JP3459079B2 - Insulation composition and power cable - Google Patents

Insulation composition and power cable

Info

Publication number
JP3459079B2
JP3459079B2 JP15145392A JP15145392A JP3459079B2 JP 3459079 B2 JP3459079 B2 JP 3459079B2 JP 15145392 A JP15145392 A JP 15145392A JP 15145392 A JP15145392 A JP 15145392A JP 3459079 B2 JP3459079 B2 JP 3459079B2
Authority
JP
Japan
Prior art keywords
antioxidant
weight
parts
power cable
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15145392A
Other languages
Japanese (ja)
Other versions
JPH05325643A (en
Inventor
徹 中司
享 高橋
裕之 宮田
研二 松井
利夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
NOF Corp
Original Assignee
Fujikura Ltd
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, NOF Corp filed Critical Fujikura Ltd
Priority to JP15145392A priority Critical patent/JP3459079B2/en
Publication of JPH05325643A publication Critical patent/JPH05325643A/en
Application granted granted Critical
Publication of JP3459079B2 publication Critical patent/JP3459079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、精製された添加剤によ
り、誘電特性(tanδ)、特に高温、高電界下におい
ても優れた誘電特性を維持することができる絶縁組成
物、およびこれを絶縁体に用いた電力ケーブルに関する
ものである。
FIELD OF THE INVENTION The present invention relates to an insulating composition capable of maintaining dielectric properties (tan δ), particularly excellent dielectric properties even under high temperature and high electric field, by a purified additive, and an insulating composition for insulating the same. It relates to a power cable used for the body.

【0002】[0002]

【従来の技術】ポリオレフィン、例えばポリエチレンを
架橋させた架橋ポリエチレン(XLPE)は、現在、電
力ケーブルの絶縁体として広く汎用されている。このX
LPEのベース樹脂であるポリエチレンとしては、一般
に低密度ポリエチレン(LDPE)を用い、これに必要
な架橋剤や酸化防止剤を添加している。このようにして
得られたXLPEは、その絶縁特性が良好なことから、
近年、275〜500KVの超高圧電力ケーブルに適用
されてきている。
2. Description of the Related Art Polyolefin, for example, cross-linked polyethylene (XLPE) obtained by cross-linking polyethylene is widely used at present as an insulator for power cables. This X
Low density polyethylene (LDPE) is generally used as polyethylene, which is a base resin of LPE, and a necessary crosslinking agent and antioxidant are added thereto. The XLPE thus obtained has good insulating properties,
In recent years, it has been applied to an ultra-high voltage power cable of 275 to 500 KV.

【0003】[0003]

【発明が解決しようとする課題】ところが、このXLP
Eの場合、元来無極性であって、通常の状態下(常温、
低電界下)では優れた誘電特性(誘電正接=tanδ)
を有するものの、高温、高電界下においては、誘電特性
が低下することが明らかになってきた。この誘電特性の
低下は、絶縁体に対する電界ストレスが高くなる上記超
高圧電力ケーブルにおいては、所望の絶縁特性が得られ
ないなどの問題を呈することになる。
However, this XLP
In the case of E, it is originally non-polar, and under normal conditions (normal temperature,
Excellent dielectric characteristics (dielectric loss tangent = tan δ) under low electric field
However, it has been clarified that the dielectric characteristics are deteriorated under high temperature and high electric field. This deterioration of the dielectric properties poses a problem that the desired insulation properties cannot be obtained in the above-mentioned ultra-high voltage power cable in which the electric field stress on the insulator becomes high.

【0004】そこで、本発明者等は、常温、低電界下で
は良好なtanδを呈するのに、高温、高電界下でta
nδの増加現象が見られるのは、樹脂中の極性物質によ
る双極子成分に依るものではなく、高温、高電界下にお
いて電気伝導性の荷電キャリアが増大することに依るも
のと推論した。
Therefore, the present inventors have shown good tan δ at room temperature and low electric field, but ta at high temperature and high electric field.
It was inferred that the phenomenon of increasing nδ was not due to the dipole component due to the polar substance in the resin but due to the increase of electrically conductive charge carriers under high temperature and high electric field.

【0005】そして、種々の試験研究を行った結果、こ
の荷電キャリアを増大させる主要因として、XLPEの
ベース樹脂に添加される添加剤の架橋剤や酸化防止剤中
に含まれる、微量の電気伝導性不純物が関係しているこ
とを突き止めた。この電気伝導性不純物は、微量である
ため、通常の赤外線吸収法(IR)や高速液体クロマト
グラフィ法(HPLC)などの方法では検知できないレ
ベルのものであった。
As a result of various tests and studies, as a main factor for increasing the charge carriers, a small amount of electric conductivity contained in the crosslinking agent or the antioxidant added to the base resin of XLPE is contained. It has been found that sex impurities are involved. This electrically conductive impurity is in a level that cannot be detected by a method such as a usual infrared absorption method (IR) or high performance liquid chromatography method (HPLC) because it is a trace amount.

【0006】本発明は、このような観点に立ってなされ
たもので、精製処理により微量電気伝導性不純物の除去
された添加剤を用いることによって、高温、高電界下に
おいても優れた誘電特性を維持することができる絶縁組
成物およびこれを絶縁体に用いた電力ケーブルを提供せ
んとするものである。
The present invention has been made from such a viewpoint, and by using an additive from which a trace amount of electrically conductive impurities has been removed by a refining treatment, excellent dielectric characteristics can be obtained even at high temperatures and high electric fields. An insulating composition that can be maintained and a power cable using the insulating composition are provided.

【0007】[0007]

【課題を解決するための手段及びその作用】かかる課題
を解決するため、請求項1にかかる発明は、ポリオレフ
ィン100重量部に精製処理により微量電気伝導性不純
物の除去された架橋剤1〜5重量部と、同じく精製処理
により微量電気伝導性不純物の除去された酸化防止剤
0.05〜0.5重量部を添加して架橋させる組成物で
あって、前記架橋剤および酸化防止剤の精製度が、1×
10 16 Ω−cm以上の絶縁抵抗値を有する電気絶縁油1
00mlに対して、前記架橋剤を1gおよび前記酸化防
止剤を0.1g溶解した際の当該電気絶縁油の絶縁抵抗
値が1×10 14 Ω−cm以上であることを特徴とする絶
縁組成物である。請求項2にかかる発明は、請求項1記
載の絶縁組成物を絶縁体として用いたことを特徴とする
電力ケーブルである。
[Means and Solutions for Solving the Problems ]
In order to solve the above problem, the invention according to claim 1 provides a polyolefin
100 parts by weight of tin have been impregnated with a trace amount of electric conductivity due to the refining process.
1-5 parts by weight of the cross-linking agent removed from the product, and the same purification treatment
Antioxidant with trace amount of electrically conductive impurities removed by
A composition for adding 0.05 to 0.5 parts by weight to crosslink
Therefore, the degree of purification of the crosslinking agent and the antioxidant is 1 ×
Electrical insulating oil 1 having an insulation resistance value of 10 16 Ω-cm or more
1 g of the cross-linking agent and the antioxidant
Insulation resistance of the electrical insulating oil when 0.1g of the stopping agent was dissolved
The value is 1 × 10 14 Ω-cm or more, and
It is an edge composition. The invention according to claim 2 is claim 1
Characterized by using the above-mentioned insulating composition as an insulator
It is a power cable.

【0008】本発明で用いられるポリオレフィンとして
は、特に限定されないが、ポリエチレン、特に低密度ポ
リエチレン(LDPE)の使用が最適である。
The polyolefin used in the present invention is not particularly limited, but polyethylene, particularly low density polyethylene (LDPE) is most preferably used.

【0009】本発明で用いられる添加剤としては、架橋
剤や酸化防止剤が挙げられる。この架橋剤(P.O)と
しては、特に限定されないが、ジクミルパーオキサイド
(DCP)、α,α′−ビス(t−ブチルパーオキシ)
ジイソプロピルベンゼン、2,5−ジメチル−2,5ジ
(t−ブチルパーオキシ)ヘキサン−3、2,5−ジメ
チル−2,5ジ(t−ブチルパーオキシ)ヘキサン、t
−ブチルクミルパーオキサイドなどが使用できる。そし
て、その添加量は、ポリオレフィン100重量部に対し
て、1〜5重量部が好ましい。なぜなら、1重量部未満
では所望の架橋が得られず、また、5重量部を越えると
スコーチ(早期架橋)などが生じるようになるからであ
る。
Examples of the additive used in the present invention include a crosslinking agent and an antioxidant. The cross-linking agent (PO) is not particularly limited, but includes dicumyl peroxide (DCP), α, α′-bis (t-butylperoxy).
Diisopropylbenzene, 2,5-dimethyl-2,5 di (t-butylperoxy) hexane-3,2,5-dimethyl-2,5 di (t-butylperoxy) hexane, t
-Butyl cumyl peroxide and the like can be used. And the addition amount is preferably 1 to 5 parts by weight with respect to 100 parts by weight of the polyolefin. This is because if the amount is less than 1 part by weight, the desired crosslinking cannot be obtained, and if it exceeds 5 parts by weight, scorch (early crosslinking) or the like occurs.

【0010】また、上記酸化防止剤(A.O)として
は、特に限定されないが、4,4′−チオビス−(6−
第3ブチル−3−メチルヘェノール)、ジステアリル−
チオジプロピオネート、n−オクタジシル−3−(4′
−ヒドロキシ−3′,5′−ジ−t−ブチルフェニルプ
ロピオネートなどが使用できる。そして、その添加量
は、ポリオレフィン100重量部に対して、0.05〜
0.5重量部が好ましい。なぜなら、0.05重量部未
満では所望の酸化防止機能が得られず、また、0.5重
量部を越えても増量の割りには高い酸化防止機能が得ら
れず、かえって、コスト上昇を招くようになるからであ
る。なお、この酸化防止剤は、用途によっては添加を省
略することも可能である。
The antioxidant (AO) is not particularly limited, but 4,4'-thiobis- (6-
Tert-butyl-3-methylhenol), distearyl-
Thiodipropionate, n-octadecyl-3- (4 '
-Hydroxy-3 ', 5'-di-t-butylphenylpropionate and the like can be used. And the addition amount is 0.05 to 100 parts by weight of polyolefin.
0.5 parts by weight is preferred. This is because if it is less than 0.05 parts by weight, the desired antioxidant function cannot be obtained, and if it exceeds 0.5 parts by weight, a high antioxidant function cannot be obtained even if the amount is increased, which leads to an increase in cost. Because it will be. The antioxidant may be omitted depending on the application.

【0011】このようにして用いられる架橋剤および酸
化防止剤中の微量電気伝導性不純物を除去する精製処理
方法としては、以下の方法が挙げられる。これらを単独
で行う場合の他、これらの2以上の方法を組み合わせて
行ってもよい。 溶剤による溶解、再沈精製方法 この方法は、添加剤を高温溶剤に溶解させ、その後冷却
により析出、再沈させて、不純物を除去する方法であ
る。 溶剤洗浄による精製方法 この方法は、微粉化した添加剤を溶剤または脱イオン水
などと接触撹拌させて洗浄することにより不純物を除去
する方法である。 電気泳動法による精製方法 この方法は、溶融状態の添加剤中に電極を入れ、直流電
圧などを印加して不純物を電極側に集めて除去する方法
である。 溶融、再結晶化による精製方法 この方法は、添加剤を溶融ささせた後、再結晶化させて
不純物を除去する方法である。
As the purification treatment method for removing a trace amount of electrically conductive impurities in the cross-linking agent and the antioxidant thus used, the following method can be mentioned. In addition to the case where these are performed alone, these two or more methods may be performed in combination. Solvent Dissolution and Reprecipitation Purification Method This method is a method in which an additive is dissolved in a high temperature solvent and then cooled to cause precipitation and reprecipitation to remove impurities. Purification Method by Solvent Washing This method is a method of removing impurities by washing the finely divided additive with a solvent, deionized water or the like while stirring the mixture. Purification Method by Electrophoresis This method is a method in which an electrode is put in a melted additive and a DC voltage or the like is applied to collect and remove impurities on the electrode side. Purification method by melting and recrystallization This method is a method of melting impurities and then recrystallizing them to remove impurities.

【0012】上記各精製方法において、最も有効な方法
は、の溶解、再沈精製方法であって、その際用いる溶
剤としては、例えばヘキサン、ヘプタン、トルエン、キ
シレン、ベンゼンなどの無極性炭化水素系溶剤や、メタ
ノール、イソプロピルアルコール、アセトンなどの極性
炭化水素系溶剤などが挙げられる。
Of the above-mentioned purification methods, the most effective method is the dissolution and reprecipitation purification method of, and the solvent used at that time is, for example, a non-polar hydrocarbon-based solvent such as hexane, heptane, toluene, xylene and benzene. Examples thereof include solvents and polar hydrocarbon solvents such as methanol, isopropyl alcohol, and acetone.

【0013】このようにして精製された添加剤(架橋
剤、酸化防止剤)の具体的な精製度を表す目安として
は、次の方法が挙げられる。JIS−C2101(電気
絶縁油試験法に準ずる)に従って測定したとき、1×1
16Ω−cm以上の絶縁抵抗値を有する電気絶縁油10
0mlに対して、上記架橋剤を1gおよび前記酸化防止
剤を0.1g溶解した際の当該電気絶縁油の絶縁抵抗値
が1×1014Ω−cm以上になることである。つまり、
この1×1014Ω−cm未満の絶縁抵抗値にあっては、
添加剤中に含まれる、微量電気伝導性不純物の除去が不
完全であって、のて、荷電キャリアが相当残存すること
となるからである。ここで、架橋剤の溶解量1gに対し
て酸化防止剤の溶解量を0.1gとしたのは、通常、酸
化防止剤は架橋剤に比較して、その添加量1/10程度
であるからである。
The following method can be used as a measure of the specific degree of purification of the additives (crosslinking agent, antioxidant) thus purified. 1 × 1 when measured according to JIS-C2101 (according to electrical insulation oil test method)
Electrical insulating oil 10 having an insulation resistance value of 0 16 Ω-cm or more
That is, when 0 g of the crosslinking agent and 0.1 g of the antioxidant are dissolved in 0 ml, the insulation resistance value of the electric insulating oil is 1 × 10 14 Ω-cm or more. That is,
At this insulation resistance value of less than 1 × 10 14 Ω-cm,
This is because the removal of a trace amount of electrically conductive impurities contained in the additive is incomplete, so that the charge carriers considerably remain. Here, the amount of the antioxidant to be dissolved is 0.1 g per 1 g of the crosslinking agent, because the amount of the antioxidant added is usually about 1/10 of that of the crosslinking agent. Is.

【0014】なお、本発明の絶縁組成物では、上記架橋
剤や酸化防止剤の添加剤の他に、必要により、その他の
添加剤を適宜添加することが可能であって、その際に
は、これらの添加剤にあっても、上記と同様に精製して
用いるものとする。
In the insulating composition of the present invention, in addition to the above-mentioned crosslinking agent and antioxidant additives, other additives can be appropriately added, if necessary. In that case, Even these additives are purified and used in the same manner as above.

【0015】[0015]

【実施例】90℃、30KV/mmの高温、高電界下で
の誘電正接(tanδ)=0.01%の低密度ポリエチ
レン(MI=1、密度=0.92g/cm3 )100重
量部に対して、架橋剤(DCP)2重量部、酸化防止剤
(4,4′−チオビス−(6−第3ブチル−3−メチル
フェノール))0.2重量部を添加して絶縁組成物のコ
ンパウンドを製造した。
EXAMPLE 100 parts by weight of low density polyethylene (MI = 1, density = 0.92 g / cm 3 ) having a dielectric loss tangent (tan δ) = 0.01% under high electric field of 90 ° C. and 30 KV / mm On the other hand, 2 parts by weight of a cross-linking agent (DCP) and 0.2 parts by weight of an antioxidant (4,4′-thiobis- (6-tert-butyl-3-methylphenol)) were added to form a compound of an insulating composition. Was manufactured.

【0016】ここで、用いた架橋剤(DCP)および酸
化防止剤(4,4′−チオビス−(6−第3ブチル−3
−メチルフェノール))は、何れも通常の市販品である
ため、その使用にあたっては、表1に示したように、無
精製のもの、および独自の精製処理を施して精製レベル
(レベル1〜4)を異にした各精製品を用いた。つま
り、架橋剤の場合には、DCPを50℃のn−ヘキサン
に溶解させ、十分撹拌を行った後、0℃に冷却させて沈
下再結晶させたものを、精製架橋剤として回収した。一
方、酸化防止剤の場合には、4,4′−チオビス−(6
−第3ブチル−3−メチルフェノール)を50℃のメタ
ノールにに溶解させ、十分撹拌を行った後、0℃に冷却
させて析出沈下させたものを、精製酸化防止剤として回
収した。もちろん、これらの回収した精製架橋剤および
精製酸化防止剤は、減圧乾燥により溶剤を完全に除去し
た。上記精製レベル(レベル1〜4)は、溶剤や添加剤
の量、および精製回数などの条件を変えることにより得
られ、レベル数の高いものほど精製度を高く設定してあ
る。
The crosslinking agent (DCP) and antioxidant (4,4'-thiobis- (6-tert-butyl-3) used here are used.
-Methylphenol) is an ordinary commercial product, and therefore, when used, as shown in Table 1, unpurified ones and their own purification treatments (levels 1 to 4). ) Different purified products were used. That is, in the case of the cross-linking agent, DCP was dissolved in n-hexane at 50 ° C., sufficiently stirred, cooled to 0 ° C., and then recrystallized by precipitation, which was recovered as a purified cross-linking agent. On the other hand, in the case of an antioxidant, 4,4'-thiobis- (6
(Tertiary butyl-3-methylphenol) was dissolved in methanol at 50 ° C., sufficiently stirred, cooled to 0 ° C., and precipitated and recovered to be recovered as a purified antioxidant. Of course, the solvent of the recovered purified crosslinking agent and purified antioxidant was completely removed by drying under reduced pressure. The above-mentioned purification levels (levels 1 to 4) can be obtained by changing the conditions such as the amount of the solvent and the additive and the number of times of purification, and the higher the number of levels, the higher the degree of purification is set.

【0017】このような精製レベル(レベル1〜4)の
異なる各添加剤、および無精製添加剤について、JIS
−C2101に従って測定したとき、1×1016Ω−c
m以上の絶縁抵抗値を有するアルキルベンゼン油(電気
絶縁油)100mlに対して、架橋剤を1g、酸化防止
剤を0.1g溶解した際の当該油の絶縁抵抗値を測定し
たところ、表1の如くであった。
Regarding each additive having different purification levels (levels 1 to 4) and non-purified additive, JIS
When measured according to -C2101, 1 x 10 16 Ω-c
When 100 g of alkylbenzene oil (electrical insulating oil) having an insulation resistance value of m or more was dissolved in 1 g of the crosslinking agent and 0.1 g of the antioxidant, the insulation resistance value of the oil was measured. It was like that.

【0018】また、この添加剤の添加されたコンパウン
ドを160℃×60分の条件でフイルム状にプレス成形
した架橋ポリエチレン(XLPE)について、90℃、
30KV/mmの高温、高電界下での誘電正接(tan
δ)を測定したところ、表1の如くであった。
The cross-linked polyethylene (XLPE) obtained by press-molding the compound to which this additive was added into a film under the conditions of 160 ° C. × 60 minutes was tested at 90 ° C.
Dielectric loss tangent (tan) under high temperature and high electric field of 30 KV / mm
When δ) was measured, it was as shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】この表1から、本発明に係る精製度の高い
添加剤を用いたXLPE(実施例1〜3)においては、
添加剤の溶解されたアルキルベンゼン油の絶縁抵抗値が
高く、かつ、誘電正接は小さいことが判る。これに対し
て、無精製の添加剤を用いたXLPE(比較例1)およ
び精製度の低い添加剤を用いたXLPE(比較例2)に
おいては、上記アルキルベンゼン油の絶縁抵抗値および
誘電正接が大きいことが判る。
From Table 1, in the XLPE (Examples 1 to 3) using the highly purified additive according to the present invention,
It is understood that the insulation resistance value of the alkylbenzene oil in which the additive is dissolved is high and the dielectric loss tangent is small. On the other hand, in XLPE using an unpurified additive (Comparative Example 1) and XLPE using an additive with a low degree of purification (Comparative Example 2), the insulation resistance value and dielectric loss tangent of the alkylbenzene oil are large. I understand.

【0021】次に、上記表1の実施例2および比較例1
に示したレベルの絶縁組成物のコンパウンドを絶縁体と
した電力ケーブル(実施例4、比較例3)を製造したと
ころ、表2の結果を得た。なお、本ケーブルの場合、導
体断面積は400mm2 、絶縁体厚は9mm、当該絶縁
体は内外半導電層と同時押出により形成した。また、本
ケーブルの誘電正接の測定は、90℃、30KV/mm
の高温、高電界下で行った。
Next, Example 2 and Comparative Example 1 in Table 1 above
When a power cable (Example 4 and Comparative Example 3) using the compound of the insulating composition having the level shown in (3) as an insulator was manufactured, the results shown in Table 2 were obtained. In the case of this cable, the conductor cross-sectional area was 400 mm 2 , the insulator thickness was 9 mm, and the insulator was formed by coextrusion with the inner and outer semiconductive layers. Moreover, the dielectric loss tangent of this cable is measured at 90 ° C. and 30 KV / mm.
Was performed under high temperature and high electric field.

【0022】[0022]

【表2】 [Table 2]

【0023】この表2から、本発明に係る電力ケーブル
(実施例4)においては、優れた誘電正接が得られるこ
とが判る。これに対して、無精製の添加剤を用いた電力
ケーブル(比較例3)においては、その誘電正接が劣る
ことが判る。
It can be seen from Table 2 that the power cable according to the present invention (Example 4) can obtain an excellent dielectric loss tangent. On the other hand, it is found that the power cable using the unpurified additive (Comparative Example 3) has a poor dielectric loss tangent.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
によれば、精製された添加剤(架橋剤、酸化防止剤)を
用いてあるため、誘電特性(tanδ)、特に高温、高
電界下においても優れた誘電特性を維持することができ
る絶縁組成物、およびこれを絶縁体に用いた優れた電力
ケーブル、特に超高圧電力ケーブルを提供することがで
きる。
As is apparent from the above description, according to the present invention, since refined additives (crosslinking agent, antioxidant) are used, the dielectric properties (tan δ), especially high temperature and high electric field are high. It is possible to provide an insulating composition capable of maintaining excellent dielectric properties even under the conditions, and an excellent power cable using the insulating composition, particularly an ultrahigh voltage power cable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 享 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 宮田 裕之 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 松井 研二 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 丹羽 利夫 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭60−28108(JP,A) 特開 平1−225003(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/44 C08L 23/00 H01B 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyo Takahashi 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Cable Co., Ltd. (72) Hiroyuki Miyata 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Electric Cable (72) Inventor Kenji Matsui 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Cable Co., Ltd. (72) Inventor Toshio Niwa 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Cable Co., Ltd. ( 56) References JP-A-60-28108 (JP, A) JP-A-1-225003 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01B 3/44 C08L 23/00 H01B 9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリオレフィン100重量部に、精製処理
により微量電気伝導性不純物の除去された架橋剤1〜5
重量部と、同じく精製処理により微量電気伝導性不純物
の除去された酸化防止剤0.05〜0.5重量部を添加
して架橋させる組成物であって、 前記架橋剤および酸化防止剤の精製度が、1×10 16 Ω
−cm以上の絶縁抵抗値を有する電気絶縁油100ml
に対して、前記架橋剤を1gおよび前記酸化防止剤を
0.1g溶解した際の当該電気絶縁油の絶縁抵抗値が1
×10 14 Ω−cm以上であることを特徴とする絶縁組成
1. Purification treatment of 100 parts by weight of polyolefin
Cross-linking agents 1 to 5 from which trace amount of electrically conductive impurities are removed by
Parts by weight and trace amounts of electrically conductive impurities due to the same refining process
0.05 to 0.5 parts by weight of the removed antioxidant is added.
And a crosslinking degree of the antioxidant is 1 × 10 16 Ω.
-100 ml electrical insulating oil with insulation resistance of -cm or more
To 1 g of the cross-linking agent and the antioxidant
Insulation resistance value of the electric insulating oil when dissolved 0.1g is 1
× 10 14 Ω-cm or more insulating composition
Thing .
【請求項2】請求項1記載の絶縁組成物を絶縁体として
用いたことを特徴とする電力ケーブル。
2. The insulating composition according to claim 1 as an insulator
A power cable characterized by being used.
JP15145392A 1992-05-19 1992-05-19 Insulation composition and power cable Expired - Lifetime JP3459079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15145392A JP3459079B2 (en) 1992-05-19 1992-05-19 Insulation composition and power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15145392A JP3459079B2 (en) 1992-05-19 1992-05-19 Insulation composition and power cable

Publications (2)

Publication Number Publication Date
JPH05325643A JPH05325643A (en) 1993-12-10
JP3459079B2 true JP3459079B2 (en) 2003-10-20

Family

ID=15518913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15145392A Expired - Lifetime JP3459079B2 (en) 1992-05-19 1992-05-19 Insulation composition and power cable

Country Status (1)

Country Link
JP (1) JP3459079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774204B2 (en) 2016-11-10 2020-09-15 Lg Chem, Ltd. Crosslinked polyethylene composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2116380A1 (en) * 1993-02-26 1994-08-27 Nof Corporation Polyethylene composition for use in insulations and joints of extra-high voltage power cables, and an extra-high voltage power cable and joint therefor employing this polyethylenecomposition
JP3682947B2 (en) * 1998-08-12 2005-08-17 古河電気工業株式会社 Electrical insulating resin composition and electric wire / cable using the same
KR100967299B1 (en) * 2008-03-28 2010-07-01 엘에스전선 주식회사 Composition for production high heat resistance insulating materials and insulated cable using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774204B2 (en) 2016-11-10 2020-09-15 Lg Chem, Ltd. Crosslinked polyethylene composition

Also Published As

Publication number Publication date
JPH05325643A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
WO2022111152A1 (en) Semi-conductive shielding material for high-voltage cable, and preparation method therefor
JPS5986110A (en) Crosslinked polyethylene insulated cable
JP3459079B2 (en) Insulation composition and power cable
KR100581459B1 (en) Electric cable and a method and composition for the production thereof
KR100295105B1 (en) Polyethylene composition used for insulators and connections of ultra high voltage lines and super high voltage lines and connections using this polyethylene composition
CN109438807B (en) Insulating material and preparation method and application thereof
JP2001325834A (en) Dc power cable
JP3773569B2 (en) DC power cable
JP3858511B2 (en) Electric wire / cable
JP2001266650A (en) Electric insulating composition and electric cable
JPS5998403A (en) Semiconductive composition
JPS63150811A (en) Power cable
JPS622402B2 (en)
JPS627936B2 (en)
JPS5998149A (en) Semiconducting resin composition
JP3407828B2 (en) Power cable insulation material and power cable
JPH0244081B2 (en)
JPH088017B2 (en) Power cable
JPH11224543A (en) Dc power cable
JPS6280908A (en) Vulcanized ep rubber insulated power cable
JPH0246604A (en) Power cable
JPH01149843A (en) Water tre-resistant electric insulation composition
JPH0367288B2 (en)
JPH07130227A (en) Dc power cable
JPS63289715A (en) Composition for wire-cable insulator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9