly in recent years, it has been used for removing colloidal substances in surface water of river water and for producing tap water and RO supply water. As shown, the tubular membrane module of the membrane separation apparatus has a vertical tubular shell 1 and a plurality of tubular membranes in a vertical arrangement in which the upper and lower ends are connected to an upper partition plate and a lower partition plate in the tubular shell. (Only one of them is shown in the figure for convenience)
2, the hollow portion of the tubular membrane communicates with the upper chamber 3 on the upper partition plate and the lower chamber 4 below the lower partition plate, and between the upper partition plate and the lower partition plate in the cylindrical shell. When the raw water flows through the hollow portion of the tubular membrane, the permeation chamber 5 into which the permeated water permeating the membrane flows in is formed. Then, in the case of conventional dead-end membrane separator of FIG. 3, the water supply pump P raw water in the open valve V 1
The water is supplied from the water supply pipe 6 to the lower chamber 4 to flow the hollow fiber tubular membrane upward, and the tubular membrane MF membrane and UF
The permeated water that has passed through the membrane and flowed into the permeation chamber 5 in the cylindrical shell is taken out by the take-out pipe 7 and stored in a storage tank or the like. The concentrated water that has not passed through the tubular membrane is discharged from the upper chamber 3. When the membrane is separated in this manner, a cake layer is formed on the hollow membrane surface of the tubular membrane, thereby narrowing the flow path of the raw water, reducing the permeability of the permeated water, and lowering the membrane separation efficiency.
For this reason, conventionally, the supply pipe 8 for injecting the backwash water into the permeation chamber 5 is used.
Mounting one for cylindrical shell, a valve V 1 of the feed water pipe 6, to close the valve V 2 of the take-out tube 7, open the backwashing supply pipe 8, the valve V 3, V 4 of backwash drain pipe 9, driving a backwash pump P 2, the film surface of the permeate was injected into transmission chamber 5, by transmitting backwash water in the opposite direction within the outer tubular membrane hollow section as the backwash water from the feed pipe 8 Is peeled off and drained out of the drainage pipe 9 together with the washing drainage. [0004] However, all of the cake formed on the hollow membrane surface of substantially the entire length of the tubular membrane supported between the upper and lower partition plates in the cylindrical shell is transferred to the permeation chamber. It is difficult to remove at a time the length of 1 m or more, regardless of the length of the tubular membrane, even if the length is 1 m or more. In some cases, backwashing was poor due to reattachment in the middle of the part, and finally the hollow part was blocked by the cake layer and membrane separation could not be performed. SUMMARY OF THE INVENTION The present invention has been developed to solve the above problems, and has a tubular membrane module comprising a plurality of tubular membranes mounted in a cylindrical shell;
A water supply pipe for supplying raw water into a hollow portion of the tubular membrane of the tubular membrane module; and a permeated water flowing through the membrane and flowing into the cylindrical shell when the raw water flows through the hollow portion of the tubular membrane, outside the cylindrical shell. In a membrane separation device using an internal pressure type tubular membrane module provided with a permeate discharge pipe for draining water, a plurality of backwash water supply pipes are vertically connected to the cylindrical shell to backwash the tubular membrane module. When the backwash water flows out of the hollow portion of the tubular membrane, the backwash water is supplied from the supply pipe near the end on the outflow side to the inside of the cylindrical shell. The backwash water is supplied from the above. It is preferable that one of a plurality of supply pipes for backwash water provided in the cylindrical shell in the up-down direction also serves as a drain pipe for permeated water. FIG. 1 shows an embodiment of a dead-end type membrane separation apparatus similar to the conventional example of FIG. 3, and FIG. 2 shows an embodiment of a cross-flow type membrane separation apparatus. The main difference from the above is that the supply pipes 11, 12, 1 of the backwash water communicating with the permeation chamber 5 are provided at the upper, middle, and lower stages in the permeation chamber 5 of the cylindrical shell 1.
3 is provided. The lower supply pipe 13 also serves as the permeated water extraction pipe 7. [0007] In the case of dead-end membrane separation apparatus of FIG. 1, the valve V 1 of the feed water pipe 6 in the open as described above, the tubular film is supplied to the lower chamber 4 from the water supply pipe raw water in the water supply pump P 1 The hollow part of the upward flow, permeate the tubular membrane during the upward flow,
The permeated water flowing into the permeation chamber 5 is taken out by the take-out pipe 7 and stored in a storage tank or the like. In the above-mentioned membrane separation process, the raw water flows into the hollow portion of the tubular membrane from the lower end through the lower chamber 4 of the cylindrical shell. In the backwashing process, the washing wastewater flows from the lower end of the hollow portion of the tubular membrane into the lower chamber 4.
Drained through. Therefore, in order to perform backwashing process in accordance with the method of the present invention, the valve V 1 of the feed water pipe 6, the closing valve V 2 of the take-out pipe 7 permeate, valve V 3 of the supply pipe 8, and the drainage pipe the valve V 4 of 9 in the open, (valves V 12, V 11 of the middle and upper supply pipe is closed), operating the pump P 2 for backwashing, backwash water permeation chamber 5 from the lower of the supply pipe 13 Inject. The permeation chamber is filled with backwash water, but since the backwash water was injected from the lower supply pipe 13, mainly the lower one of the cake layers formed in the hollow portion of the tubular membrane was separated from the membrane surface, The water is drained from the drain pipe 9 through the lower chamber 4. As a result, the lower portion of the hollow portion of the tubular membrane has a smaller water flow resistance than the middle portion and the upper portion due to the peeling of the cake layer, and the flow rate of the backwash water flowing therethrough is increased. [0009] Thus a predetermined time, the valve V After performing backwash from the lower supply tube 13 3 supply pipe 1 of the Open Nishitamaゝmiddle
The second on-off valve V 12 is opened, the lower, middle of both the supply pipe 12,
Backwashing is performed by injecting backwash water from 13 into the permeation chamber. Thereby, the cake layer formed in the middle part of the hollow part of the tubular membrane is peeled off by the backwash water supplied from the supply pipe 12 in the middle part. Then, the backwash water supplied from the lower supply pipe 13 passes through the lower part of the tubular membrane and enters the hollow part thereof, and flows toward the lower chamber 4 at a high flow rate, so that it is separated from the middle part of the hollow part of the tubular membrane. The flowed cake layer flows into the lower chamber at an increased flow rate without adhering to the inner surface of the lower stage, and is drained from the drain pipe 9. After backwashing from the lower and middle supply pipes 13 and 12 for a predetermined time, the valves V 3 and V 12 are kept open, and the open / close valve V 11 of the upper supply pipe 11 is opened. Then, backwashing is performed by injecting backwashing water from the upper supply pipes 11, 12, 13 into the permeation chamber. Thereby, the cake layer formed on the upper part of the hollow portion of the tubular membrane is peeled off by the backwash water supplied from the upper supply pipe 11. And the middle and lower supply pipes 1
The backwash water supplied from the tubes 2 and 13 passes through the middle and lower portions of the tubular membrane and enters the hollow portion thereof, and flows toward the lower chamber 4 at a high flow rate. Therefore, the cake separated from the upper portion of the hollow portion of the tubular membrane. The layer flows into the lower chamber at an increased flow rate without adhering to the inner surface of the middle or lower stage, and is drained from the drain pipe 9. In this manner, a plurality of backwash water supply pipes are connected to the cylindrical shell 1 in the up-down direction, and the backwash water flows out from the hollow portion of the tubular membrane, the lower end in the embodiment of FIG. Backwash water is supplied into the cylindrical shell from the supply pipe 13 close to the outlet, and then the backwash water is supplied from the supply pipe 13 and the supply pipes 12 and 11 near the outflow-side end, thereby forming a tubular membrane. Even if the length is 1 m or more, the cake layer adhering to the membrane surface of the hollow portion of the tubular membrane can be reliably peeled off. In the cross-flow type membrane separation apparatus shown in FIG. 2, the permeation chamber 5 of the cylindrical shell 1 is provided with supply pipes 11, 12, and 13 for backwashing water which communicate with the chamber at three locations: upper, middle, and lower. The upper supply pipe 11 also serves as the extraction pipe 7 for the permeation chamber. For cross-flow, the upper chamber 3 and a lower chamber 4 of the cylindrical shell are connected by a circulation pipe 10 having a circulating pump P 3, when performing the membrane separation step, the water supply pump P 1, the water supply to the circulation pipe 10 The raw water supplied by the pipe 6 flows into the upper chamber 3 of the cylindrical shell, flows downward through the hollow portion of the tubular membrane, and the concentrated water that has not passed through the membrane circulates through the circulation pipe. Permeate the hollow portion has flowed into the transmission chamber through the membrane when downflow tubular film is taken out from the take-out pipe 7 by opening the valve V 2. A drain pipe 9 for the backwash water is connected to the upper chamber 3 of the cylindrical shell via a valve V 4, and the backwash water is discharged from the upper end of the hollow portion of the tubular membrane through the upper chamber 3 and the drain pipe 9. Is done. Therefore, when performing the backwashing step, the pumps P 1 and P 3 are stopped, and the valves V 1 and P 3 are stopped.
The V 5 closed, and the V 3, V 4 to an open (a valve V 12, V 13 also closed),
And supplies the transmission chamber backwash water from the upper supply pipe 11 in operation of the pump P 2. As a result, the permeation chamber is filled with backwash water, but since the backwash water was injected from the upper supply pipe 11, mainly the cake layer formed in the hollow portion of the tubular membrane was mainly separated from the membrane surface. Then, the water is drained from the drain pipe 9 through the upper chamber 4. Then, the upper part of the hollow part of the tubular membrane has a smaller flow resistance than the middle part and the lower part due to the peeling of the cake layer, and the flow velocity of the backwash water flowing upward therethrough is increased. After backwashing from the upper supply pipe 11 for a predetermined time in this way, the valve V 3 is kept open and the middle supply pipe 1
The second on-off valve V 12 is opened, the upper, middle of both the supply pipe 11,
Backwash water is injected into the permeation chamber from 12, 13 to perform backwash.
Thereby, the cake layer formed in the middle part of the hollow part of the tubular membrane is peeled off by the backwash water supplied from the supply pipe 12 in the middle part. The backwash water supplied from the upper supply pipe 11 passes through the upper portion of the tubular membrane and enters the hollow portion thereof, and flows toward the upper chamber 3 at a high flow rate. The cake layer flows into the upper chamber at an increased flow rate without adhering to the inner surface of the upper stage, and is drained from the drain pipe 9. After backwashing from the upper and middle supply pipes 11 and 12 for a predetermined time, the valves V 3 and V 12 are kept open, and the open / close valve V 13 of the lower supply pipe 13 is opened. Then, backwashing is performed by injecting backwashing water from the upper supply pipes 11, 12, 13 into the permeation chamber. Thereby, the cake layer formed below the hollow portion of the tubular membrane is peeled off by the backwash water supplied from the lower supply pipe 13. And the middle and upper supply pipes 1
The backwash water supplied from 1, 12, and 13 passes through the middle and upper portions of the tubular membrane and enters the hollow portion thereof, and flows toward the upper chamber 3 at a high flow rate, and is separated from the lower portion of the hollow portion of the tubular membrane. The cake layer that has flowed into the upper chamber at an increased flow rate without adhering to the inner surface of the middle or upper stage is drained from the drain pipe 9. In this way, a plurality of backwash water supply pipes are connected to the cylindrical shell 1 in the up-down direction, and the outflow-side end where the backwash water flows out of the hollow portion of the tubular membrane, the upper end in the embodiment of FIG. The backwash water is supplied into the cylindrical shell from the supply pipe 11 close to the pipe, and then the backwash water is supplied from the supply pipe 11 and the supply pipes 12 and 11 near the end on the outflow side. Even if the length is 1 m or more, the cake layer adhering to the membrane surface in the hollow portion of the tubular membrane can be reliably peeled off. In the case of a dead end type membrane separation device in which backwash water flows out from the upper end of the hollow portion of the tubular membrane to the upper chamber of the cylindrical shell, the backwash water is supplied from the upper supply pipe to the permeation chamber. Then, the backwash water may be supplied to the permeation chamber from the upper and middle supply pipes, and finally, the backwash water may be supplied to the permeation chamber from the upper, middle, and lower supply pipes. Conversely, a cross-flow type membrane separation device in which the backwash water flows out from the lower end of the hollow portion of the tubular membrane to the lower chamber of the cylindrical shell supplies the backwash water from the lower supply pipe to the permeation chamber, Next, the backwash water may be supplied to the permeation chamber from the lower and middle supply pipes, and finally, the backwash water may be supplied to the permeation chamber from the lower, middle, and upper supply pipes. In each of the illustrated embodiments, three backwash water supply pipes are connected to the permeation chamber of the cylindrical shell vertically at substantially equal intervals, but the number of backwash water supply pipes to be connected is three. Is not limited to
The number may be two, four or more, and may be appropriately determined based on the vertical length of the permeation chamber, and thus the length of the tubular membrane. Although the example of the arrangement of the modules is shown in the vertical direction, the arrangement direction is not limited to the vertical direction, and the modules may be arranged horizontally or diagonally. As is clear from the above, according to the present invention, when the backwash water is allowed to permeate the hollow fiber membrane or the tubular membrane in the reverse direction to remove the cake layer adhering to the hollow part membrane surface. In addition, the peeled cake is prevented from adhering to the membrane surface again while flowing through the hollow portion toward the drain pipe, and the peeled cake can be reliably discharged to the drain pipe. Therefore, the cleaning effect of the backwash by the backwash water is outstanding. Further, even if the length of the tubular membrane is large, the backwash can be surely performed, so that the scale of the tubular membrane can be increased, and a membrane separation device using an internal pressure type tubular membrane having high membrane separation efficiency can be provided.

【図面の簡単な説明】 【図1】本発明によるデッドエンド型膜分離装置の一実
施例の系統図である。 【図2】本発明によるクロスフロー型膜分離装置の一実
施例の系統図である。 【図3】従来のデッドエンド型膜分離装置の系統図であ
る。 【符号の説明】 1 筒形シェル 2 管状膜 3 筒形シェルの上室 4 筒形シェルの下室 5 筒形シェルの透過室 6 原水の給水管 7 透過水の取出管 9 逆洗水の排水管 10 循環管 11 逆洗水の上段供給管 12 逆洗水の中段供給管 13 逆洗水の下段供給管
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of one embodiment of a dead end type membrane separation device according to the present invention. FIG. 2 is a system diagram of one embodiment of a cross-flow type membrane separation device according to the present invention. FIG. 3 is a system diagram of a conventional dead end type membrane separation device. [Description of Signs] 1 cylindrical shell 2 tubular membrane 3 upper chamber of cylindrical shell 4 lower chamber of cylindrical shell 5 permeation chamber of cylindrical shell 6 water supply pipe for raw water 7 permeate water discharge pipe 9 drainage of backwash water Pipe 10 Circulation pipe 11 Upper supply pipe for backwash water 12 Middle supply pipe for backwash water 13 Lower supply pipe for backwash water

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 61/00 - 71/82 C02F 1/44 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01D 61/00-71/82 C02F 1/44

Claims (1)

(57)【特許請求の範囲】 【請求項1】 筒形シェル内に取付けられた多数本の管
状膜からなる管状膜モジュールと、該管状膜モジュール
の管状膜の中空部内に原水を供給する給水管と、原水が
管状膜の中空部を流れる際に膜を透過して筒形シェル内
に流入した透過水を筒形シェルの外に排水する透過水の
取出管とを備えた内圧型管状膜モジュールによる膜分離
装置において、上記筒形シェルに上下方向に複数の逆洗
水の供給管を接続し、管状膜モジュールを逆洗する際に
逆洗水が管状膜の中空部から流出する流出側端部に近い
供給管から逆洗水を筒形シェル内に供給し、次いでこの
供給管と、順次流出側端部に近い供給管とから逆洗水を
供給するようにしたことを特徴とする内圧型管状膜モジ
ュールによる膜分離装置の逆洗方法。
(57) Claims 1. A tubular membrane module comprising a plurality of tubular membranes mounted in a cylindrical shell, and water supply for supplying raw water into a hollow portion of the tubular membrane of the tubular membrane module. An internal pressure type tubular membrane comprising a pipe and a permeate outlet pipe for discharging permeated water flowing through the membrane and flowing into the tubular shell when the raw water flows through the hollow portion of the tubular membrane to the outside of the tubular shell. In the membrane separation device using a module, a plurality of backwash water supply pipes are connected to the cylindrical shell in the up-down direction, and the backwash water flows out of the hollow portion of the tubular membrane when the tubular membrane module is backwashed. Backwash water is supplied from the supply pipe near the end into the cylindrical shell, and then backwash water is supplied from the supply pipe and the supply pipe near the outflow end in turn. A method for backwashing a membrane separation device using an internal pressure type tubular membrane module.
JP20609494A 1994-08-09 1994-08-09 Backwashing method for membrane separation device using internal pressure type tubular membrane module Expired - Fee Related JP3460322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20609494A JP3460322B2 (en) 1994-08-09 1994-08-09 Backwashing method for membrane separation device using internal pressure type tubular membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20609494A JP3460322B2 (en) 1994-08-09 1994-08-09 Backwashing method for membrane separation device using internal pressure type tubular membrane module

Publications (2)

Publication Number Publication Date
JPH0852329A JPH0852329A (en) 1996-02-27
JP3460322B2 true JP3460322B2 (en) 2003-10-27

Family

ID=16517711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20609494A Expired - Fee Related JP3460322B2 (en) 1994-08-09 1994-08-09 Backwashing method for membrane separation device using internal pressure type tubular membrane module

Country Status (1)

Country Link
JP (1) JP3460322B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2736814C (en) 2008-09-02 2017-02-28 Natrix Separations Inc. Chromatography membranes, devices containing them, and methods of use thereof
JP5251522B2 (en) * 2009-01-06 2013-07-31 栗田工業株式会社 Membrane separator
AU2012255721A1 (en) 2011-05-17 2014-01-09 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof

Also Published As

Publication number Publication date
JPH0852329A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
US7052610B2 (en) Immersed membrane filtration system and overflow process
EP1146955B1 (en) Overflow process and immersed membrane filtration system
EP1140330B1 (en) Water filtration using immersed membranes
US4980066A (en) Multiple membrane separation systems
WO2001000307A2 (en) Self cleaning filter
US5651889A (en) Sludge treatment membrane apparatus
JP2003266072A (en) Membrane filtration method
JPH06170364A (en) Filter device using permeation membrane
JPH06292820A (en) Membrane separation device
US6224766B1 (en) Membrane treatment method and membrane treatment apparatus
JP3460322B2 (en) Backwashing method for membrane separation device using internal pressure type tubular membrane module
JP3488535B2 (en) Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JP3557655B2 (en) Membrane separation device using internal pressure type tubular membrane module
JP3943748B2 (en) Cleaning method for membrane filtration equipment
KR101256704B1 (en) System and Method for Filtering
JP2585879Y2 (en) Membrane separation device
JP3919893B2 (en) Cleaning method
JP2000210540A (en) Membrane filter apparatus
JP3953673B2 (en) Membrane separator
JP2005046762A (en) Water treatment method and water treatment apparatus
JP3124174B2 (en) Water treatment equipment
JPH11137972A (en) Equipment for producing pure water for boiler makeup water, production of pure water for boiler makeup water and hollow-fiber membrane filter unit
JP2003251160A (en) Method and apparatus for water treatment
CN211328946U (en) Ultrafiltration device based on raw material liquid filtration
JP2514930B2 (en) Membrane separation device with backwash ejector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees