JP3457049B2 - Vacuum container baking method - Google Patents

Vacuum container baking method

Info

Publication number
JP3457049B2
JP3457049B2 JP04324594A JP4324594A JP3457049B2 JP 3457049 B2 JP3457049 B2 JP 3457049B2 JP 04324594 A JP04324594 A JP 04324594A JP 4324594 A JP4324594 A JP 4324594A JP 3457049 B2 JP3457049 B2 JP 3457049B2
Authority
JP
Japan
Prior art keywords
vacuum
baking
vacuum vessel
gas
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04324594A
Other languages
Japanese (ja)
Other versions
JPH07227533A (en
Inventor
脩平 篠塚
正夫 松村
則行 竹内
毅 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP04324594A priority Critical patent/JP3457049B2/en
Publication of JPH07227533A publication Critical patent/JPH07227533A/en
Application granted granted Critical
Publication of JP3457049B2 publication Critical patent/JP3457049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、半導体製造プロセス等
で使用する基板の加工処理や保管に用いる真空容器のベ
ーキング方法に関する。 【0002】 【従来の技術】最先端技術である半導体製造工程におけ
るウエハや、液晶表示素子製造工程におけるガラス基板
には、その処理工程や保管に真空空間が不可欠のものと
なっている。係る最先端技術に欠くことのできない真空
空間を造るには真空容器が必要である。真空容器を用い
て真空空間を造り出すには真空容器を、真空ポンプに接
続し、真空排気すれば良い。しかし、この状態では真空
容器の壁に付着した水分子などが真空中で真空容器の壁
から離脱し、真空度が上がらなかったり、離脱した分子
が保管物(半導体を製造するためのウエハや液晶パネル
を製造するためのガラス基板など)を分子レベルで汚染
することが危惧される。 【0003】真空容器(チャンバー)には排気口があ
り、排気口から連通管を介して真空ポンプが接続されて
いる。これ等は全体として、ひとつの真空系を形成して
いる。はじめ真空容器内は常圧(大気圧)であるが、真
空ポンプの作動と共に真空容器内の空気は排気口、連通
管を通って真空ポンプに強制的に排出されるから、真空
容器内は次第に減圧されていく。真空容器内の減圧に伴
って、真空容器内壁面に付着していた水分子等は壁面か
ら離脱して真空容器内の空間に出ていく。然して真空容
器内の水分子等の密度が減少していくから、それだけ分
子レベルの清浄化が進む。 【0004】真空容器の内壁面を加熱昇温させると、水
分子の壁面からの離脱は更に加速されることになる。真
空ベーキングをする場合、ベーキング温度は高い方が、
またベーキング時間は長い方が、真空容器の内壁面に付
着した汚染分子の離脱に効果が上がることは当然のこと
である。 【0005】 【発明が解決しようとする課題】しかしながら、真空容
器によく用いられる材料であるAl合金などは、融点が
低く、ベーキング温度の上限は150〜200℃が限度
であると言われている。 【0006】また、真空容器に融点の高い材料、例えば
ステンレス材を用いたとしても真空容器と排気口、排気
口と連通管等、真空系を構成する各部の接続部には、ゴ
ムやテフロン製のOリング等のシール材が必要不可欠で
ある。これらシール材の性質上、使用温度の上限は限ら
れたものとなり、長期的に繰り返しベーキングが許され
る上限温度はせいぜい200℃程度である。 【0007】更に耐熱性を考慮して、真空容器の材料と
してステンレス材を用い、シール部に金属材料のシール
材を用いたとしても、ステンレス鋼材中の炭素原子Cは
350℃以上ではステンレス鋼の結晶粒界に粒界偏析し
て、ステンレス鋼部材の強度が低下するという問題があ
る。 【0008】上述の通り、これまでのベーキング方法、
即ちただ真空ポンプによる減圧と真空容器の加熱という
単純な方法では、加熱温度にも限界があるため十分な清
浄度が得られず、製品の品質や歩留の向上にも限界があ
った。 【0009】又、製品としてのLSIや液晶表示素子に
関しては、製品の品質や歩留の向上のみならずコストダ
ウンも又重要な要素である。大量生産方式に於いては、
コストダウンはこれらの製造工程の所要時間と密接な関
係にあるから、真空系の温度の昇降時間やベーキング時
間が長いということは、経済的ではない。 【0010】本発明は係る従来技術の問題点に鑑みて為
されたものであり、真空ベーキングの温度が低く、しか
も短いベーキング時間で真空容器内の清浄度を高くする
ことのできる真空容器のベーキング方法を提供すること
を目的とする。 【0011】 【課題を解決するための手段】本発明の真空容器のベー
キング方法は、真空容器に加熱手段を備え、該容器内壁
面を70〜200℃に加熱しながら、高純度窒素ガスま
たはその他の不活性ガスを該容器内に流すことを特徴と
する。 【0012】 【作用】真空容器内では一方の入口から清浄な不活性ガ
スが送り込まれ、他方の出口から真空容器内のガスが吸
い出される結果、定常的にガスの流れが生ずる。このガ
スの流れが真空容器の内壁面から汚染分子を離脱させ真
空ポンプを経て外部に排出する力としてプラスされる
為、真空容器内を短時間に清浄化することができるもの
と考えられる。 【0013】 【実施例】以下、本発明の一実施例について添付図面を
参照しながら説明する。 【0014】本発明の一実施例のベーキング方法に用い
るベーキング装置の構造を図1に示す。ベーキング装置
1の構成は、真空容器2の上部には高純度な不活性ガス
14を小量送り込むための配管4が接続されている。下
部には真空容器内のガスを真空ポンプ8から真空系の外
へ排出するための連通管7が接続されている。真空容器
2の外周にはヒータ3が巻かれており、真空容器の内壁
面9を加熱出来るようになっている。上部の配管4には
フィルタ5が設けられており、不活性ガス13中に含ま
れる水分その他の粒子を除去し、高純度にすることが出
来るようになっている。 【0015】次に本発明のベーキング方法の一実施例を
説明する。先ず高純度N2 ガス14を小量、真空容器2
の入口11から流入させておく。この時ヒータ3によっ
て真空容器の内壁面9は70℃以上、200℃以下に加
熱しておくのが好ましい。一方真空ポンプ8を作動さ
せ、真空容器の下部の出口12から連通管7を介して真
空容器内のガスを排気ガス15として排出させる。即
ち、不活性ガスを流しながら真空ベーキングする。 【0016】ベーキング温度は70℃以上で効果が現れ
るが、より効果的には100℃以上が好ましい。ベーキ
ング温度は高いほど良いが実験結果からみて120℃程
度であれば十分効果が期待出来る。又、200℃以上で
は真空系の接続部のシール材等に問題を生じる。 【0017】真空容器に熱を加える方法は真空容器の外
面にリボンヒータを巻きつけても良いし、赤外線ランプ
により外部から加熱しても良い。その他真空容器に発熱
体を溶射してヒータを形成する方法でもかまわない。 【0018】この時に真空容器内に流す高純度N2 ガス
またはその他の高純度不活性ガスの流量は内容積100
L程度の真空容器を300L/s程度の真空ポンプを用
いて真空排気する程度ならば、100SCCM(Standa
rd Cube Centimeter Per Minute)以下の小量のガス流
量で良い。真空容器内のガス流は、単位体積当りの分子
数が少ない分子流領域よりも単位体積当りの分子数が多
く分子間で干渉し粘着力の働く粘性流域のほうが効果的
である。真空容器内に流す高純度N2 ガスの代わりにア
ルゴン等の高純度不活性ガスを用いても勿論かまわな
い。 【0019】次に本発明による真空容器のベーキング方
法の効果を確認するために実験を行ったので、それを説
明する。 【0020】真空容器の容積は27Lであり、真空ポン
プとしては排気能力が300L/sのターボ分子ポンプ
を使用しており、ベーキングは真空容器にリボンヒータ
を巻いた加熱方式を採用している。 【0021】ベーキング効果を知る為に、ベーキング条
件を変えて行った真空容器中に長時間ウエハを真空保管
した後、ウエハを取り出して接触角度法により測定を行
い、保管中の真空容器内の汚染度を推定した。 【0022】接触角度法は、分子レベルの汚染を知る方
法として広く知られている。即ち、ウエハ表面に純水を
滴下し、ウエハ表面と水滴の盛り上がり具合で形成され
る接触角度を測定する計測法である。シリコン表面に有
機膜等が生成していると、表面に滴下した水滴の接触角
度は大きくなり、又汚染がないと接触角度は小さい。 【0023】真空容器のベーキングが不十分だと真空容
器の内壁面からの脱離ガスが多く放出される。このガス
が真空容器内の様々な不純物を吸着したまま、真空保管
中のウエハの表面にも付着するから、ウエハを取り出し
た後、表面には残留不純物や有機膜が存在することにな
る。これ等の分子レベルの汚染の程度に伴って接触角度
は大きくなる。 【0024】試験試料となるウエハの接触角度の初期値
は1.5°であった。この後、あらかじめ一定時間ベー
キングを行っておいた真空容器中に、ウエハを16時間
保管した。保管後ウエハの接触角度を実測した。但し保
管中の真空度は1.0×10-6Torrである。 【0025】真空容器のベーキング条件と接触角度は表
1の通りである。 【表1】 【0026】図2のグラフは表1の結果をグラフにした
ものである。実験結果から次のことが明らかである。 (1)ベーキングなしでは接触角度は初期値の7倍以上
に増加しており汚染が大きい。 (2)N2 ガスあり(20SCCM)では、ベーキング
温度が低い(120℃)にもかかわらず、短時間のベー
キングを行っただけで保管したウエハの清浄度が保たれ
ている。 (3)逆にN2 ガスなし(0SCCM)では、温度を高
くしたにも又長時間ベーキングを行ったにもかかわらず
清浄度がそれ程改善されていない。 【0027】以上述べた様に、ベーキング中にN2 ガス
を流すことによりベーキング温度を低くすることがで
き、しかも短時間でベーキングを完了させることができ
る。 【0028】尚、図1ではガス導入口とガス排気口は真
空容器の逆側に設置されているが、ガス導入口の位置は
いずれの位置でもよい。但し真空容器をガスが均一に流
れるような位置に設置することが望ましい。ガスの導入
口は1つに限らず、2箇以上何箇設置してもよい。この
ように本発明の趣旨を逸脱することなく、種々の変形実
施例が可能である。 【0029】 【発明の効果】本発明は上述したように、ベーキング中
の真空容器内に不活性ガスを小量流すだけで、比較的低
温度且つ短時間で真空容器を清浄化できる。従って、L
SIや液晶表示素子の製造に関し、品質、歩留上の効果
があるばかりでなく、ベーキング所要時間の短縮、製品
のコストダウンに関しても効果を期待できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for baking a vacuum vessel used for processing and storing a substrate used in a semiconductor manufacturing process or the like. 2. Description of the Related Art A vacuum space is indispensable for a wafer in a semiconductor manufacturing process and a glass substrate in a liquid crystal display element manufacturing process, which are state-of-the-art technologies. In order to create a vacuum space indispensable for such a state-of-the-art technology, a vacuum container is necessary. In order to create a vacuum space using a vacuum container, the vacuum container may be connected to a vacuum pump and evacuated. However, in this state, water molecules and the like adhering to the wall of the vacuum container are separated from the wall of the vacuum container in a vacuum, and the degree of vacuum does not increase, or the separated molecules are stored (a wafer for manufacturing semiconductors or a liquid crystal). There is a concern that glass substrates used for manufacturing panels may be contaminated at the molecular level. [0003] The vacuum container (chamber) has an exhaust port, and a vacuum pump is connected from the exhaust port through a communication pipe. These as a whole form one vacuum system. Initially, the inside of the vacuum vessel is at normal pressure (atmospheric pressure), but the air in the vacuum vessel is forcibly discharged to the vacuum pump through the exhaust port and the communication pipe with the operation of the vacuum pump. The pressure is reduced. As the pressure in the vacuum container is reduced, water molecules and the like adhering to the inner wall surface of the vacuum container are separated from the wall surface and exit to the space in the vacuum container. However, since the density of water molecules and the like in the vacuum vessel decreases, the purification at the molecular level proceeds accordingly. When the inner wall surface of the vacuum vessel is heated and heated, the detachment of water molecules from the wall surface is further accelerated. When performing vacuum baking, the higher the baking temperature,
Naturally, the longer the baking time, the better the effect of removing contaminant molecules attached to the inner wall surface of the vacuum vessel. [0005] However, it is said that Al alloys and the like, which are often used for vacuum vessels, have a low melting point and the upper limit of the baking temperature is 150 to 200 ° C. . Further, even if a material having a high melting point, for example, a stainless steel material, is used for the vacuum vessel, rubber or Teflon is used to connect the vacuum vessel to the exhaust port, the exhaust port and the communication pipe, etc. A sealing material such as an O-ring is indispensable. Due to the properties of these sealing materials, the upper limit of the use temperature is limited, and the maximum temperature at which long-term repeated baking is allowed is at most about 200 ° C. In consideration of heat resistance, even if a stainless steel material is used as the material of the vacuum vessel and a sealing material made of a metal material is used for the sealing portion, the carbon atoms C in the stainless steel material are not higher than 350 ° C. There is a problem that the grain boundaries segregate at the crystal grain boundaries and the strength of the stainless steel member is reduced. [0008] As described above, the conventional baking method,
In other words, the simple method of reducing the pressure by the vacuum pump and heating the vacuum vessel cannot provide sufficient cleanliness due to the limitation of the heating temperature, and also limits the improvement of product quality and yield. [0009] With regard to LSIs and liquid crystal display elements as products, not only improvement of product quality and yield but also cost reduction are important factors. In mass production,
Since the cost reduction is closely related to the time required for these manufacturing steps, it is not economical to lengthen the time for raising and lowering the temperature of the vacuum system and the time for baking. SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art, and has a low baking temperature and a high degree of cleanness in a vacuum vessel in a short baking time. The aim is to provide a method. [0011] [Means for Solving the Problems vacuum vessel baking process of the present invention is provided with heating means vacuum vessel, while heating the vessel inner wall surface to 70 to 200 ° C., high purity nitrogen gas or The method is characterized in that another inert gas flows into the container. In the vacuum vessel, a clean inert gas is supplied from one inlet, and the gas in the vacuum vessel is sucked out from the other outlet. As a result, a steady gas flow occurs. Since the flow of the gas is used as a force for releasing contaminant molecules from the inner wall surface of the vacuum vessel and discharging the contaminated molecules to the outside via the vacuum pump, it is considered that the inside of the vacuum vessel can be cleaned in a short time. An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the structure of a baking apparatus used in a baking method according to one embodiment of the present invention. In the configuration of the baking apparatus 1, a pipe 4 for feeding a small amount of high-purity inert gas 14 is connected to an upper portion of the vacuum vessel 2. A communication pipe 7 for discharging the gas in the vacuum vessel from the vacuum pump 8 to the outside of the vacuum system is connected to the lower part. A heater 3 is wound around the outer periphery of the vacuum vessel 2 so that the inner wall surface 9 of the vacuum vessel can be heated. A filter 5 is provided in the upper pipe 4 to remove moisture and other particles contained in the inert gas 13 so that the purity can be increased. Next, one embodiment of the baking method of the present invention will be described. First, a small amount of high-purity N2 gas 14
From the inlet 11 of At this time, it is preferable that the inner wall surface 9 of the vacuum vessel is heated to 70 ° C. or more and 200 ° C. or less by the heater 3. On the other hand, the vacuum pump 8 is operated, and the gas in the vacuum vessel is discharged as the exhaust gas 15 from the outlet 12 at the lower part of the vacuum vessel through the communication pipe 7. That is, vacuum baking is performed while flowing an inert gas. The effect appears when the baking temperature is 70 ° C. or higher, but more preferably 100 ° C. or higher. The higher the baking temperature, the better, but from the experimental results, a sufficient effect can be expected at about 120 ° C. If the temperature is higher than 200 ° C., a problem occurs in the sealing material of the vacuum connection part. As a method of applying heat to the vacuum container, a ribbon heater may be wound around the outer surface of the vacuum container, or external heating may be performed by an infrared lamp. In addition, a method in which a heater is formed by spraying a heating element on a vacuum vessel may be used. At this time, the flow rate of the high-purity N2 gas or other high-purity inert gas flowing into the vacuum vessel is 100
If the vacuum vessel of about L is evacuated using a vacuum pump of about 300 L / s, 100 SCCM (Standa
A small gas flow rate of less than rd Cube Centimeter Per Minute) is sufficient. The gas flow in the vacuum vessel is more effective in a viscous flow region in which the number of molecules per unit volume is large and interference occurs between molecules and adhesive force acts, as compared with a molecular flow region in which the number of molecules per unit volume is small. Of course, a high-purity inert gas such as argon may be used instead of the high-purity N2 gas flowing into the vacuum vessel. Next, an experiment was conducted to confirm the effect of the method for baking a vacuum vessel according to the present invention, which will be described. The capacity of the vacuum container is 27 L, a turbo-molecular pump having an evacuation capacity of 300 L / s is used as the vacuum pump, and baking employs a heating method in which a ribbon heater is wound around the vacuum container. In order to know the baking effect, the wafer was vacuum-stored for a long time in a vacuum vessel under different baking conditions, then the wafer was taken out and measured by the contact angle method, and contamination in the vacuum vessel during storage was measured. The degree was estimated. The contact angle method is widely known as a method for detecting contamination at the molecular level. That is, this is a measurement method in which pure water is dropped on the wafer surface and the contact angle formed by the degree of swelling of the water drop with the wafer surface is measured. When an organic film or the like is formed on the silicon surface, the contact angle of water droplets dropped on the surface becomes large, and when there is no contamination, the contact angle becomes small. If the baking of the vacuum container is insufficient, a large amount of desorbed gas is released from the inner wall surface of the vacuum container. Since this gas adheres to the surface of the wafer during vacuum storage while adsorbing various impurities in the vacuum vessel, residual impurities and organic films exist on the surface after the wafer is taken out. The contact angle increases with the degree of these molecular-level contaminations. The initial value of the contact angle of the test sample wafer was 1.5 °. Thereafter, the wafer was stored for 16 hours in a vacuum container that had been baked for a predetermined time in advance. After storage, the contact angle of the wafer was measured. However, the degree of vacuum during storage is 1.0.times.10@-6 Torr. Table 1 shows baking conditions and contact angles of the vacuum vessel. [Table 1] The graph of FIG. 2 is a graph of the results of Table 1. The following is clear from the experimental results. (1) Without baking, the contact angle increased to 7 times or more of the initial value, and contamination was large. (2) In the presence of N2 gas (20 SCCM), the cleanness of the stored wafer is maintained only by short-time baking, despite the low baking temperature (120 DEG C.). (3) On the contrary, when N2 gas was not used (0 SCCM), the cleanliness was not so much improved even though the temperature was increased and the baking was performed for a long time. As described above, the baking temperature can be lowered by flowing the N 2 gas during the baking, and the baking can be completed in a short time. In FIG. 1, the gas inlet and the gas outlet are installed on opposite sides of the vacuum vessel, but the gas inlet may be located at any position. However, it is desirable to install the vacuum vessel at a position where the gas flows uniformly. The number of gas inlets is not limited to one, but may be two or more. Thus, various modifications can be made without departing from the spirit of the present invention. As described above, according to the present invention, the vacuum vessel can be cleaned at a relatively low temperature in a short time only by flowing a small amount of the inert gas into the vacuum vessel during baking. Therefore, L
In the manufacture of SI and liquid crystal display elements, not only effects on quality and yield can be obtained, but also effects on shortening of baking time and cost reduction of products can be expected.

【図面の簡単な説明】 【図1】本発明の一実施例の不活性ガス流入手段を有す
るベーキング装置の断面図。 【図2】本発明と従来技術の真空ベーキングによる清浄
化の効果を示すグラフ。 【符号の説明】 2 真空容器 3 ヒータ 4 配管 5 フィルタ 7 連通管 8 真空ポンプ 9 真空容器の内壁面 10 真空容器内の空間 11 ガス導入口 12 ガス排気口 14 高純度N2 ガス 15 排気ガス
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a baking apparatus having an inert gas inflow means according to one embodiment of the present invention. FIG. 2 is a graph showing the effect of cleaning by vacuum baking according to the present invention and the prior art. [Description of Signs] 2 Vacuum container 3 Heater 4 Pipe 5 Filter 7 Communication tube 8 Vacuum pump 9 Inner wall surface of vacuum container 10 Space in vacuum container 11 Gas inlet 12 Gas exhaust port 14 High purity N2 gas 15 Exhaust gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 毅 神奈川県藤沢市本藤沢4丁目2番1号 株式会社 荏原総合研究所内 (56)参考文献 特開 平3−219069(JP,A) 特開 平5−57810(JP,A) 実開 平6−2678(JP,U) (58)調査した分野(Int.Cl.7,DB名) B01J 3/00 - 3/08 H01L 21/00 - 21/98 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Takeshi Yoshioka 4-2-1, Motofujisawa, Fujisawa-shi, Kanagawa Inside Ebara Research Institute Co., Ltd. (56) References JP-A-3-219069 (JP, A) Hei 5-57810 (JP, A) Actually open Hei 6-2678 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 3/00-3/08 H01L 21/00-21 / 98

Claims (1)

(57)【特許請求の範囲】 【請求項1】 真空容器のベーキング方法において、真
空容器に加熱手段を備え、該容器内壁面を70〜200
℃に加熱しながら、高純度窒素ガスまたはその他の不活
性ガスを該容器内に流すことを特徴とする真空容器のベ
ーキング方法。
(57) [Claim 1] In a baking method for a vacuum vessel, a heating means is provided in the vacuum vessel, and the inner wall surface of the vessel is 70 to 200 mm.
A baking method for a vacuum vessel, characterized in that a high-purity nitrogen gas or other inert gas is flowed into the vessel while being heated to ℃.
JP04324594A 1994-02-17 1994-02-17 Vacuum container baking method Expired - Fee Related JP3457049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04324594A JP3457049B2 (en) 1994-02-17 1994-02-17 Vacuum container baking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04324594A JP3457049B2 (en) 1994-02-17 1994-02-17 Vacuum container baking method

Publications (2)

Publication Number Publication Date
JPH07227533A JPH07227533A (en) 1995-08-29
JP3457049B2 true JP3457049B2 (en) 2003-10-14

Family

ID=12658508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04324594A Expired - Fee Related JP3457049B2 (en) 1994-02-17 1994-02-17 Vacuum container baking method

Country Status (1)

Country Link
JP (1) JP3457049B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654467B2 (en) * 1998-03-06 2011-03-23 シンフォニアテクノロジー株式会社 Vacuum container baking equipment
JP2013112576A (en) * 2011-11-30 2013-06-10 Yasuo Ishikawa Method and apparatus for generating hydrogen
JP5797144B2 (en) * 2012-03-27 2015-10-21 三菱重工業株式会社 Gas filling device and gas filling method
JPWO2013187026A1 (en) * 2012-06-13 2016-02-04 株式会社Joled Method for removing impurities in vacuum chamber, method for using vacuum apparatus, and method for manufacturing product

Also Published As

Publication number Publication date
JPH07227533A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
EP1394842B1 (en) Thin film forming apparatus cleaning method
JP3140068B2 (en) Cleaning method
KR101129099B1 (en) Collector unit and film formation apparatus for semiconductor process
JP3990881B2 (en) Semiconductor manufacturing apparatus and cleaning method thereof
US5580421A (en) Apparatus for surface conditioning
KR100257305B1 (en) Heat treatment apparatus and the cleaning method
JP2000299289A (en) Cleaning gas and cleaning method of vacuum processing apparatus
US6722055B2 (en) Supporting fixture of substrate and drying method of substrate surface using the same
JPH06128099A (en) Processor
US5704214A (en) Apparatus for removing tramp materials and method therefor
JPH10326752A (en) Apparatus and method for processing substrate
JP3457049B2 (en) Vacuum container baking method
JP2003332308A (en) Substrate treatment apparatus and substrate treatment method
US7448397B1 (en) Apparatus for applying disparate etching solutions to interior and exterior surfaces
JP3547799B2 (en) Cold trap and semiconductor device manufacturing apparatus
JP4116149B2 (en) Single wafer load lock device
JPH06140379A (en) Treatment equipment
JP2003115519A (en) Manufacturing method of semiconductor device, semiconductor manufacturing apparatus, load lock chamber, substrate storage case and stocker
JP3581890B2 (en) Heat treatment method and heat treatment apparatus
JP3374256B2 (en) Heat treatment apparatus and cleaning method thereof
JPH0410622A (en) Dry cleaning apparatus
JPH06333854A (en) Film forming device
JP3624963B2 (en) Cleaning method for film forming apparatus
JP3025789B2 (en) Exhaust method
JP3135141B2 (en) Processing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees