JP3456588B2 - Energy absorbing member - Google Patents

Energy absorbing member

Info

Publication number
JP3456588B2
JP3456588B2 JP11418793A JP11418793A JP3456588B2 JP 3456588 B2 JP3456588 B2 JP 3456588B2 JP 11418793 A JP11418793 A JP 11418793A JP 11418793 A JP11418793 A JP 11418793A JP 3456588 B2 JP3456588 B2 JP 3456588B2
Authority
JP
Japan
Prior art keywords
energy absorbing
resin
absorbing member
energy
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11418793A
Other languages
Japanese (ja)
Other versions
JPH06307476A (en
Inventor
幸胤 木本
研二 光安
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11418793A priority Critical patent/JP3456588B2/en
Publication of JPH06307476A publication Critical patent/JPH06307476A/en
Application granted granted Critical
Publication of JP3456588B2 publication Critical patent/JP3456588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー吸収部材に
関し、とくに、樹脂と補強繊維との複合材料からなるエ
ネルギー吸収部材の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member, and more particularly to the structure of an energy absorbing member made of a composite material of resin and reinforcing fibers.

【0002】[0002]

【従来の技術】たとえば、航空機の座席周り等や、自動
車の座席周り、バンパー周り、各種構造部材に、衝撃エ
ネルギーを吸収するエネルギー吸収部材が用いられる
(特開昭60−109630号公報、特開昭62−17
438号公報等)。このエネルギー吸収部材には、衝撃
エネルギーを良好に吸収できる性能の他、一般に軽量、
高剛性であることが要求されることから、樹脂と補強繊
維との複合材料、いわゆる繊維強化プラスチック(以
下、FRPと言うこともある。)、中でも炭素繊維強化
プラスチック(以下、CFRPと言うこともある。)が
適しているとされている。このようなエネルギー吸収部
材においては、エネルギー吸収部材のある部位、たとえ
ば部材端部を起点に、局部破壊を生じさせ、その局部破
壊を利用してエネルギーを吸収するエネルギー吸収メカ
ニズムが考えられる。
2. Description of the Related Art For example, an energy absorbing member that absorbs impact energy is used for a seat around an aircraft, a seat around an automobile, a bumper, and various structural members (JP-A-60-109630). 62-17
No. 438, etc.). In addition to the ability to absorb impact energy well, this energy absorbing member is generally lightweight,
Since high rigidity is required, a composite material of a resin and reinforcing fibers, so-called fiber reinforced plastic (hereinafter sometimes referred to as FRP), especially carbon fiber reinforced plastic (hereinafter also referred to as CFRP) There is) is said to be suitable. In such an energy absorbing member, an energy absorbing mechanism may be considered in which local destruction is caused from a certain portion of the energy absorbing member, for example, a member end portion, and the energy is absorbed by utilizing the local destruction.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の樹脂
と補強繊維との複合材料からなるエネルギー吸収部材
は、エネルギー吸収能力に未だ不十分な面がある。たと
えば、補強繊維が層状に積層されているような場合、層
間剥離を生じやすく、小さなエネルギーで破壊に至って
しまうため、結局大きなエネルギーを吸収できず、十分
に実用に供されていないのが実情である。
However, conventional energy absorbing members made of a composite material of resin and reinforcing fibers still have insufficient energy absorbing ability. For example, when reinforcing fibers are laminated in layers, delamination is likely to occur and a small amount of energy leads to breakage, so that a large amount of energy cannot be absorbed in the end and it is not practically used in practice. is there.

【0004】本発明は、層間剥離が発生せず、部材の厚
さ方向全体にわたって実質的に均一なかつ高い強度を発
揮でき、高いエネルギー吸収能力を発揮可能なエネルギ
ー吸収部材を提供することを目的とする。
It is an object of the present invention to provide an energy absorbing member which does not cause delamination, can exhibit substantially uniform and high strength over the entire thickness direction of the member, and can exhibit high energy absorbing ability. To do.

【0005】[0005]

【課題を解決するための手段】この目的に沿う本発明の
エネルギー吸収部材は、樹脂と補強繊維との複合材料か
らなるエネルギー吸収部材であって、前記補強繊維が、
長さ100mm以下の短繊維からなり、かつ、無作為な
方向に向いており、前記樹脂の破断伸度が30%以上で
あり、前記補強繊維の破断伸度が1.5%以上であり、
かつ、前記樹脂と補強繊維との界面における剪断強度と
前記樹脂の剪断強度との比が0.8〜1.2であること
を特徴とするものからなる。
The energy absorbing member of the present invention which meets this object is an energy absorbing member made of a composite material of resin and reinforcing fibers, wherein the reinforcing fibers are:
It consists of short fibers with a length of 100 mm or less, and is oriented in a random direction, and the breaking elongation of the resin is 30% or more.
The breaking elongation of the reinforcing fiber is 1.5% or more,
And, the shear strength at the interface between the resin and the reinforcing fiber,
The resin has a ratio to the shear strength of 0.8 to 1.2 .

【0006】このようなエネルギー吸収部材において
は、たとえば図1に円筒状のエネルギー吸収部材41を
示すように、樹脂と補強繊維42との複合材料43から
なる部材41内に、長さ100mm以下の短繊維からな
る補強繊維が3次元的に無作為な方向に向いている。こ
のエネルギー吸収部材41が、エネルギー吸収軸44方
向の、たとえば圧縮方向の衝撃エネルギーを吸収する
際、図1の部材41を図2に拡大して示すように、圧縮
荷重Pに対し、部材41が破壊に至る際には、部材41
の端部において部材41が肉厚方向に関して裂けるよう
に開こうとする。しかし、補強繊維42が無作為な方向
に向いているため、この複合材料43には層間がなく、
いわゆる層間剥離が発生しない。そのため、部材41
は、厚さ方向に実質的に均一な強度を発揮でき、部材4
1の端部は、実際には、図2のように拡開、破壊しにく
く、部材41を破壊させるためには極めて大きな荷重P
を必要とするようになる。換言すれば、このエネルギー
吸収部材41は、大きなエネルギー量を吸収できる。
In such an energy absorbing member, for example, as shown in FIG. 1 as a cylindrical energy absorbing member 41, a member 41 made of a composite material 43 of resin and reinforcing fibers 42 has a length of 100 mm or less. Reinforcing fibers made of short fibers are three-dimensionally oriented in a random direction. When the energy absorbing member 41 absorbs impact energy in the direction of the energy absorbing axis 44, for example, in the compressing direction, as shown in the enlarged view of the member 41 in FIG. When it is destroyed, the member 41
The member 41 tries to open in such a manner that the member 41 tears in the thickness direction at the end. However, since the reinforcing fibers 42 are oriented in a random direction, this composite material 43 has no layers,
So-called delamination does not occur. Therefore, the member 41
Can exhibit a substantially uniform strength in the thickness direction, and the member 4
In fact, the end portion of 1 is difficult to spread and break as shown in FIG. 2, and an extremely large load P is required to break the member 41.
Will be needed. In other words, this energy absorbing member 41 can absorb a large amount of energy.

【0007】また、一旦破壊が開始されると、補強繊維
42が無作為な方向に向いているため、図2のように拡
開された部材端部の両側部分43a、43b間に、絡み
合った補強繊維42aが介在する状態になる。この拡開
部分43a、43b間にわたって介在する補強繊維42
aは、両部分43a、43bがより拡開しようとする
際、大きな抵抗力を発揮する。その結果、この複合材料
のエネルギー解放率が増大され、エネルギー吸収部材4
1の比吸収エネルギー量が一層増大される。
Further, once the breakage is started, the reinforcing fibers 42 are oriented in a random direction, so that they are entangled between the both side portions 43a and 43b of the member end portion expanded as shown in FIG. The reinforcing fiber 42a is in the intervening state. Reinforcing fiber 42 interposed between the expanded portions 43a and 43b
The a exerts a large resistance force when the both portions 43a and 43b try to further expand. As a result, the energy release rate of this composite material is increased and the energy absorbing member 4
The specific absorbed energy amount of 1 is further increased.

【0008】上記補強繊維の長さは、100mm以下、
好ましくは5〜100mmである。長さが100mmを
越えると、局部的に層間を発生するおそれが生じるので
好ましくない。また、5mmよりも短いと、複合材料に
おける補強の効果が小さくなるとともに、図2に示した
ような、拡開部分43a、43b間にわたる補強繊維4
2aによる比吸収エネルギー量増大効果が少なくなる。
The reinforcing fiber has a length of 100 mm or less,
It is preferably 5 to 100 mm. If the length exceeds 100 mm, a layer may be locally generated, which is not preferable. When the length is shorter than 5 mm, the effect of reinforcement in the composite material becomes small and the reinforcing fiber 4 extending between the expanded portions 43a and 43b as shown in FIG.
2a reduces the effect of increasing the amount of specific absorbed energy.

【0009】本発明のエネルギー吸収部材を構成する複
合材料の樹脂と補強繊維の種類は特に限定されないが、
補強繊維の引張強度が350kgf/mm2 以上である
ことが好ましく、450kgf/mm2 以上であること
がさらに好ましい。補強繊維の引張強度が350kgf
/mm2 以上であると、複合材料からなるエネルギー吸
収部材に加わる衝撃エネルギーに対して、繊維の破断に
要するエネルギー量が大きくなるので、同じ破壊量につ
いて大きなエネルギー量を吸収できるようになる。引張
強度が350kgf/mm2 未満であると、補強繊維が
小さなエネルギー量で破断しやすくなる。このように、
高引張強度の補強繊維により複合材料全体の強度、剛性
を向上できるので、一層破壊しにくい、高いエネルギー
吸収能力を有するエネルギー吸収部材となる。
The kinds of resin and reinforcing fiber of the composite material constituting the energy absorbing member of the present invention are not particularly limited,
The tensile strength of the reinforcing fiber is preferably 350 kgf / mm 2 or more, more preferably 450 kgf / mm 2 or more. Tensile strength of reinforcing fiber is 350kgf
When it is / mm 2 or more, the amount of energy required for breaking the fiber is large with respect to the impact energy applied to the energy absorbing member made of the composite material, so that a large amount of energy can be absorbed for the same amount of breaking. When the tensile strength is less than 350 kgf / mm 2 , the reinforcing fiber is likely to break with a small amount of energy. in this way,
Since the strength and rigidity of the composite material as a whole can be improved by the reinforcing fiber having high tensile strength, the energy absorbing member has higher energy absorbing ability and is more difficult to break.

【0010】また、本発明においては、補強繊維の表面
起伏度が1.08以上であることが好ましい。補強繊維
の表面起伏度が1.08以上であると、表面の起伏によ
る、いわゆるアンカー効果が向上するので、補強繊維と
樹脂との接着性が向上し、極めて剥離あるいは破壊しに
くい界面を達成できる。接着性の向上により、複合材料
における補強繊維の強度を極めて有効に利用できるよう
になり、複合材料全体としての剛性を向上できるので、
大きなエネルギー量を吸収できるようになる。表面起伏
度が1.08未満であると、上記のようなアンカー効果
を期待できなくなるか、あっても僅かである。
Further, in the present invention, it is preferable that the surface roughness of the reinforcing fiber is 1.08 or more. When the surface undulation degree of the reinforcing fiber is 1.08 or more, the so-called anchor effect due to the undulation of the surface is improved, so the adhesiveness between the reinforcing fiber and the resin is improved, and an interface that is extremely difficult to peel or break can be achieved. . By improving the adhesiveness, the strength of the reinforcing fiber in the composite material can be utilized very effectively, and the rigidity of the composite material as a whole can be improved,
Can absorb a large amount of energy. If the surface undulation degree is less than 1.08, the anchor effect as described above cannot be expected, or even if there is, it is slight.

【0011】さらに本発明においては、補強繊維が炭素
繊維からなる場合には、該補強繊維の、表面の酸素
(O)と炭素(C)の原子数比である表面官能基量(O
/C)が0.08以上であることが好ましい。表面官能
基量(O/C)が0.08以上であると、活性化された
Oによって補強繊維表面の接着性が高められ、樹脂と補
強繊維との接着強度が高められて、複合材料全体として
極めて高い剛性、エネルギー吸収能力を発揮できる。表
面官能基量(O/C)が0.08未満であると、樹脂と
補強繊維との接着性が不十分となり、エネルギー吸収時
に樹脂と補強繊維との界面で剥離、あるいは破壊が生じ
やすくなり、その分エネルギー吸収能力が低下する。
Further, in the present invention, when the reinforcing fiber is made of carbon fiber, the amount of surface functional group (O), which is the atomic number ratio of oxygen (O) to carbon (C) on the surface of the reinforcing fiber.
/ C) is preferably 0.08 or more. When the amount of surface functional groups (O / C) is 0.08 or more, the activated O enhances the adhesiveness of the surface of the reinforcing fiber and enhances the adhesive strength between the resin and the reinforcing fiber, and the composite material as a whole. It can exhibit extremely high rigidity and energy absorption capability. If the amount of surface functional groups (O / C) is less than 0.08, the adhesiveness between the resin and the reinforcing fiber becomes insufficient, and peeling or breakage easily occurs at the interface between the resin and the reinforcing fiber during energy absorption. , The energy absorption capacity is reduced accordingly.

【0012】本発明のエネルギー吸収部材を構成する複
合材料における樹脂は、破断伸度が30%以上とされ
る。破断伸度が30%未満であると、高いエネルギー吸
収能力を達成するのが困難になる。本発明においては、
この高い破断伸度を有する高靱性の樹脂と、破断伸度、
引張強度が高い補強繊維との複合材料とすることによ
り、優れたエネルギー吸収能力を発揮でき、高い比吸収
エネルギー量を達成できる。また、補強繊維の表面起伏
度を大きくしておくことにより、あるいは、補強繊維が
炭素繊維である場合には表面官能基量(O/C)を大き
くすることにより、樹脂と補強繊維との接着性が高めら
れ、両者界面で剥離、破壊しにくい複合材料を実現で
き、優れたエネルギー吸収能力を達成できる。すなわ
ち、本発明のエネルギー吸収部材においては、高靱性の
樹脂と、高強度または/および高接着性の補強繊維とを
組み合わせた複合材料とすることにより、優れたエネル
ギー吸収能力を発揮でき、高い比吸収エネルギー量を達
成できるようになる。
[0012] resin in the composite material constituting the energy absorbing member of the present invention, the elongation at break is 30% or more
It When the elongation at break is less than 30%, it becomes difficult to achieve a high energy absorption capacity. In the present invention,
High toughness resin having this high breaking elongation, breaking elongation,
By using a composite material with a reinforcing fiber having a high tensile strength, an excellent energy absorption capacity can be exhibited and a high specific absorbed energy amount can be achieved. Further, by increasing the surface roughness of the reinforcing fiber, or by increasing the surface functional group amount (O / C) when the reinforcing fiber is carbon fiber, the adhesion between the resin and the reinforcing fiber The property is enhanced, and a composite material that is resistant to peeling and destruction at both interfaces can be realized, and an excellent energy absorption capacity can be achieved. That is, in the energy absorbing member of the present invention, by using a composite material in which a resin having high toughness and a reinforcing fiber having high strength and / or high adhesiveness are combined, excellent energy absorbing ability can be exhibited and a high ratio can be obtained. The amount of absorbed energy can be achieved.

【0013】本発明において補強繊維は、破断伸度が
1.5%以上とされる。補強繊維の破断伸度が1.5%
以上であると、複合材料からなるエネルギー吸収部材
の、破断が予期される部位が実際に破断に至るまでに、
大きなエネルギー量を吸収できるようになる。破断伸度
が1.5%未満であると、エネルギー吸収部材の少量の
変形で補強繊維が破断に至り、補強繊維が破断した状態
では大きなエネルギーを吸収できないから、結局エネル
ギー吸収部材のエネルギー吸収能力が低下することにな
る。
In the present invention, the reinforcing fiber has a breaking elongation of 1.5% or more . Breaking elongation of reinforcing fiber is 1.5%
If the above is the case, the part of the energy absorbing member made of the composite material, which is expected to break, actually breaks,
Can absorb a large amount of energy. If the breaking elongation is less than 1.5%, the reinforcing fiber is broken by a small amount of deformation of the energy absorbing member, and large energy cannot be absorbed when the reinforcing fiber is broken. Will be reduced.

【0014】また、本発明においては、補強繊維の少な
くとも破断伸度が1.5%以上とされ、かつ、樹脂と補
強繊維との界面における剪断強度と樹脂の剪断強度との
比が0.8〜1.2の範囲とされる。補強繊維の破断伸
度を1.5%以上とすることにより上述の如き作用、効
果が得られ、剪断強度比を0.8〜1.2の範囲とする
ことにより(つまり、樹脂と補強繊維との界面における
剪断強度を樹脂の剪断強度と同等かそれに近い値にする
ことにより)、樹脂と補強繊維との接着性を、望ましい
程度に、かつ、必要なだけ、高めることができる。補強
繊維の高破断伸度と、樹脂と補強繊維との高接着性によ
り、炭素繊維以外の補強繊維であっても、高いエネルギ
ー吸収能力をもつエネルギー吸収部材の実現が可能とな
る。
Further, in the present invention, at least the breaking elongation of the reinforcing fiber is 1.5% or more, and the ratio of the shear strength at the interface between the resin and the reinforcing fiber and the shear strength of the resin is 0.8. The range is from 1.2 to 1.2. By setting the breaking elongation of the reinforcing fiber to 1.5% or more, the above-described actions and effects can be obtained, and by setting the shear strength ratio in the range of 0.8 to 1.2 (that is, the resin and the reinforcing fiber). The adhesive strength between the resin and the reinforcing fiber can be increased to a desired degree and as much as necessary by setting the shear strength at the interface between and to a value equal to or close to the shear strength of the resin. Due to the high breaking elongation of the reinforcing fibers and the high adhesiveness between the resin and the reinforcing fibers, it becomes possible to realize an energy absorbing member having a high energy absorbing ability even with reinforcing fibers other than carbon fibers.

【0015】破断伸度が30%以上の樹脂としては、た
とえば、ナイロン6、ナイロン66、ナイロン11、ナ
イロン610、ナイロン612などのポリアミド、また
はこれらポリアミドの共重合ポリアミド、また、ポリエ
チレンテレフタレート、ポリブチレンテレフタレートな
どのポリエステル、またはこれらポリエステルの共重合
ポリエステル、さらに、ポリカーボネート、ポリアミド
イミド、ポリフェニレンスルファイド、ポリフェニレン
オキシド、ポリスルホン、ポリエーテルスルホン、ポリ
エーテルエーテルケトン、ポリエーテルイミド、ポリオ
レフィンなど、さらにまた、ポリエステルエラストマ
ー、ポリアミドエラストマーなどに代表される熱可塑性
エラストマー、等が挙げられる。
Examples of the resin having a breaking elongation of 30% or more include polyamides such as nylon 6, nylon 66, nylon 11, nylon 610 and nylon 612, copolyamides of these polyamides, polyethylene terephthalate and polybutylene. Polyesters such as terephthalate, or copolyesters of these polyesters, and further polycarbonates, polyamideimides, polyphenylene sulfides, polyphenylene oxides, polysulfones, polyether sulfones, polyether ether ketones, polyetherimides, polyolefins, etc., and polyester elastomers. , Thermoplastic elastomers typified by polyamide elastomers, and the like.

【0016】ただし、本発明の複合材料のマトリクスと
なる樹脂としては、上記の樹脂に限定されず、たとえ
ば、エポキシ樹脂、不飽和ポリエステル樹脂、ポリビニ
ルエステル樹脂、フェノール樹脂、グアナミン樹脂、ま
た、ビスマレイミド・トリアジン樹脂等のポリイミド樹
脂、フラン樹脂、ポリウレタン樹脂、ポリジアリルフタ
レート樹脂、さらにメラニン樹脂やユリア樹脂等のアミ
ノ樹脂等の熱硬化性樹脂が挙げられる。さらには、アク
リルゴム、アクリロニトリルブタジエンゴム、ウレタン
ゴム、シリコーンゴム、スチレンブタジエンゴム、フッ
素ゴム等のゴムを用いることもできる。さらにまた、上
記の熱硬化性樹脂、熱可塑性樹脂、ゴムから選ばれた複
数をブレンドした樹脂を用いることもできる。
However, the resin forming the matrix of the composite material of the present invention is not limited to the above resins, and examples thereof include epoxy resin, unsaturated polyester resin, polyvinyl ester resin, phenol resin, guanamine resin, and bismaleimide. Examples include polyimide resins such as triazine resins, furan resins, polyurethane resins, polydiallyl phthalate resins, and thermosetting resins such as amino resins such as melanin resins and urea resins. Further, rubber such as acrylic rubber, acrylonitrile butadiene rubber, urethane rubber, silicone rubber, styrene butadiene rubber, and fluoro rubber can be used. Furthermore, a resin obtained by blending a plurality of the above-mentioned thermosetting resins, thermoplastic resins, and rubber may be used.

【0017】また、本発明において実施可能な補強繊維
として、炭素繊維、ガラス繊維、芳香族ポリアミド繊
維、アルミナ繊維、炭化珪素繊維、ボロン繊維等が挙げ
られる。
Examples of the reinforcing fiber that can be used in the present invention include carbon fiber, glass fiber, aromatic polyamide fiber, alumina fiber, silicon carbide fiber, boron fiber and the like.

【0018】また、本発明の複合材料からなるエネルギ
ー吸収部材の形状は、とくに限定されず、筒状、柱状、
板状等、各種形状を採用可能である。代表的な形状、あ
るいは採用可能な形状を図3ないし図12に例示する。
The shape of the energy absorbing member made of the composite material of the present invention is not particularly limited, and may be cylindrical, columnar, or
Various shapes such as a plate shape can be adopted. Representative shapes or applicable shapes are illustrated in FIGS. 3 to 12.

【0019】エネルギー吸収部材の代表的な形状とし
て、まず、筒状形状を挙げることができる。筒状形状と
して最も代表的な形状は、図3に示すような円筒1であ
る。図における矢印方向が、衝撃エネルギーとしての圧
縮荷重作用方向である。また、図4に示すように、円筒
の頂部を円錐状あるいは球面状に形成した円筒2も適用
できる。さらに、図示は省略するが、角筒、円錐、角
錐、円錐台、角錐台、あるいは、横断面が楕円の筒、さ
らには、図5に示すように、フランジ部3を備えた円筒
(又は角筒)等の筒状形状4も採用できる。
As a typical shape of the energy absorbing member, first, a cylindrical shape can be mentioned. The most typical shape as a cylindrical shape is a cylinder 1 as shown in FIG. The direction of the arrow in the figure is the compressive load acting direction as impact energy. Further, as shown in FIG. 4, a cylinder 2 in which the top of the cylinder is formed in a conical shape or a spherical shape can also be applied. Further, although not shown in the drawings, a prism, a cone, a pyramid, a truncated cone, a truncated pyramid, or a cylinder having an elliptical cross section, and further, as shown in FIG. A tubular shape 4 such as a tube) can also be adopted.

【0020】また、筒状形状に限らず、柱状形状でもよ
い。たとえば、円柱、角柱形状を挙げることができる。
The shape is not limited to the cylindrical shape, but may be a columnar shape. For example, a columnar shape or a prismatic shape can be mentioned.

【0021】さらに、板状形状の採用も可能である。た
とえば、波板形状の部材とすれば、座屈に対して強いの
で、エネルギー吸収部材として使用可能となる。また、
図6に示すように、リブ5を有する、たとえば横断面T
字形の形状6、図7に示すように、横断面コ字状の形状
7とすることもできる。図7に示す横断面コ字状の形状
7では、2点鎖線で示すように蓋部材8を設けることも
できる。さらに、図8に示すように、横断面十字状の形
状9とすることもできる。
Further, it is possible to adopt a plate shape. For example, a corrugated plate-shaped member can be used as an energy absorbing member because it is strong against buckling. Also,
As shown in FIG. 6, for example, a cross section T having a rib 5 is provided.
The shape 6 may be a V shape, or may be a shape 7 having a U-shaped cross section as shown in FIG. 7. In the shape 7 having a U-shaped cross section shown in FIG. 7, the lid member 8 can be provided as shown by a two-dot chain line. Further, as shown in FIG. 8, a cross-shaped cross section 9 may be used.

【0022】さらにまた、各種形状の部材を組み合わせ
た構造とすることも可能である。たとえば、図9、図1
0に示すように、大きい円筒10、大きい円錐台11の
中に、小さい細長形状の円柱12、13を入れ、これら
を複合材料で構成することにより、より座屈しにくいエ
ネルギー吸収部材にすることができる。
Furthermore, it is also possible to adopt a structure in which members of various shapes are combined. For example, FIG. 9 and FIG.
As shown in FIG. 0, small elongated cylinders 12 and 13 are put in a large cylinder 10 and a large truncated cone 11 and are made of a composite material, so that an energy absorbing member that is less likely to buckle can be obtained. it can.

【0023】さらに、エネルギー吸収部材は、1個の部
材から構成されるものの他、複数の部材を重ねて、ある
いは組み合わせて構成してもよい。たとえば、図11、
図12に示すように、同一あるいは同様の形状の複合材
料からなる部材14、15a、15b、15cを縦に積
層してエネルギー吸収部材16、17を構成するように
してもよい。図12の構成にあっては、各部材を中、外
交互に積層してもよい。
Further, the energy absorbing member may be composed of one member, or may be composed of a plurality of members stacked or combined. For example, in FIG.
As shown in FIG. 12, the energy absorbing members 16 and 17 may be configured by vertically stacking members 14, 15a, 15b and 15c made of a composite material having the same or similar shapes. In the configuration of FIG. 12, each member may be alternately laminated inside and outside.

【0024】なお、上記のようなエネルギー吸収部材に
おいては、エネルギー吸収部材を端部から逐次破壊させ
るためのトリガ形状を形成しておくことが望ましく、こ
のトリガは、エネルギー吸収部材を押圧する押圧部材側
に設けてもよい。
In the energy absorbing member as described above, it is desirable to form a trigger shape for sequentially destroying the energy absorbing member from the end, and this trigger is a pressing member for pressing the energy absorbing member. It may be provided on the side.

【0025】〔特性の測定方法および効果の評価方法〕 以下に、本発明における特性の測定方法および効果の評
価方法について説明する。 (1)樹脂のエネルギー解放率GIC コンパクト試験(CT試験)規格:ASTM−E−39
9に基づいて測定した。
[Characteristic Measuring Method and Effect Evaluation Method] The characteristic measuring method and effect evaluating method in the present invention will be described below. (1) Energy release rate of resin G IC compact test (CT test) Standard: ASTM-E-39
It measured based on 9.

【0026】(2)繊維の破断伸度、引張強度 JIS−R7601に規定されている樹脂含浸ストラン
ド試験法に準じて測定した。試験に用いた樹脂処方およ
び硬化条件を次に示す。 樹脂処方:“ベークライト”ERL−4221 100部 3−フッ化ホウ素モノエチルアミン(BF3 ・MEA) 3部 アセトン 4部 硬化条件:130℃、30分
(2) Elongation at break and tensile strength of fiber Measured according to the resin-impregnated strand test method specified in JIS-R7601. The resin formulation and curing conditions used in the test are shown below. Resin Formulation: "Bakelite" ERL-4221 100 parts of 3 boron trifluoride monoethylamine (BF 3 · MEA) 3 parts acetone 4 parts Curing conditions: 130 ° C., 30 minutes

【0027】(3)表面起伏度 繊維方向に垂直に複合材料を切断し、切断面を金相研磨
により鏡面研磨する。ここで研磨面に垂直な単繊維の断
面形状を走差型電子顕微鏡(日本電子株式会社製JSM
−T300型)を用いて、加速電圧15kV、撮影倍率
10000倍での反射電子組成像をフイルムに撮影す
る。このようにして得られた反射電子組成像写真をさら
に焼付時に2倍に引き伸ばして、すなわち倍率は合計2
0000倍として表面起伏度解析用写真とする。ここで
該表面起伏度解析用写真から、単繊維断面の面積S(m
2 )および外周長さL(mm)を測定する。表面起伏
度は上記Lと、同一のSを有する仮想真円の外周長さの
比として、下式に従って求められる。 表面起伏度=L・(πS)-1/2/2 Lの測定は20000倍にて焼き付けされた写真の単繊
維断面像の外周上に伸縮性のない木綿糸を正確に貼付し
たのち、これを外し、その直線長さを実測する方法にて
行うことができる。また、Sの測定は20000倍にて
焼き付けされた写真上に、単位面積当たりの重量が既知
のトレース紙を置き、単繊維断面像の外周を正確にトレ
ースし、トレース線上を正確に切断したのち、切断され
た単繊維断面像の重量とトレース紙の単位面積当たりの
重量から換算により行うことができる。測定は10本の
単繊維について行い、その平均値をもってその表面起伏
度とする。なお、L、Sの測定にはそれを正確に測定で
きる方法であればその方法に制約はなく、上記の方法以
外に、イメージアナライザーを用いて測定することもで
きる。
(3) Surface relief The composite material is cut perpendicularly to the fiber direction, and the cut surface is mirror-polished by metal phase polishing. Here, the cross-sectional shape of the single fiber perpendicular to the polishing surface was measured by a scanning electron microscope (JSM manufactured by JSM Co., Ltd.).
-T300 type) is used to photograph a backscattered electron composition image at an accelerating voltage of 15 kV and a photographing magnification of 10,000 times on a film. The backscattered electron composition image photograph thus obtained was further stretched to 2 times at the time of printing, that is, the magnification was 2 in total.
It is taken as a photograph for surface undulation analysis with a magnification of 0000. Here, from the photograph for surface undulation analysis, the area S (m
m 2 ) and the outer peripheral length L (mm) are measured. The surface undulation degree is obtained according to the following formula as a ratio of the above L and the outer peripheral length of a virtual perfect circle having the same S. Surface relief = L · (πS) −1/2 / 2 L is measured at 20000 times. After accurately sticking a non-stretchable cotton thread on the outer periphery of the single fiber cross-sectional image in the photograph, Can be removed and the length of the straight line can be measured. Further, S was measured by placing a trace paper of known weight per unit area on a photograph printed at 20000 times, accurately tracing the outer periphery of the single fiber cross-sectional image, and accurately cutting the trace line. The weight can be converted from the weight of the cut single fiber cross-sectional image and the weight per unit area of the trace paper. The measurement is carried out on 10 monofilaments, and the average value is taken as the surface relief. There is no limitation on the method of measuring L and S as long as it can be accurately measured, and an image analyzer can be used in addition to the above method.

【0028】(4)表面官能基量(O/C) X線光電子分光法により、次の手順に従って求めた。先
ず、溶媒でサイジング剤などを除去した炭素繊維(束)
をカットして銅製の試料支持台上に拡げて並べた後、光
電子脱出角度を90°とし、X線源としてMgKα1,
2を用い、試料チャンバー中を1×10-8Torrに保
つ。測定時の帯電に伴うピークの補正としてC1Sの主ピ
ークの運動エネルギー値(K.E.)を969eVに合
わせる。C1Sピーク面積をK.E.として958〜97
2eVの範囲で直線のベースラインを引くことにより求
める。O1Sピーク面積をK.E.として714〜726
eVの範囲で直線のベースラインを引くことにより求め
る。ここで表面官能基量(O/C)とは、上記O1Sピー
ク面積とC1Sピーク面積の比から、装置固有の感度補正
値を用いて原子数比として算出したものである。なお本
発明者らは、島津製作所(株)製モデルESCA−75
0を用いてO1Sピーク面積とC1Sピーク面積の比を測定
し、その比を感度補正値2.85で割ることにより表面
官能基量(O/C)を求めた。
(4) Amount of surface functional group (O / C) It was determined by the following procedure by X-ray photoelectron spectroscopy. First, carbon fiber (bundle) from which sizing agents have been removed with a solvent
After cutting and arranging them on a copper sample support, the photoelectron escape angle was set to 90 °, and MgKα1, X-ray source was used.
2 is used and the sample chamber is kept at 1 × 10 −8 Torr. The kinetic energy value (KE) of the main peak of C 1S is set to 969 eV as a correction of the peak associated with charging during measurement. The C 1S peak area was calculated as K. E. As 958-97
It is obtained by drawing a linear baseline in the range of 2 eV. The O 1S peak area was measured by K.K. E. As 714-726
It is determined by drawing a straight baseline in the range of eV. Here, the amount of surface functional groups (O / C) is calculated as an atomic number ratio from the ratio of the O 1S peak area and the C 1S peak area using a sensitivity correction value specific to the apparatus. The inventors of the present invention used a model ESCA-75 manufactured by Shimadzu Corporation.
0 was used to measure the ratio of the O 1S peak area to the C 1S peak area, and the ratio was divided by the sensitivity correction value of 2.85 to obtain the surface functional group amount (O / C).

【0029】(5)樹脂の引張破断伸度 ASTM−D−638に従い測定する。(5) Tensile breaking elongation of resin Measure according to ASTM-D-638.

【0030】(6)樹脂の剪断強度 ASTM−D−732に従い測定する。(6) Shear strength of resin Measure according to ASTM-D-732.

【0031】(7)界面剪断強度 CoxモデルにおけるKelly−Tyson則に基づ
いた、いわゆる“単糸埋め込み法”で測定する。たとえ
ば、上下2枚(ないしはそれ以上)のマトリックス樹脂
フイルムの間に、補強繊維のモノフィラメント1本(単
糸)を直線状に置き、これを加熱加圧して上下フイルム
を融着固化させ、補強繊維の単糸と樹脂とを一体化する
(樹脂中に単糸が埋め込まれた状態にする)。これから
埋め込んだ単糸と平行な方向に、単糸を中心とした適当
な幅の短冊状に切出し、試験片とする。この試験片の両
端部を把持して引張荷重を加えて行くと、引張荷重がマ
トリックス樹脂から樹脂と繊維の界面を通じて樹脂中の
単糸に伝達され、単糸はある長さで切断する。さらに荷
重を上げ、ある荷重以上になると単糸はそれ以上切断し
なくなる状態が得られる。この時の補強繊維の切断長さ
を測定し、その平均値をLav、強化繊維の引張強度をσ
f 、単糸径をdf とすると、繊維と樹脂の界面剪断強度
τは τ=(3・σf ・df )/(8Lav) で計算される。この界面剪断強度は、繊維と樹脂とが完
全に接着していれば樹脂の剪断強度τm と一致するの
で、両者の比 τ/τm は、繊維と樹脂との界面の接着の程度を表す指標と成り
得る。また、樹脂の硬化収縮などに起因する、繊維表面
の法線方向で繊維向きの力が作用している場合には、繊
維と樹脂との完全な接着状態になくとも、界面剪断強度
τは樹脂の剪断強度τm に近い値になるか、またはこれ
以上の値になる場合があり、いずれにしろ繊維と樹脂と
の界面の接着の程度を表す指標と成り得る。
(7) Interfacial shear strength It is measured by the so-called "single yarn embedding method" based on the Kelly-Tyson rule in the Cox model. For example, one monofilament (single yarn) of a reinforcing fiber is linearly placed between two upper and lower (or more) matrix resin films, and this is heated and pressed to fuse and solidify the upper and lower films to form reinforcing fibers. The single yarn of and the resin are integrated (the single yarn is embedded in the resin). Cut a strip having an appropriate width centering on the single yarn in the direction parallel to the embedded single yarn to obtain a test piece. When both ends of this test piece are gripped and a tensile load is applied, the tensile load is transmitted from the matrix resin to the single yarn in the resin through the interface between the resin and the fiber, and the single yarn is cut at a certain length. When the load is further increased and the load exceeds a certain value, the single yarn cannot be cut further. At this time, the cut length of the reinforcing fiber was measured, the average value was Lav, and the tensile strength of the reinforcing fiber was σ.
If f is the single yarn diameter and d f is the single yarn diameter, the interfacial shear strength τ between the fiber and the resin is calculated by τ = (3 · σ f · d f ) / (8 Lav). Since this interfacial shear strength matches the shear strength τ m of the resin if the fiber and the resin are completely bonded, the ratio τ / τ m of both represents the degree of adhesion at the interface between the fiber and the resin. It can be an index. In addition, when a force in the fiber direction is acting in the normal direction of the fiber surface due to the curing shrinkage of the resin, the interfacial shear strength τ is the resin even if the fiber and the resin are not completely bonded. The shear strength may be a value close to or higher than the shear strength τ m , and in any case, it can be an index showing the degree of adhesion at the interface between the fiber and the resin.

【0032】(8)比吸収エネルギー量 規格や標準化された手法はまだ無い。図13に示すよう
にエネルギー吸収部材21に押圧部材22を介して圧縮
荷重Pを負荷して部材21を破壊していくと、一般に図
14のような荷重−変位(押圧部材の変位)線図が得ら
れる。この荷重−変位線図において、変位x1 からx2
の間に吸収されたエネルギーは図の斜線部の面積として
求められる。その間に破壊されたエネルギー吸収部材の
重量を求めて(同一断面の部材であれば、断面積と(x
2 −x1 )と比重の積で求まる)、吸収エネルギー量を
重量で除した値を比吸収エネルギー量とする。x1 、x
2 の設定や押圧部材の変位の速度等は適当に設定するこ
とができる。
(8) There is no standard for specific absorbed energy amount or standardized method. As shown in FIG. 13, when a compressive load P is applied to the energy absorbing member 21 via the pressing member 22 to destroy the member 21, generally a load-displacement (displacement of the pressing member) diagram as shown in FIG. Is obtained. In this load-displacement diagram, displacements x 1 to x 2
The energy absorbed during is calculated as the area of the shaded area in the figure. The weight of the energy absorbing member destroyed during that period is calculated (if the members have the same cross section, the cross sectional area and (x
2 −x 1 ) and specific gravity)), and the value obtained by dividing the absorbed energy amount by the weight is taken as the specific absorbed energy amount. x 1 , x
The setting of 2 , the speed of displacement of the pressing member, and the like can be set appropriately.

【0033】[0033]

【実施例】実施例1 東レ(株)製炭素繊維T300を補強繊維とし、マトリ
クスにナイロン6を用いて、内径70mm、肉厚2.3
mmの円筒を、特開平2−143810号公報で得られ
る複合板(繊維方向長さ25mm)を280℃に予熱
し、250℃の金型に仕込み圧縮成形した。
Example 1 Carbon fiber T300 manufactured by Toray Industries, Inc. was used as a reinforcing fiber, nylon 6 was used as a matrix, and the inner diameter was 70 mm and the wall thickness was 2.3.
The mm-sized cylinder was preheated to 280 ° C. with a composite plate (fiber length 25 mm) obtained in JP-A-2-143810, charged into a mold at 250 ° C., and compression-molded.

【0034】このようにして得られた円筒複合材料か
ら、機械加工により、図4に示したような、内径70m
m、肉厚2.3mm、長さが70mm、上端の傾斜角が
45度の、円筒形状の複合材料からなるエネルギー吸収
部材31を得た。
The cylindrical composite material thus obtained was machined to an inner diameter of 70 m as shown in FIG.
m, a wall thickness 2.3 mm, a length 70 mm, and an inclination angle of the upper end of 45 degrees, an energy absorbing member 31 made of a cylindrical composite material was obtained.

【0035】このエネルギー吸収部材31を、図15に
示すように万能試験機32に装着して、クロスヘッド3
3からロードセル34、押圧部材35を介してエネルギ
ー吸収部材31に圧縮荷重を加えていき、クロスヘッド
33の変位を押圧部材35の変位として荷重−変位特性
を測定した。変位の速度は10mm/分とした。得られ
た荷重−変位線図(図16)から比吸収エネルギー量を
求めたところ、90kJ/kgであった。
The energy absorbing member 31 is mounted on the universal testing machine 32 as shown in FIG.
A compression load was applied to the energy absorbing member 31 from 3 through the load cell 34 and the pressing member 35, and the displacement of the cross head 33 was used as the displacement of the pressing member 35 to measure the load-displacement characteristics. The displacement speed was 10 mm / min. When the specific absorbed energy amount was calculated from the obtained load-displacement diagram (FIG. 16), it was 90 kJ / kg.

【0036】[0036]

【発明の効果】以上説明したように、本発明のエネルギ
ー吸収部材によるときは、エネルギー吸収部材を構成す
る複合材料の補強繊維を100mm以下の短繊維とし、
それを無作為な方向に配列して、複合材料内に層間が生
じないようにし、かつ、樹脂の破断伸度が30%以上と
し、補強繊維の破断伸度が1.5%以上として、実際に
破断に至るまでに大きなエネルギー量を吸収できるよう
にするとともに、樹脂と補強繊維との界面における剪断
強度と樹脂の剪断強度との比を0.8〜1.2として、
樹脂と補強繊維との接着性を高めることができるように
したので、複合材料に厚さ方向に均一なかつ高い強度を
発揮させることができ、エネルギー吸収性能の高いエネ
ルギー吸収部材を実現できる。
As described above, according to the energy absorbing member of the present invention, the reinforcing fiber of the composite material constituting the energy absorbing member is a short fiber of 100 mm or less,
Arrange them in a random direction so that no inter-layers are created in the composite material , and the breaking elongation of the resin is 30% or more.
If the breaking elongation of the reinforcing fiber is 1.5% or more,
So that it can absorb a large amount of energy before it breaks
And shear at the interface between the resin and the reinforcing fiber
The ratio between the strength and the shear strength of the resin is 0.8 to 1.2,
To improve the adhesion between resin and reinforcing fiber
Therefore, the composite material can be made to exhibit uniform and high strength in the thickness direction, and an energy absorbing member having high energy absorbing performance can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るエネルギー吸収部材の部分縦断面
図である。
FIG. 1 is a partial vertical sectional view of an energy absorbing member according to the present invention.

【図2】図1の部材の拡大部分縦断面図である。FIG. 2 is an enlarged partial vertical sectional view of the member of FIG.

【図3】本発明のエネルギー吸収部材の形状の一例を示
す斜視図である。
FIG. 3 is a perspective view showing an example of the shape of the energy absorbing member of the present invention.

【図4】本発明のエネルギー吸収部材の別の形状例を示
す斜視図である。
FIG. 4 is a perspective view showing another example of the shape of the energy absorbing member of the present invention.

【図5】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 5 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図6】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 6 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図7】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 7 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図8】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 8 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図9】本発明のエネルギー吸収部材の別の構造例を示
す斜視図である。
FIG. 9 is a perspective view showing another structural example of the energy absorbing member of the present invention.

【図10】本発明のエネルギー吸収部材のさらに別の構
造例を示す斜視図である。
FIG. 10 is a perspective view showing still another structural example of the energy absorbing member of the present invention.

【図11】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 11 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【図12】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 12 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【図13】比吸収エネルギー量の測定法を示す分解斜視
図である。
FIG. 13 is an exploded perspective view showing a method for measuring a specific absorbed energy amount.

【図14】比吸収エネルギー量の測定における荷重−変
位線図である。
FIG. 14 is a load-displacement diagram in the measurement of the amount of specific absorbed energy.

【図15】実施例1における荷重−変位特性の測定を示
す万能試験機の部分正面図である。
FIG. 15 is a partial front view of the universal testing machine showing the measurement of load-displacement characteristics in Example 1.

【図16】実施例1における荷重−変位線図である。FIG. 16 is a load-displacement diagram in Example 1.

【符号の説明】[Explanation of symbols]

1、2 円筒形状のエネルギー吸収部材 3 フランジ部 4 フランジ部を備えた円筒形状のエネルギー吸収部材 5 リブ 6 横断面T字形のエネルギー吸収部材 7 横断面コ字形のエネルギー吸収部材 8 蓋部材 9 横断面十字状のエネルギー吸収部材 10 円筒形状のエネルギー吸収部材 11 円錐台形状のエネルギー吸収部材 12、13 細長形状の部材 14、15a、15b、15c エネルギー吸収部材を
構成する部材 16、17 組み合わせ構成のエネルギー吸収部材 21 エネルギー吸収部材 22 押圧部材 31 エネルギー吸収部材 32 万能試験機 33 クロスヘッド 34 ロードセル 35 押圧部材
1, 2 Cylindrical energy absorbing member 3 Flange portion 4 Cylindrical energy absorbing member having a flange portion 5 Rib 6 Energy absorbing member 7 having T-shaped cross section 7 Energy absorbing member 8 having U-shaped cross section 8 Lid member 9 Cross section Cross-shaped energy absorption member 10 Cylindrical energy absorption member 11 Frustum-shaped energy absorption members 12, 13 Elongated members 14, 15a, 15b, 15c Energy absorption member members 16, 17 Combination energy absorption Member 21 Energy absorbing member 22 Pressing member 31 Energy absorbing member 32 Universal testing machine 33 Cross head 34 Load cell 35 Pressing member

フロントページの続き (56)参考文献 特開 平6−123322(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16F 7/00 C08B 5/00 F16F 7/12 Continuation of front page (56) Reference JP-A-6-123322 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F16F 7/00 C08B 5/00 F16F 7/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 樹脂と補強繊維との複合材料からなるエ
ネルギー吸収部材であって、前記補強繊維が、長さ10
0mm以下の短繊維からなり、かつ、無作為な方向に向
いており、前記樹脂の破断伸度が30%以上であり、前
記補強繊維の破断伸度が1.5%以上であり、かつ、前
記樹脂と補強繊維との界面における剪断強度と前記樹脂
の剪断強度との比が0.8〜1.2であることを特徴と
するエネルギー吸収部材。
1. An energy absorbing member comprising a composite material of resin and reinforcing fibers, wherein the reinforcing fibers have a length of 10
It consists of short fibers of 0 mm or less, and is oriented in a random direction, and the breaking elongation of the resin is 30% or more.
The breaking elongation of the reinforcing fiber is 1.5% or more, and
Shear strength at the interface between the resin and the reinforcing fiber and the resin
The energy absorption member is characterized by having a ratio to the shear strength of 0.8 to 1.2 .
【請求項2】 前記補強繊維の引張強度が350kgf
/mm2 以上である、請求項1のエネルギー吸収部材。
2. The tensile strength of the reinforcing fiber is 350 kgf.
/ Mm 2 or more, the energy absorbing member according to claim 1.
【請求項3】 前記補強繊維の表面起伏度が1.08以
上である、請求項1又は2のエネルギー吸収部材。
3. The surface relief of the reinforcing fiber is 1.08 or more.
The energy absorbing member according to claim 1 or 2 , which is the above .
【請求項4】 前記補強繊維が、表面の酸素(O)と炭
素(C)との原子数比である表面官能基量(O/C)が
0.08以上の炭素繊維である、請求項1ないし3のい
ずれかに記載のエネルギー吸収部材。
4. The surface of the reinforcing fiber is oxygen (O) and charcoal.
The amount of surface functional groups (O / C), which is the atomic ratio with the element (C),
The energy absorbing member according to any one of claims 1 to 3 , which is a carbon fiber of 0.08 or more .
JP11418793A 1993-04-19 1993-04-19 Energy absorbing member Expired - Fee Related JP3456588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11418793A JP3456588B2 (en) 1993-04-19 1993-04-19 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11418793A JP3456588B2 (en) 1993-04-19 1993-04-19 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH06307476A JPH06307476A (en) 1994-11-01
JP3456588B2 true JP3456588B2 (en) 2003-10-14

Family

ID=14631381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11418793A Expired - Fee Related JP3456588B2 (en) 1993-04-19 1993-04-19 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP3456588B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000608A1 (en) * 1997-06-27 1999-01-07 Nippon Petrochemicals Co., Ltd. Impact energy absorbing member
JP3465555B2 (en) * 1997-10-08 2003-11-10 三菱自動車工業株式会社 Energy absorbing member
KR101654951B1 (en) * 2008-08-07 2016-09-06 바스프 에스이 Structure for absorbing energy

Also Published As

Publication number Publication date
JPH06307476A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
EP0322979A2 (en) Composite for the absorption of energy
US4612241A (en) Impact resistant composites with elastomeric fibers
Ramakrishna et al. Impact damage resistance of knitted glass fiber fabric reinforced polypropylene composites
US4808461A (en) Composite structure reinforcement
EP1565535B1 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
US3790438A (en) Ribbon-reinforced composites
US9895867B2 (en) Laminated molded body
CA2093762A1 (en) Carbon fiber prepreg and carbon fiber reinforced resin composite
JP3456588B2 (en) Energy absorbing member
EP0580423B1 (en) Laminated molding
JP2885038B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
JP3360872B2 (en) Energy absorbing member
JP3362502B2 (en) Energy absorbing member
JP3362442B2 (en) Energy absorbing member
JP3362441B2 (en) Energy absorbing member
JP3456600B2 (en) Energy absorbing member
JP3360870B2 (en) Energy absorbing member
JP3362447B2 (en) Energy absorbing member
GB2041824A (en) Composite materials
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JPH06300067A (en) Energy absorbing member
JP2008247032A (en) Manufacturing process of preform
JP3362445B2 (en) Energy absorbing member
JP3456589B2 (en) Energy absorbing member
JP3544994B2 (en) Fiber reinforced composite material and energy absorbing member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees