JP3458220B2 - Oxidation resistant molybdenum material and method for producing the same - Google Patents
Oxidation resistant molybdenum material and method for producing the sameInfo
- Publication number
- JP3458220B2 JP3458220B2 JP01461995A JP1461995A JP3458220B2 JP 3458220 B2 JP3458220 B2 JP 3458220B2 JP 01461995 A JP01461995 A JP 01461995A JP 1461995 A JP1461995 A JP 1461995A JP 3458220 B2 JP3458220 B2 JP 3458220B2
- Authority
- JP
- Japan
- Prior art keywords
- molybdenum
- powder
- oxidation
- crystal grains
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は,耐酸化性および耐高温
変形性を兼ね備えたモリブデン合金およびその製造方法
に関し,高温構造材料,例えば高温加熱炉部材などに有
用なモリブデン棒・線材,板材,および部品,およびそ
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molybdenum alloy having both oxidation resistance and high temperature deformation resistance, and a method for producing the same, and relates to high temperature structural materials such as molybdenum rods / wires, plates, And parts, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】従来,高温下で使用される構造部材に
は,アルミナ,マグネシア,ジルコニアなどの酸化物セ
ラミックス,窒化ケイ素,炭化ケイ素などの非酸化物セ
ラミックス,およびモリブデンやタングステンなどの高
融点金属が使用されている。2. Description of the Related Art Conventionally, structural members used at high temperatures include oxide ceramics such as alumina, magnesia and zirconia, non-oxide ceramics such as silicon nitride and silicon carbide, and refractory metals such as molybdenum and tungsten. Is used.
【0003】このうち,高融点金属はセラミックスに比
べ加工性および靭性に優れるなどの特性をもっている。
特にモリブデンには,タングステンに比べより加工性が
高く,またタングステンに比べ安価であるなどの利点が
ある。Among them, refractory metals have characteristics such as excellent workability and toughness as compared with ceramics.
In particular, molybdenum has advantages such as higher workability than tungsten and lower cost than tungsten.
【0004】しかしながら、モリブデンは耐酸化性が著
しく劣り、酸素及び水蒸気を含む雰囲気中で高温加熱す
ると酸化消耗したり、自重や負荷荷重により変形してし
まう。たとえば、モリブデンを空気中で650℃以上に
加熱すると表面に生成したMoO2が昇華し、爆発的に
消耗してしまう。そのため、モリブデンは2610℃と
いう高い融点を持ち、比較的加工性に富みながら、真
空、不活性ガス、または還元性雰囲気中で使用すること
を余儀なくされ、そのために用途が著しく限定されてい
た。However, molybdenum is extremely inferior in oxidation resistance, and when it is heated at a high temperature in an atmosphere containing oxygen and water vapor, it is consumed by oxidation and is deformed by its own weight or a load. For example, when molybdenum is heated to 650 ° C. or higher in air, MoO 2 formed on the surface sublimes and explosively wears off. Therefore, molybdenum has a high melting point of 2610 ° C., and is relatively rich in workability, but it is unavoidable to use it in a vacuum, an inert gas, or a reducing atmosphere, and therefore, its use is extremely limited.
【0005】[0005]
【発明が解決しようとする課題】前述したように,モリ
ブデンが用途を限定されているのは,高温の大気中およ
び酸化性雰囲気中で容易に酸化し,またその酸化物が昇
華してしまうためである。そのため高温の酸素および水
蒸気を含む雰囲気中では使用することができなかった。As described above, molybdenum is limited in its use because it is easily oxidized in a high temperature atmosphere and an oxidizing atmosphere, and its oxide sublimes. Is. Therefore, it could not be used in an atmosphere containing high temperature oxygen and water vapor.
【0006】また,塑性加工された状態で使用されるモ
リブデンは,塑性加工で生じる繊維状組織によって強靭
化されている。しかし,不活性雰囲気または還元雰囲気
中で使用した場合でも,1000℃以上の温度で使用さ
れると再結晶してしまい,繊維状組織が失われて球形に
近い微細な結晶粒の集合体組織である微細な等軸結晶粒
組織となる。再結晶により生じた結晶粒は数十μm程度
と非常に細かく,巨視的にはあらゆる方向に直線的な粒
界を形成する。このため,高温での使用中に粒界すべり
が生じ変形しやすい問題がある。またモリブデンの粒界
は非常に脆弱であるので,高温下では,自重や負荷荷
重,外力によって板厚方向や線径方向への直線的粒界で
すべりが発生して変形するのみならず,室温での衝撃に
対しても,いったん発生した亀裂がこの粒界をいっきに
伝播して破壊へと至るという不都合が生じた。Molybdenum used in the plastically worked state is toughened by the fibrous structure produced by the plastic working. However, even when used in an inert atmosphere or a reducing atmosphere, when it is used at a temperature of 1000 ° C or higher, it recrystallizes and loses its fibrous structure, resulting in an aggregate structure of fine crystal grains close to a sphere. It has a certain fine equiaxed grain structure. The crystal grains generated by recrystallization are very fine, about several tens of μm, and macroscopically form linear grain boundaries in all directions. For this reason, there is a problem that the grain boundary slips easily occur during use at high temperature, and it is easily deformed. In addition, since the grain boundary of molybdenum is very fragile, under high temperature, not only the linear grain boundary in the plate thickness direction and the radial direction is deformed due to its own weight, applied load, and external force, but also at room temperature. Even with the impact, the inconvenience occurred that the cracks that had once propagated through the grain boundaries all at once, leading to fracture.
【0007】そこで,本発明の技術的課題は,酸素およ
び水蒸気を含む雰囲気中で高温に加熱され,さらに荷重
がかかったり摩擦が生じる使用環境下でも安定した耐酸
化性を有するモリブデン棒・線材,板材,および部品等
の耐酸化性モリブデン材料とその製造方法とを提供する
ことにある。Therefore, a technical object of the present invention is to molybdenum rods / wires which have stable oxidation resistance even in a use environment in which they are heated to a high temperature in an atmosphere containing oxygen and water vapor, and are further loaded or rubbed. An object is to provide an oxidation resistant molybdenum material such as a plate material and a part, and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】本発明によれば,棒材,
線材,板材及び部品のいずれかの形態を有するモリブデ
ン材料であって,短径に対する長径の比が少なくとも1
0の延伸された結晶粒からなり,表面にモリブデン珪化
物層を有することを特徴とする耐酸化性モリブデン材料
が得られる。According to the present invention, a bar,
A molybdenum material having any of the forms of a wire rod, a plate and a component, wherein the ratio of the major axis to the minor axis is at least 1.
An oxidation resistant molybdenum material is obtained which is characterized by comprising 0 drawn crystal grains and having a molybdenum silicide layer on the surface.
【0009】ここで、本発明のモリブデン材料におい
て,前記モリブデン珪化物層の最表面層がMoSi2お
よびMo5Si3の2層構造を有することが好ましい。Here, in the molybdenum material of the present invention, it is preferable that the outermost surface layer of the molybdenum silicide layer has a two-layer structure of Mo Si 2 and Mo 5 Si 3 .
【0010】即ち,本発明者らは,モリブデン材料にお
いてモリブデンの結晶粒を板厚に垂直な方向や線材の長
手方向に引き伸ばされた長大結晶粒の積層組織とすれ
ば,荷重の負荷方向を横切る結晶粒を著しく少なくする
ことができ,粒界すべりによる変形は起きにくくなり,
また,高温においても,同様に起きにくくなるとともに
この変形しにくさが,耐酸化性に著しく有効であること
を見い出し,また,この構造を有するモリブデン材料に
おいては,粒界で亀裂が発生した場合,亀裂が伝播しや
すい板厚方向や線径方向の直線的な粒界を有しないた
め,亀裂は途中で止まり,破壊しにくく,衝撃にも強く
なる。更に,この構造を有するモリブデン材料において
は,亀裂が粒内で発生した場合でも,隣接する結晶粒の
破壊方向が異なることと,粒界でエネルギーが分散され
るため,破壊までは至りにくいことを見出だしたもので
ある。In other words, the inventors of the present invention, when the molybdenum crystal grains have a laminated structure of long crystal grains extended in the direction perpendicular to the plate thickness or in the longitudinal direction of the wire in the molybdenum material, cross the load direction. The number of crystal grains can be significantly reduced, and deformation due to grain boundary slip is less likely to occur,
It was also found that even at high temperatures, it is less likely to occur and this resistance to deformation is extremely effective for oxidation resistance. Also, in the molybdenum material having this structure, when cracks occur at grain boundaries, Since the crack does not have a straight grain boundary in the plate thickness direction and the radial direction in which the crack easily propagates, the crack stops in the middle, is hard to break, and is resistant to impact. Furthermore, in a molybdenum material having this structure, even if cracks occur within the grains, the fracture directions of adjacent crystal grains are different and energy is dispersed at the grain boundaries, so it is difficult for fracture to occur. It has been found.
【0011】また,本発明において,長大結晶粒の積層
組織はモリブデンの再結晶を阻止する微粒子,すなわち
ランタン酸化物などの耐熱性酸化物微粒子を添加するこ
とにより実現した。In the present invention, the laminated structure of long crystal grains is realized by adding fine particles for preventing recrystallization of molybdenum, that is, fine particles of heat-resistant oxide such as lanthanum oxide.
【0012】また,本発明のモリブデン材料を製造する
には,モリブデンの酸化物に少量の硝酸ランタン,硝酸
イットリウムなどの耐熱性酸化物を形成する金属塩をモ
リブデン酸化物に添加し,混合後,水素還元を施して酸
化ランタンや酸化イットリウムの微粒子を分散したモリ
ブデン粉末を作製し,この粉末をプレス,焼結してイン
ゴットを形成し,得られたインゴットを圧延,線引き等
の塑性加工により,添加した酸化物微粒子を,板厚もし
くは線径と垂直方向にほぼ一定の配列長で分散させる。
このような状態の材料を1500℃以上望ましくは18
00℃程度に加熱すると,配列した酸化物微粒子が,板
厚,もしくは線径方向へのモリブデン結晶粒の成長を抑
制するため,結晶粒は板厚もしくは線径と垂直方向へ延
伸した組織となり,前述の長大結晶粒の積層組織を得る
ことが可能となった。To produce the molybdenum material of the present invention, a small amount of a metal salt forming a heat-resistant oxide such as lanthanum nitrate or yttrium nitrate is added to molybdenum oxide, and after mixing, A molybdenum powder in which fine particles of lanthanum oxide or yttrium oxide are dispersed is produced by hydrogen reduction, and this powder is pressed and sintered to form an ingot. The obtained ingot is added by rolling, drawing, or other plastic working. The oxide fine particles are dispersed with a substantially constant array length in the direction perpendicular to the plate thickness or wire diameter.
The material in such a state is preferably 1500 ° C. or higher, preferably 18
When heated to about 00 ° C., the arrayed oxide fine particles suppress the growth of molybdenum crystal grains in the plate thickness or the wire diameter direction, so that the crystal grains have a structure stretched in the direction perpendicular to the plate thickness or the wire diameter. It has become possible to obtain the above-mentioned laminated structure of long crystal grains.
【0013】即ち,本発明によれば,圧延,伸線,鋳造
などの,塑性加工で作製したモリブデン棒・線または板
材または部品を再結晶処理して,短径に対する長径の比
が10以上の延伸された結晶粒にした後,二次加工して
母材とした後,Si粉末,Si粉末とAl粉末との混合
粉末,CrSi合金粉末,FeCrSi合金粉末,及び
AlSi合金粉末のうち少くとも1種からなる金属粉末
と,ハロゲン化合物粉末と,Al2O3粉末とを,全粉
末中のSi量が10〜80%となるように調合した複合
拡散剤を用い,無酸化雰囲気及び還元雰囲気で,100
0℃〜1300℃,で熱処理を行ない,前記母材上の表
面に耐酸化性に優れたMoSi2層と,前記母材側には
熱膨張係数の近いMo5Si3層との少なくとも2層を
形成することを特徴とする耐酸化性モリブデン材料の製
造方法が得られる。That is, according to the present invention, the molybdenum rod / wire or plate material or part produced by plastic working such as rolling, wire drawing or casting is recrystallized so that the ratio of the major axis to the minor axis is 10 or more. At least 1 of Si powder, mixed powder of Si powder and Al powder, CrSi alloy powder, FeCrSi alloy powder, and AlSi alloy powder is used after forming drawn crystal grains and secondary processing to form a base material. In a non-oxidizing atmosphere and a reducing atmosphere, using a composite diffusing agent prepared by mixing a metal powder composed of seeds, a halogen compound powder, and an Al 2 O 3 powder so that the Si content in the total powder is 10 to 80%. , 100
At least two layers, a MoSi 2 layer which is heat-treated at 0 ° C. to 1300 ° C. and has excellent oxidation resistance on the surface of the base material, and a Mo 5 Si 3 layer having a close thermal expansion coefficient on the base material side. A method for producing an oxidation resistant molybdenum material is obtained, which comprises forming
【0014】また,本発明者らは、結晶粒の短径に対す
る長径の比と高温における変形の関係を調べた結果,短
径に対する長径の比が10を越えるとモリブデンの高温
における変形が生じにくくなることを見いだした。Further, as a result of examining the relationship between the ratio of the major axis to the minor axis of the crystal grain and the deformation at high temperature, the present inventors have found that if the ratio of the major axis to the minor axis exceeds 10, the molybdenum is less likely to be deformed at high temperature. I found that.
【0015】ここで,短径および長径とは,モリブデン
の線材,板材の加工方向にそれぞれ垂直および平行な方
向の結晶粒径であり,組織写真を用いて測定した平均粒
径である。Here, the minor axis and the major axis are the crystal grain diameters in the directions perpendicular and parallel to the processing directions of the molybdenum wire rod and the plate material, respectively, and the average grain diameters measured by using a microstructure photograph.
【0016】次に,本発明のモリブデン材料の耐酸化性
について述べる。耐酸化性に著しく乏しいモリブデン材
料の耐酸化性を改善する手段として,表面にモリブデン
珪化物を被覆することが知られている。しかし,このよ
うな硬質脆性材料を被覆した場合,高温における荷重下
でモリブデンのクリープ変形などの小さい変形にも被覆
層が追従できないために,被覆層に亀裂が生じてモリブ
デンが露出してしまう。このような状態では,前述した
ように,モリブデンは爆発的に酸化消耗してしまう重大
な欠点があった。Next, the oxidation resistance of the molybdenum material of the present invention will be described. It is known that the surface is coated with molybdenum silicide as a means for improving the oxidation resistance of a molybdenum material having extremely poor oxidation resistance. However, when such a hard and brittle material is coated, the coating layer cannot follow small deformation such as creep deformation of molybdenum under a load at high temperature, so that the coating layer is cracked and molybdenum is exposed. In such a state, as described above, molybdenum has a serious drawback that it is explosively consumed by oxidation.
【0017】本発明においては,表面にモリブデン珪化
物を被覆する前に,前述の長大結晶粒の積層組織を得る
処理を施し,高温におけるクリープ変形などを著しく抑
制することによって安定した耐酸化性を付与できる。す
なわち,延伸された長大結晶粒の短径に対する長径の比
を10以上にすると,表面に形成されたモリブデン珪化
物に亀裂が生じにくく,安定した耐酸化性が得られる。In the present invention, before the surface is coated with molybdenum silicide, a treatment for obtaining the above-mentioned laminated structure of large crystal grains is performed to remarkably suppress creep deformation at high temperatures, thereby providing stable oxidation resistance. Can be given. That is, when the ratio of the major axis to the minor axis of the elongated major crystal grains is 10 or more, cracks are less likely to occur in the molybdenum silicide formed on the surface, and stable oxidation resistance can be obtained.
【0018】また,本発明において,延伸された結晶粒
の短径に対する長径の比を10以上としたのは,10に
満たないと,高温で変形しやすいために表面のモリブデ
ン珪化物に亀裂が生じやすく,等軸結晶粒のモリブデン
の場合と実質的に同等であり,耐酸化性の改善が乏しい
ためである。In the present invention, the ratio of the major axis to the minor axis of the stretched crystal grains is set to 10 or more. If the ratio is less than 10, the molybdenum silicide on the surface is cracked because the surface is easily deformed. This is because it tends to occur and is substantially equivalent to the case of equiaxed grain molybdenum, and the improvement in oxidation resistance is poor.
【0019】また,本発明においては,長大結晶粒の積
層組織を有するモリブデン材の表面にSiを拡散浸透せ
しめて耐酸化性に優れたモリブデン珪化物層を形成し,
酸化しやすいモリブデン母材にまで酸素が到達しないよ
うに保護することにより,酸素および水蒸気を含む雰囲
気中でも高温でも使用することができる。Further, in the present invention, Si is diffused and permeated into the surface of a molybdenum material having a laminated structure of long crystal grains to form a molybdenum silicide layer having excellent oxidation resistance,
By protecting the molybdenum base material, which is easily oxidized, from reaching oxygen, it can be used even in an atmosphere containing oxygen and water vapor at high temperature.
【0020】ところで,従来行われた表面にモリブデン
珪化物を被覆する方法では珪化物層が二珪化モリブデン
(MoSi2)の単層であるため,母材のモリブデンと
の熱膨張係数の差から,繰り返し使用することにより,
モリブデン珪化物層に亀裂が入り母材のモリブデンにま
で酸素が達し耐酸化性を維持できなくなっていた。By the way, in the conventional method of coating the surface with molybdenum silicide, since the silicide layer is a single layer of molybdenum disilicide (MoSi 2 ), the difference in the coefficient of thermal expansion from that of the base material, By using it repeatedly,
The molybdenum silicide layer was cracked and oxygen reached the molybdenum base material, so that the oxidation resistance could not be maintained.
【0021】しかしながら,本発明ではモリブデン珪化
物層を組成の異なる2層とし,表面に耐酸化性の優れる
MoSi2を,母材のモリブデン側には熱膨張係数の近
いMo5Si3を生成することにより,繰り返し使用し
ても亀裂が入りにくくし,実用に耐えうる寿命を持つ保
護層を形成し得たものである。However, in the present invention, the molybdenum silicide layer is composed of two layers having different compositions, MoSi 2 having excellent oxidation resistance is formed on the surface, and Mo 5 Si 3 having a close thermal expansion coefficient is formed on the molybdenum side of the base material. As a result, it is possible to form a protective layer that is resistant to cracking even after repeated use and has a life that can withstand practical use.
【0022】[0022]
【実施例】以下,本発明の実施例について図面を参照し
て説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0023】図1はモリブデン材料の結晶粒の短径に対
する長径の比と高温における変形の関係を示す図であ
る。図1に示すように,短径に対する長径の比が10を
越えるとモリブデンの高温における変形が生じにくくな
る。ここで,短径および長径とはモリブデンの線材,板
材の加工方向にそれぞれ垂直および平行な方向の結晶粒
径であり,組織写真を用いて測定した平均粒径である。FIG. 1 is a diagram showing the relationship between the ratio of the major axis to the minor axis of crystal grains of molybdenum material and the deformation at high temperature. As shown in FIG. 1, when the ratio of the major axis to the minor axis exceeds 10, the molybdenum is less likely to be deformed at high temperature. Here, the short diameter and the long diameter are the crystal grain diameters in the directions perpendicular and parallel to the processing directions of the molybdenum wire rod and the plate material, respectively, and are the average grain diameters measured using a microstructure photograph.
【0024】次に,本発明のモリブデン材料の具体的な
製造例について説明する。Next, a specific production example of the molybdenum material of the present invention will be described.
【0025】(実施例1)
本発明の実施例1では,モリブデン板材を例にとって詳
細に説明する。Example 1 In Example 1 of the present invention, a molybdenum plate material will be described in detail as an example.
【0026】まず,0.1〜1.0重量%のランタン酸
化物粉になるように酸化モリブデン粉末に硝酸ランタン
を添加した後,1100℃で5時間水素還元を施し,プ
レス成型し,水素雰囲気中で1800℃で10時間焼結
して厚さ10〜50mmのインゴットを準備した。First, lanthanum nitrate was added to molybdenum oxide powder so as to obtain 0.1 to 1.0% by weight of lanthanum oxide powder, and then hydrogen reduction was performed at 1100 ° C. for 5 hours, followed by press molding, and hydrogen atmosphere. Ingot was sintered at 1800 ° C. for 10 hours to prepare an ingot having a thickness of 10 to 50 mm.
【0027】次に,このインゴットに1100〜900
℃で熱間圧延加工を施して2.0mmの板とした後,冷
間圧延を行いモリブデン結晶粒を繊維状組織とし,板厚
1.5mmのモリブデン板を得た。Next, 1100 to 900 are added to this ingot.
After hot-rolling at 2.0 ° C. to form a 2.0 mm plate, cold rolling was performed to form molybdenum crystal grains into a fibrous structure to obtain a molybdenum plate having a plate thickness of 1.5 mm.
【0028】得られたモリブデン板を,水素中で,再結
晶温度以上である1800℃以上で10時間加熱し,モ
リブデン結晶粒を一定方向に引き伸ばされた長大結晶粒
の積層組織を有する再結晶組織を得た。The obtained molybdenum plate is heated in hydrogen at 1800 ° C. or higher, which is higher than the recrystallization temperature, for 10 hours to recrystallize the molybdenum crystal grains having a laminated structure of long crystal grains elongated in a certain direction. Got
【0029】熱間圧延率の相違により,結晶粒の短径に
対する長径の比が,8〜80の組織が得られた。Due to the difference in hot rolling rate, a structure having a ratio of major axis to minor axis of crystal grains of 8 to 80 was obtained.
【0030】この板を幅30mm,長さ120mmに切
断し以下に示すようにモリブデン珪化物層を形成する処
理(以下,シリコナイズ処理)を施し,モリブデン珪化
物層の顕微鏡組織観察を行い,1000℃〜1300℃
の大気炉内で耐酸化試験を,1000℃〜1300℃の
不活性雰囲気炉内で変形試験を行なった。This plate was cut into a piece having a width of 30 mm and a length of 120 mm and subjected to a treatment for forming a molybdenum silicide layer (hereinafter referred to as siliconizing treatment) as described below, and the molybdenum silicide layer was observed under a microscopic structure at 1000 ° C. ~ 1300 ° C
The oxidation resistance test was carried out in the atmospheric furnace and the deformation test was carried out in the inert atmosphere furnace at 1000 ° C to 1300 ° C.
【0031】CrSi比1:1のCrSi合金粉末に複
合拡散剤中のSi量が,15%,20%,35%になる
ようAl2O3粉末およびハロゲン化合物粉であるNH
4Cl粉末を調合した3種類の複合拡散剤を用い,水素
雰囲気で,1100〜1200℃,10時間の熱処理を
行なった。下記表1に処理条件を示す。Al 2 O 3 powder and NH, which is a halogen compound powder, are added to the CrSi alloy powder having a CrSi ratio of 1: 1 so that the Si content in the composite diffusing agent becomes 15%, 20% and 35%.
Using three types of composite diffusing agents prepared by mixing 4 Cl powder, heat treatment was performed at 1100 to 1200 ° C. for 10 hours in a hydrogen atmosphere. The processing conditions are shown in Table 1 below.
【0032】[0032]
【表1】 [Table 1]
【0033】このようにして得られた,表面にモリブデ
ン珪化物層を有するモリブデン板について,切断し断面
を観察しモリブデン珪化物層の厚さを調査した。また,
別のサンプルにて,1000℃〜1300℃の大気炉中
にて耐酸化性を調査し被膜の破壊するまでの時間(耐久
時間)を調査した。The molybdenum plate having the molybdenum silicide layer on the surface thus obtained was cut and the cross section was observed to investigate the thickness of the molybdenum silicide layer. Also,
With another sample, the oxidation resistance was examined in an atmospheric furnace at 1000 ° C to 1300 ° C, and the time until the film was destroyed (durability time) was examined.
【0034】また,変形量は1000℃〜1300℃の
大気中で支持間隔100mmの支持台にのせ,中心部に
約1.5kgの荷重を載せて10時間加熱し,その時の
厚み方向の変形量(垂下量)および耐酸化性を調査し
た。In addition, the amount of deformation is 1000 ° C to 1300 ° C, and the amount of deformation in the thickness direction at that time is placed on a support base with a support interval of 100 mm, a load of about 1.5 kg is placed in the center and heated for 10 hours. (Amount of droop) and oxidation resistance were investigated.
【0035】以上の結果をシリコナイズ処理条件,試験
温度1000℃における変形量および耐酸化試験の耐久
時間を下記表2に示す。同様に1300℃における変形
量および耐酸化試験の耐久時間を下記表3に示す。The above results are shown in Table 2 below, which shows the siliconizing treatment conditions, the deformation amount at a test temperature of 1000 ° C. and the durability time of the oxidation resistance test. Similarly, the deformation amount at 1300 ° C. and the durability time of the oxidation resistance test are shown in Table 3 below.
【0036】[0036]
【表2】 [Table 2]
【0037】[0037]
【表3】 [Table 3]
【0038】また,上記表2および上記表3に比較例と
して純モリブデンの耐酸化試験,耐変形試験結果も併記
した。Further, the results of the oxidation resistance test and the deformation resistance test of pure molybdenum are also shown in Tables 2 and 3 as comparative examples.
【0039】図2に表2中のNo.1,No.4および
比較材の耐酸化試験結果を示した。図2を参照して,短
径に対する長径の比が10以上の延伸された結晶粒から
なり,モリブデン珪化物を被覆したモリブデンは高温で
の荷重下でも変形しにくく,モリブデン珪化物層に亀裂
が入りにくく良好な耐酸化性を示した。No. 2 in Table 2 is shown in FIG. 1, No. 4 and the results of the oxidation resistance test of the comparative material are shown. Referring to FIG. 2, molybdenum silicide composed of stretched crystal grains having a ratio of the major axis to the minor axis of 10 or more is not easily deformed even under a load at high temperature, and a crack is formed in the molybdenum silicide layer. It was hard to enter and showed good oxidation resistance.
【0040】図3に良好な耐酸化性をしめしたサンプル
の断面の模式図を示した,符号1の部分は,MoSi2
であり符号2の部分はMo5Si3であり,符号3の部
分はモリブデン基板である。また無荷重下では1000
℃では2000時間以上の耐酸化性を示した。FIG. 3 is a schematic view of a cross section of a sample showing good oxidation resistance. The portion indicated by reference numeral 1 is MoSi 2
The portion with the reference numeral 2 is Mo 5 Si 3 , and the portion with the reference numeral 3 is the molybdenum substrate. 1000 under no load
It showed an oxidation resistance of 2000 hours or more at ° C.
【0041】(実施例2)
実施例1と同様に0.1〜1.0重量%のランタン酸化
物粉になるように酸化モリブデン粉末に硝酸ランタンを
添加した後,1100℃で5時間水素還元を施し,プレ
ス成型し,水素雰囲気中で1800℃で10時間焼結し
て,直径50mmのインゴットを用意した。Example 2 As in Example 1, lanthanum nitrate was added to the molybdenum oxide powder so as to obtain 0.1 to 1.0% by weight of lanthanum oxide powder, and then hydrogen reduction was carried out at 1100 ° C. for 5 hours. Was performed, press-molded, and sintered in a hydrogen atmosphere at 1800 ° C. for 10 hours to prepare an ingot having a diameter of 50 mm.
【0042】次に,このインゴットに1100〜900
℃で熱間転倒加工を施して直径20mmの棒とした後,
これを切削加工により,ネジ切りを施しボルトを作製し
た。このボルトを実施例1と同様のシリコナズ処理を施
し,モリブデン珪化物層を形成した。また,このボルト
を1000℃の大気炉中で実施例1と同様に耐酸化試験
を実施したところ,3000時間以上の耐酸化性を示し
た。Next, 1100 to 900 are added to this ingot.
After performing hot inversion processing at ℃ to make a bar with a diameter of 20 mm,
This was cut and threaded to make bolts. The bolt was subjected to the same siliconizing treatment as in Example 1 to form a molybdenum silicide layer. Further, when this bolt was subjected to an oxidation resistance test in the same manner as in Example 1 in an atmospheric furnace at 1000 ° C., it showed an oxidation resistance of 3000 hours or more.
【0043】[0043]
【発明の効果】以上の説明で明らかなように,本発明の
耐酸化性モリブデン材料では,長大結晶粒の積層組織を
有する耐変形性の優れたモリブデン材料の表面にシリコ
ナイズ処理によって耐酸化性の優れるMoSi2を,母
材のモリブデン側には熱膨張係数の近いMo5Si3の
2層からなるモリブデン珪化物層を形成することによっ
て,高温の酸素および水蒸気を含む雰囲気中において従
来使用できなかったモリブデン材料を使用可能とした。
したがってその工業的価値は極めて大である。As is clear from the above description, in the oxidation-resistant molybdenum material of the present invention, the surface of the molybdenum material having a laminated structure of long crystal grains and excellent in deformation resistance is subjected to the siliconization treatment so that the oxidation resistance is improved. Superior MoSi 2 cannot be used in the atmosphere containing high temperature oxygen and water vapor by forming a molybdenum silicide layer consisting of two layers of Mo 5 Si 3 having a close thermal expansion coefficient on the molybdenum side of the base material. Made molybdenum material available.
Therefore, its industrial value is extremely large.
【図1】本発明の耐酸化性モリブデン材料の結晶粒の短
径に対する長径の比と高温における変形の関係を調べた
結果を示す図である。FIG. 1 is a diagram showing the results of examining the relationship between the ratio of the major axis to the minor axis of crystal grains of the oxidation-resistant molybdenum material of the present invention and the deformation at high temperature.
【図2】本発明の実施例1に係る耐酸化性モリブデン材
料の耐酸化試験結果を示す図である。FIG. 2 is a diagram showing an oxidation resistance test result of an oxidation resistant molybdenum material according to Example 1 of the present invention.
【図3】図2の試験結果において,良好な耐酸化性を示
す試料の断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section of a sample showing good oxidation resistance in the test result of FIG.
1 MoSi2 2 Mo5Si3 3 モリブデン基板1 MoSi 2 2 Mo 5 Si 3 3 molybdenum substrate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 裕信 滋賀県甲賀郡甲西町大池町8番地 日本 カロライズ工業株式会社内 (72)発明者 石倉 勝彦 滋賀県甲賀郡甲西町大池町8番地 日本 カロライズ工業株式会社内 (72)発明者 吉川 利平 滋賀県甲賀郡甲西町大池町8番地 日本 カロライズ工業株式会社内 (56)参考文献 特開 昭61−186470(JP,A) 特開 昭60−228668(JP,A) 特公 昭48−15778(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C23C 10/44 C23C 10/30 C23C 10/08 C23C 10/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hironobu Murata 8 Oike-cho, Kosai-cho, Koga-gun, Shiga Japan Calorize Industry Co., Ltd. (72) Katsuhiko Ishikura 8 Oike-cho, Konishi-cho, Koga-gun, Shiga Incorporated (72) Inventor Rihei Yoshikawa 8 Oike-cho, Kosai-cho, Koga-gun, Shiga Japan Calorize Industry Co., Ltd. (56) Reference JP 61-186470 (JP, A) JP 60-228668 (JP) , A) JP-B-48-15778 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 10/44 C23C 10/30 C23C 10/08 C23C 10/20
Claims (3)
形態を有するモリブデン材料であって,短径に対する長
径の比が少なくとも10の延伸された結晶粒からなり,
表面にモリブデン珪化物層を有することを特徴とする耐
酸化性モリブデン材料。1. A molybdenum material having any of the forms of a rod, a wire, a plate and a part, which is composed of elongated crystal grains having a ratio of major axis to minor axis of at least 10.
An oxidation-resistant molybdenum material having a molybdenum silicide layer on its surface.
において,前記モリブデン珪化物層の最表面層がMoS
i2およびMo5Si3の2層構造を有することを特徴
とする耐酸化性モリブデン材料。2. The oxidation-resistant molybdenum material according to claim 1, wherein the outermost surface layer of the molybdenum silicide layer is Mo 2 S 3.
An oxidation resistant molybdenum material having a two-layer structure of i 2 and Mo 5 Si 3 .
製したモリブデン棒・線または板材または部品を再結晶
処理して,短径に対する長径の比が10以上の延伸され
た結晶粒にした後,二次加工して母材とした後,Si粉
末,Si粉末とAl粉末との混合粉末,CrSi合金粉
末,FeCrSi合金粉末,及びAlSi合金粉末のう
ち少くとも1種からなる金属粉末とハロゲン化合物粉末
とAl2O3粉末とを,全粉末中のSi量が10〜80
%となるように調合した複合拡散剤を用い,無酸化雰囲
気及び還元雰囲気で,1000℃〜1300℃,で熱処
理を行ない,前記母材上の表面に耐酸化性に優れたMo
Si2層と,前記母材側には熱膨張係数の近いMo5S
i3層との少なくとも2層を形成することを特徴とする
耐酸化性モリブデン材料の製造方法。3. A recrystallized molybdenum rod / wire or plate material or part produced by plastic working such as rolling, wire drawing, casting, etc. to obtain drawn crystal grains having a ratio of major axis to minor axis of 10 or more. Then, after secondary processing to form a base material, a metal powder consisting of at least one of Si powder, mixed powder of Si powder and Al powder, CrSi alloy powder, FeCrSi alloy powder, and AlSi alloy powder. The halogen compound powder and the Al 2 O 3 powder are contained in a total amount of Si of 10 to 80.
%, Heat treatment was performed at 1000 ° C. to 1300 ° C. in a non-oxidizing atmosphere and a reducing atmosphere using a composite diffusing agent mixed so that the Mo on the surface of the base material had excellent oxidation resistance.
The Si 2 layer and Mo 5 S having a thermal expansion coefficient close to that of the base material side.
method for producing oxidation-resistant molybdenum material and forming at least two layers of the i 3 layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01461995A JP3458220B2 (en) | 1995-01-31 | 1995-01-31 | Oxidation resistant molybdenum material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01461995A JP3458220B2 (en) | 1995-01-31 | 1995-01-31 | Oxidation resistant molybdenum material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08209327A JPH08209327A (en) | 1996-08-13 |
JP3458220B2 true JP3458220B2 (en) | 2003-10-20 |
Family
ID=11866227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01461995A Expired - Fee Related JP3458220B2 (en) | 1995-01-31 | 1995-01-31 | Oxidation resistant molybdenum material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3458220B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6933012B2 (en) * | 2002-12-13 | 2005-08-23 | General Electric Company | Method for protecting a surface with a silicon-containing diffusion coating |
KR101469706B1 (en) * | 2012-10-23 | 2014-12-08 | 한양대학교 산학협력단 | Method of fabricating MoSi2 coating layer using MoO3 powder |
WO2015005934A1 (en) | 2013-07-12 | 2015-01-15 | Hewlett-Packard Development Company, L.P. | Thermal inkjet printhead stack with amorphous metal resistor |
US9511585B2 (en) | 2013-07-12 | 2016-12-06 | Hewlett-Packard Development Company, L.P. | Thermal inkjet printhead stack with amorphous thin metal protective layer |
WO2016018284A1 (en) | 2014-07-30 | 2016-02-04 | Hewlett-Packard Development Company, L.P. | Amorphous metal alloy electrodes in non-volatile device applications |
CN108754409B (en) * | 2018-06-13 | 2019-12-17 | 西南科技大学 | Method for preparing antioxidant coating on molybdenum metal surface based on activated carbon powder protection |
CN114107888B (en) * | 2021-11-19 | 2023-01-24 | 中南大学 | Novel tantalum-based Si-Mo-ZrB containing TaB diffusion barrier layer 2 Composite coating and three-step preparation method thereof |
-
1995
- 1995-01-31 JP JP01461995A patent/JP3458220B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08209327A (en) | 1996-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3624225B2 (en) | Silicon nitride or sialon ceramics and molding method thereof | |
JP5394582B1 (en) | Molybdenum heat-resistant alloy | |
US6211496B1 (en) | Molybdenum disilicide heating element and its production method | |
JP3458220B2 (en) | Oxidation resistant molybdenum material and method for producing the same | |
KR100641905B1 (en) | Two phase titanium aluminide alloy | |
JP3135224B2 (en) | Iridium-based alloy | |
JPH0633180A (en) | Chromium-based alloy | |
KR20060111662A (en) | Method for the manufacture of an austenitic product as well as the use thereof | |
KR101018211B1 (en) | Radiant Tube with Excellent High Temperature Properties and Manufacturing Method Thereof | |
JPH01252586A (en) | Fiber-reinforced ceramics | |
JP4558572B2 (en) | High heat resistant molybdenum alloy and manufacturing method thereof | |
JP4108943B2 (en) | Molybdenum sintered body, molybdenum plate material, and manufacturing method thereof | |
JPH0617557B2 (en) | Method for manufacturing molybdenum jig for high temperature heat treatment | |
JP3231944B2 (en) | Method for manufacturing silicon nitride heat-resistant member | |
JP4335406B2 (en) | Cutting tool and manufacturing method thereof | |
JP3563523B2 (en) | Fe-Cr-Al steel pipe with excellent shape stability at high temperature | |
JP2883248B2 (en) | Silicon nitride based sintered body and method for producing the same | |
Plucknett et al. | Interface degradation in CAS/Nicalon during elevated temperature aging | |
JP2000351671A (en) | Particle-dispersed silicon carbide-based sintered product and guide roller which use the same and is used for rolling wire rod | |
JP3158921B2 (en) | Refractories for furnaces using silicon chloride gas | |
JPH10139548A (en) | Molybdenum disilicide-base composite material and its production | |
JPS6137944A (en) | Manufacture of molybdenum plate | |
JPS6310114B2 (en) | ||
JP4171813B2 (en) | Boride-based cermet with needle-like structure | |
JP2978469B2 (en) | Manufacturing method of whisker composite ceramic powder and manufacturing method of its sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030702 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |