JP3458450B2 - Sputtering method - Google Patents

Sputtering method

Info

Publication number
JP3458450B2
JP3458450B2 JP08850594A JP8850594A JP3458450B2 JP 3458450 B2 JP3458450 B2 JP 3458450B2 JP 08850594 A JP08850594 A JP 08850594A JP 8850594 A JP8850594 A JP 8850594A JP 3458450 B2 JP3458450 B2 JP 3458450B2
Authority
JP
Japan
Prior art keywords
substrate
revolutions
sputtering
support plate
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08850594A
Other languages
Japanese (ja)
Other versions
JPH07292471A (en
Inventor
裕之 渡辺
誠喜 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP08850594A priority Critical patent/JP3458450B2/en
Publication of JPH07292471A publication Critical patent/JPH07292471A/en
Application granted granted Critical
Publication of JP3458450B2 publication Critical patent/JP3458450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、薄膜形成の手段として
利用されるスパッタリング方法に関する。 【0002】 【従来の技術】スパッタリングは薄膜形成の代表的手段
として用いられている。そのうち複数の基板を同時処理
する手段として、真空槽内で複数の基板を支持盤上に円
周状に配置して支持盤を回転させながらスパッタリング
を行う回転式スパッタリングが多く用いられている。 【0003】この場合、支持盤の円周方向に対しては均
一な膜厚が得られるが、支持盤の半径方向に対してはス
パッタリング・ターゲットと基板との位置関係に起因す
る膜厚分布が発生する。そこで基板上の膜厚を均一にす
る手段として、支持盤を回転(公転)させると同時にそ
れぞれの基板を回転(自転)させるという手段があり、
これは自公転式スパッタリングと呼ばれている。 【0004】図1にこの方式に用いる支持盤の概略正面
図を示した。基板(図示せず)は基板ホルダ2の上に固
定され、基板ホルダ2は支持盤1上に円周方向に複数枚
が配置されている。支持盤1は支軸5を中心に回転可能
に保持され、支持盤が回転(公転)すると同時に基板ホ
ルダ2も回転(自転)する。基板ホルダ2を回転させる
手段としては、支持盤の回転駆動を利用して支持板の裏
に設けたギア3により基板ホルダ2の裏に設けたギア4
を回転させる方法、またはマグネットを利用して回転さ
せる方法などが一般的である。 【0005】支持盤1はその中心軸5を介して回転導入
部(図示せず)と連結している。基板ホルダ2はその中
心軸6を介して遊星ギア4と連結している。恒星ギア3
は支持盤支持部材に固定されており回転しない。いま、
外部のモーターにより回転導入部を介して支持盤が軸5
を中心に回転された場合、基板ホルダ2は支持盤1とと
もに公転動作をするが、その際に遊星ギア4は固定され
た恒星ギア3の周囲を転がるので、遊星ギア4および基
板ホルダ2は自転動作を行うこととなる。 【0006】遊星ギア4と恒星ギア3のギア比を変える
ことにより、自転と公転の比率を変えることができる。
スパッタ室(図示せず)内には基板(基板ホルダ2)と
対向させて1個あるいは複数個のターゲット7が設置さ
れており、基板ホルダ2および支持盤を回転させながら
ターゲット7をスパッタすることにより、基板上に薄膜
が形成される。 【0007】 【発明が解決しようとする課題】上記の構造のスパッタ
リング装置を用いたスパッタリング方法で、基板外周上
の任意の1点に注目してその軌跡を観察すると、非常に
複雑な形を描くことがわかる。図2(1)は自転と公転
との比率(以下、自公転比)が3:1の場合の、基板外
周上の任意の1点の軌跡を示したものであり、図2
(2)は同じ基板の同一円周上の別の1点の軌跡を示し
たものである。いずれの点も支持盤が1回転したとき同
じ位置に戻る。 【0008】今、ターゲット7が図2に示す位置にある
とすれば、図2(1)の点は常にターゲット上を速く通
過し図2(2)の点は常にターゲット上をゆっくり通過
することになる。これにより図2(1)の点は膜厚が相
対的に薄くなり図2(2)の点は膜厚が相対的に厚くな
る。このようにして基板内で周方向の膜厚分布が発生す
る。 【0009】 【課題を解決するための手段】本発明はかかる問題点を
鑑みてなされたものであり、基板上の周方向の膜厚均一
性に優れた自公転式スパッタリング方法を提供すること
を目的とする。すなわち、本発明の要旨は、複数の基板
を自公転させながら基板の公転路上の一部に対向して設
けられたターゲットを用いて基板の表面にスパッタ膜を
成膜する自公転式スパッタリング方法であって、公転回
数をm回とし、m回公転する間の自転回数をn回とした
場合、公転回数mを20以上の数とし、自転回数nは公
転回数mより大きい数であって、mとnの最小公倍数が
m×nに等しくなるような数とし、成膜に当っては公転
回数を0.95×m〜1.05×mの間で行なうことを
特徴とするスパッタリング方法に存する。 【0010】以下、本発明に方法につき図面を用いて詳
細に説明する。図1に示す装置において、自公転比を
3:1に設定した場合、基板外周部の任意の1点が支持
盤1の1回転で同じ位置に戻ってくるのは図2(1)、
(2)に示す通りである。この場合、支持盤1を何回回
転させても上記の1点は常に同じ軌跡を描くことにな
り、基板上の位置によってターゲット7を通過する速度
が異なり、結果として基板内で膜厚分布が発生する。 【0011】ここで問題なのは、1回の成膜操作では通
常支持盤1の回転(公転)が数十回に及ぶにもかかわら
ず、1点の軌跡が支持盤1の1回転で同じ位置に戻るこ
とである。この場合、支持盤1を何回回転させても実質
的に1回転させて得られる膜厚分布と同じ膜厚分布とな
り、膜厚の均一な自公転スパッタリングはなされ得な
い。 【0012】膜厚分布を均一にするには、1点の軌跡が
元の位置に戻るのに必要な支持盤1の回転数を、1回の
成膜操作での支持盤1の回転数付近に設定してやればよ
い。今、支持盤1の回転数が60rpmで1回の成膜時
間が32秒であるとすれば、1回の成膜中に支持盤1は
32回転することになる。ここで自公転比を63:32
に設定してやれば、ある点の軌跡は、1回の成膜終了時
において初めて元の位置に戻ることになる。 【0013】なぜならば、63:32という比率は、こ
れ以上小さい整数で表されない比率、つまり63と32
の最小公倍数が63×32に等しいので、63回の自転
(32回の公転)終了時に元の位置に戻るからである。
図3(1)は自公転比が63:32の場合の、基板外周
上の任意の1点の軌跡を示したものであり、図3(2)
は同じ基板の同一円周上の別の1点の軌跡を示したもの
である。 【0014】いずれの点もターゲット上をまんべんなく
通過し、両者の差がほとんどないことがわかる。1回の
成膜での支持盤1の回転数は、正確に32回転とする必
要はなく、±5%程度の誤差があっても実質上、膜厚分
布が悪化することはない。以上より、自公転式スパッタ
リング装置を用いてスパッタリングを行なうに当り、支
持盤1がm回(整数)回転(公転)するあいだに基板が
n回(整数)回転(自転)し、mとnの最小公倍数がm
×nに等しくなる場合、1回の成膜操作での円盤の回転
数r(実数)が、 【数1】0.95×m ≦ r ≦ 1.05×m を満足するようにm,n,rを設定することにより、基
板上の周方向の膜厚均一性に優れたスパッタリング装置
を提供できることがわかる。支持盤1の回転は膜形成の
上から通常は20回転以上行なわれ、基板(基板ホルダ
2)の回転(自転)は膜形成を良好とするため、支持盤
の回転数以上に設定される。 【0015】 【実施例】以下に本発明を実施例を用いて説明するが、
本発明はその要旨を越えない限り、以下の実施例に限定
されるものではない。 実施例1、比較例1 自公転式スパッタリング装置として、光磁気ディスクの
成膜に用いるインライン・スパッタリング装置を使用し
た。基板には130mmφの光ディスク用ポリカーボネ
イト基板を用いた。 【0016】ターゲットとしてFeCoを用い、真空室
中にアルゴンガスを3×10-3Torrまで導入した。
支持盤は、自公転比が63:32のものを使用した。ま
ず実施例1として、支持盤を毎分40回転の速度で回転
させ、1.5kwの電力で48秒間スパッタを行った。
この場合、63と32の最小公倍数は63×32であ
り、かつ1回のスパッタ操作の円盤の回転数は、 【数2】48×(40÷60)=32回転 えあるから、1回のスパッタ操作で基板上の任意の1点
は同じ位置に戻ることになる。 【0017】次に比較のため比較例1として、同じ回転
速度で30秒間スパッタを行った。この場合、円盤の回
転数は、 【数3】30×(40÷60)=20回転 であり、基板上の1点が同じ位置に戻る回転数の5/8
しか回転しないことになる。 【0018】図4(1)は自公転比が63:32で円盤
を20回転させた場合の、基板外周上の任意の1点の軌
跡を示したものであり、図4(2)は同じ基板の同一円
周上の別の1点の軌跡を示したものである。両者でター
ゲット上を通過する位置に大きな差があることがわか
る。成膜されたそれぞれの基板について、外周60mm
における周方向の膜厚分布を測定した。図5に測定結果
を示した。実施例1においては、周方向で膜厚分布はほ
とんど認められないが、比較例1においては、周方向の
周期的な膜厚分布が認められる。 【0019】 【発明の効果】本発明の方法により、基板上の周方向の
膜厚均一性に優れた、自公転式スパッタリング装置を用
いたスパッタ膜が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering method used as a means for forming a thin film. [0002] Sputtering is used as a typical means for forming a thin film. Of these, rotary sputtering, in which a plurality of substrates are circumferentially arranged on a support board in a vacuum chamber and sputtering is performed while rotating the support board, is often used as means for simultaneously processing a plurality of substrates. In this case, a uniform film thickness can be obtained in the circumferential direction of the support board, but the film thickness distribution due to the positional relationship between the sputtering target and the substrate in the radial direction of the support board. appear. Therefore, as means for making the film thickness on the substrate uniform, there is a means for rotating (revolving) the support plate and simultaneously rotating (rotating) each substrate.
This is called self-revolving sputtering. FIG. 1 is a schematic front view of a support board used in this method. A substrate (not shown) is fixed on a substrate holder 2, and a plurality of substrate holders 2 are arranged on a support board 1 in a circumferential direction. The support board 1 is held rotatably about a support shaft 5, and the substrate holder 2 also rotates (rotates) at the same time as the support board rotates (revolves). As means for rotating the substrate holder 2, a gear 4 provided on the back of the substrate holder 2 by a gear 3 provided on the back of the support plate using the rotation drive of the support plate.
Is generally used, or a method of rotating using a magnet is used. [0005] The support plate 1 is connected to a rotation introducing portion (not shown) via a center shaft 5 thereof. The substrate holder 2 is connected to the planetary gear 4 via its central shaft 6. Stellar gear 3
Is fixed to the support plate support member and does not rotate. Now
The support plate is driven by an external motor via the rotation introduction section.
When the substrate holder 2 is rotated about the center, the substrate holder 2 revolves with the support plate 1, but at this time, the planetary gear 4 rolls around the fixed star gear 3, so that the planetary gear 4 and the substrate holder 2 Operation will be performed. By changing the gear ratio between the planetary gear 4 and the stellar gear 3, the ratio between the rotation and the revolution can be changed.
One or a plurality of targets 7 are installed in a sputtering chamber (not shown) so as to face the substrate (substrate holder 2), and the target 7 is sputtered while rotating the substrate holder 2 and the support plate. As a result, a thin film is formed on the substrate. [0007] In a sputtering method using a sputtering apparatus having the above-described structure, when a trajectory is observed by focusing on an arbitrary point on the outer periphery of the substrate, a very complicated shape is drawn. You can see that. FIG. 2A shows the locus of an arbitrary point on the outer periphery of the substrate when the ratio between the rotation and the revolution (hereinafter, the revolution ratio) is 3: 1.
(2) shows the locus of another point on the same circumference of the same substrate. Each point returns to the same position when the support board makes one rotation. Assuming now that the target 7 is at the position shown in FIG. 2, the point of FIG. 2 (1) always passes over the target at a high speed, and the point of FIG. 2 (2) always passes over the target at a slow speed. become. As a result, the point in FIG. 2A has a relatively small thickness, and the point in FIG. 2B has a relatively large thickness. In this way, a circumferential film thickness distribution occurs in the substrate. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a spin-revolution type sputtering method excellent in uniformity of a film thickness in a circumferential direction on a substrate. Aim. That is, the gist of the present invention is a self-revolving sputtering method in which a sputtered film is formed on the surface of a substrate by using a target provided to face a part of the revolving path of the substrate while revolving the plurality of substrates. When the number of revolutions is m and the number of revolutions during the m revolutions is n, the number of revolutions m is 20 or more, and the number of revolutions n is a number greater than the number of revolutions m, and m And the least common multiple of n is equal to m × n, and the number of revolutions is set between 0.95 × m and 1.05 × m in film formation. . Hereinafter, the method of the present invention will be described in detail with reference to the drawings. In the apparatus shown in FIG. 1, when the revolution ratio is set to 3: 1, one arbitrary point on the outer peripheral portion of the substrate returns to the same position by one rotation of the support plate 1 as shown in FIG.
This is as shown in (2). In this case, no matter how many times the support plate 1 is rotated, the one point described above always draws the same trajectory, and the speed at which the target 7 passes through the target 7 differs depending on the position on the substrate. appear. The problem here is that, although the rotation (revolution) of the support board 1 usually takes several tens of times in one film forming operation, the locus of one point is at the same position by one rotation of the support board 1. It is to return. In this case, no matter how many times the support plate 1 is rotated, the film thickness distribution becomes substantially the same as the film thickness distribution obtained by rotating the support plate 1 one time, and it is impossible to perform uniform revolving sputtering with a uniform film thickness. In order to make the film thickness distribution uniform, the number of rotations of the support plate 1 necessary for returning the locus of one point to the original position should be set at around the number of rotations of the support plate 1 in one film forming operation. Set it to. Now, assuming that the rotation speed of the support board 1 is 60 rpm and one film formation time is 32 seconds, the support board 1 rotates 32 times during one film formation. Here, the revolution ratio is 63:32.
Is set, the locus of a certain point returns to the original position for the first time at the end of one film formation. This is because the ratio 63:32 is a ratio that cannot be represented by a smaller integer, ie, 63 and 32.
Is equal to 63 × 32, and thus returns to the original position at the end of 63 rotations (32 revolutions).
FIG. 3A shows the trajectory of an arbitrary point on the outer periphery of the substrate when the revolution ratio is 63:32.
Indicates the locus of another point on the same circumference of the same substrate. It can be seen that all points pass over the target evenly and there is almost no difference between them. The number of rotations of the support plate 1 in one film formation does not need to be exactly 32 rotations, and even if there is an error of about ± 5%, the film thickness distribution does not substantially deteriorate. As described above, in performing sputtering using the rotation-revolution type sputtering apparatus, the substrate is rotated n times (integer) (rotation) while the support plate 1 is rotated m times (integer) (revolution), and the number of rotations of m and n is increased. Least common multiple is m
When the number of rotations becomes equal to × n, m and n are adjusted so that the rotation speed r (real number) of the disk in one film forming operation satisfies the following expression: 0.95 × m ≦ r ≦ 1.05 × m , R, it is possible to provide a sputtering apparatus having excellent uniformity of the film thickness in the circumferential direction on the substrate. The rotation of the support plate 1 is normally performed 20 times or more from the top of the film formation, and the rotation (rotation) of the substrate (substrate holder 2) is set to be equal to or higher than the rotation speed of the support plate in order to improve the film formation. The present invention will be described below with reference to examples.
The present invention is not limited to the following examples unless it exceeds the gist. Example 1 and Comparative Example 1 As a revolving sputtering apparatus, an in-line sputtering apparatus used for forming a magneto-optical disk was used. A 130 mmφ polycarbonate substrate for optical disks was used as the substrate. Using FeCo as a target, argon gas was introduced into the vacuum chamber up to 3 × 10 −3 Torr.
The support plate used had a revolution ratio of 63:32. First, as Example 1, the support board was rotated at a speed of 40 revolutions per minute, and sputtering was performed for 48 seconds with 1.5 kW of power.
In this case, the least common multiple of 63 and 32 is 63 × 32, and the number of rotations of the disk in one sputtering operation is as follows: 48 × (40 ÷ 60) = 32 Any one point on the substrate returns to the same position by the sputtering operation. Next, for comparison, as Comparative Example 1, sputtering was performed at the same rotation speed for 30 seconds. In this case, the number of rotations of the disk is: 30 × (40 ÷ 60) = 20 times, which is 5/8 of the number of rotations at which one point on the substrate returns to the same position
It will only rotate. FIG. 4A shows the trajectory of an arbitrary point on the outer periphery of the substrate when the disk is rotated 20 times at a rotation / revolution ratio of 63:32, and FIG. FIG. 7 shows a locus of another point on the same circumference of the substrate. It can be seen that there is a large difference between the positions passing over the target. For each of the formed substrates, the outer circumference is 60 mm.
The film thickness distribution in the circumferential direction at was measured. FIG. 5 shows the measurement results. In Example 1, a film thickness distribution in the circumferential direction was hardly observed, but in Comparative Example 1, a periodic film thickness distribution in the circumferential direction was observed. According to the method of the present invention, it is possible to obtain a sputtered film having excellent uniformity of the film thickness in the circumferential direction on the substrate by using a self-revolution type sputtering apparatus.

【図面の簡単な説明】 【図1】本発明の方法に用いる装置の概略正面図を示
す。 【図2】自公転させた場合の、基板外周の軌跡を示す。 【図3】自公転させた場合の、基板外周の軌跡を示す。 【図4】自公転させた場合の、基板外周の軌跡を示す。 【図5】実施例1、比較例1における膜厚分布を示すグ
ラフ。 【符号の説明】 1 支持盤 2 基板ホルダ 3 恒星ギア 4 遊星ギア 5 中心軸 6 中心軸 7 ターゲット
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a schematic front view of an apparatus used in the method of the present invention. FIG. 2 shows the trajectory of the outer periphery of the substrate when it is revolved on its own axis. FIG. 3 shows the trajectory of the outer periphery of the substrate when it is revolved around its own axis. FIG. 4 shows the trajectory of the outer periphery of the substrate when it is revolved around its own axis. FIG. 5 is a graph showing a film thickness distribution in Example 1 and Comparative Example 1. [Description of Signs] 1 support board 2 substrate holder 3 star gear 4 planetary gear 5 center shaft 6 center shaft 7 target

フロントページの続き (56)参考文献 特開 昭59−96262(JP,A) 特開 平3−266239(JP,A) 特開 平6−145978(JP,A) 特公 昭59−2743(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C23C 14/50 C23C 14/34 Continuation of front page (56) References JP-A-59-96262 (JP, A) JP-A-3-266239 (JP, A) JP-A-6-145978 (JP, A) JP-B-59-2743 (JP) , B1) (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/50 C23C 14/34

Claims (1)

(57)【特許請求の範囲】 【請求項1】 複数の基板を自公転させながら基板の公
転路上の一部に対向して設けられたターゲットを用いて
基板の表面にスパッタ膜を成膜する自公転式スパッタリ
ング方法であって、公転回数をm回とし、m回公転する
間の自転回数をn回とした場合、公転回数mを20以上
の数とし、自転回数nは公転回数mより大きい数であっ
て、mとnの最小公倍数がm×nに等しくなるような数
とし、成膜に当っては公転回数を0.95×m〜1.0
5×mの間で行なうことを特徴とするスパッタリング方
法。
(57) [Claim 1] A sputtered film is formed on a surface of a substrate by using a target provided to face a part of the orbital path of the substrate while revolving the plurality of substrates on its own axis. This is a revolution orbit type sputtering method, where the number of revolutions is m times and the number of revolutions during m revolutions is n times, the number of revolutions m is 20 or more, and the number of revolutions n is greater than the number of revolutions m. A number such that the least common multiple of m and n is equal to m × n, and the number of revolutions is 0.95 × m to 1.0
A sputtering method characterized in that the sputtering is performed between 5 × m.
JP08850594A 1994-04-26 1994-04-26 Sputtering method Expired - Fee Related JP3458450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08850594A JP3458450B2 (en) 1994-04-26 1994-04-26 Sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08850594A JP3458450B2 (en) 1994-04-26 1994-04-26 Sputtering method

Publications (2)

Publication Number Publication Date
JPH07292471A JPH07292471A (en) 1995-11-07
JP3458450B2 true JP3458450B2 (en) 2003-10-20

Family

ID=13944690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08850594A Expired - Fee Related JP3458450B2 (en) 1994-04-26 1994-04-26 Sputtering method

Country Status (1)

Country Link
JP (1) JP3458450B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998738B2 (en) * 1998-05-21 2000-01-11 日本電気株式会社 Sputtering apparatus and film forming method thereof
CH694329A5 (en) * 1999-11-22 2004-11-30 Satis Vacuum Ind Vetriebs Ag Vacuum coating plant for applying coating layers on optical substrates.
JP4656744B2 (en) * 2000-03-09 2011-03-23 キヤノンアネルバ株式会社 Sputtering equipment
JP3794586B2 (en) 2001-08-24 2006-07-05 ナノネクサス インク Method and apparatus for generating uniform isotropic stress in sputtered films
DE10337732B4 (en) * 2003-08-11 2009-11-19 Carl Zeiss Smt Ag Method and coating system for coating substrates for optical components
WO2008004315A1 (en) * 2006-07-05 2008-01-10 Kakihara Kogyo Co., Ltd. Process for production of decoratively plated articles by utilizing the impartation of electroconductivity to resin by sputtering
JP5246936B2 (en) * 2008-10-16 2013-07-24 株式会社アルバック Deposition equipment
JP6330623B2 (en) * 2014-10-31 2018-05-30 東京エレクトロン株式会社 Film forming apparatus, film forming method, and storage medium

Also Published As

Publication number Publication date
JPH07292471A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
US4284033A (en) Means to orbit and rotate target wafers supported on planet member
JP3458450B2 (en) Sputtering method
WO2011135810A1 (en) Film deposition system
US5126029A (en) Apparatus and method for achieving via step coverage symmetry
JP2912864B2 (en) Magnetron unit for sputtering equipment
US8597479B2 (en) Sputtering system
JPH01309965A (en) Magnetron sputtering device
JP3056222B2 (en) Sputtering apparatus and sputtering method
JPS58144474A (en) Sputtering apparatus
JP3281926B2 (en) Thin film forming equipment
JP3412849B2 (en) Thin film deposition equipment
JP2011026652A (en) Apparatus for forming film on both surfaces
JPH07226398A (en) Target sputtering method and target cleaning method
JPS60204882A (en) Treating device by electric discharge reaction
JP3378043B2 (en) Sputtering equipment
JP3498293B2 (en) Substrate support device
JP4138938B2 (en) Sputtering apparatus for forming multilayer film and method of using the same
JP2000265261A (en) Vacuum deposition device
JPH0752527B2 (en) Optical information recording / reproducing disk manufacturing method
JP3880249B2 (en) Sputtering method
JPS6396268A (en) Sputtering device
JPH1018031A (en) Sputtering device
JPH0226935Y2 (en)
JPH0726378A (en) Film forming substrate holding device in film forming device
JP2002097570A (en) Film forming apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees