JP3360870B2 - Energy absorbing member - Google Patents

Energy absorbing member

Info

Publication number
JP3360870B2
JP3360870B2 JP10718193A JP10718193A JP3360870B2 JP 3360870 B2 JP3360870 B2 JP 3360870B2 JP 10718193 A JP10718193 A JP 10718193A JP 10718193 A JP10718193 A JP 10718193A JP 3360870 B2 JP3360870 B2 JP 3360870B2
Authority
JP
Japan
Prior art keywords
energy absorbing
carbon fiber
absorbing member
resin
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10718193A
Other languages
Japanese (ja)
Other versions
JPH06300069A (en
Inventor
研二 光安
幸胤 木本
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10718193A priority Critical patent/JP3360870B2/en
Publication of JPH06300069A publication Critical patent/JPH06300069A/en
Application granted granted Critical
Publication of JP3360870B2 publication Critical patent/JP3360870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー吸収部材に
関し、とくに、樹脂と炭素繊維との複合材料からなる、
衝撃エネルギー吸収部材の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member, and in particular, it is made of a composite material of resin and carbon fiber,
The present invention relates to the structure of an impact energy absorbing member.

【0002】[0002]

【従来の技術】たとえば、航空機の座席周り等や、自動
車の座席周り、バンパー周り、各種構造部材に、衝撃エ
ネルギーを吸収するエネルギー吸収部材が用いられる
(特開昭60−109630号公報、特開昭62−17
438号公報等)。このエネルギー吸収部材には、衝撃
エネルギーを良好に吸収できる性能の他、一般に軽量、
高剛性であることが要求されることから、樹脂と補強繊
維との複合材料、いわゆる繊維強化プラスチック(以
下、FRPと言うこともある。)、中でも炭素繊維強化
プラスチック(以下、CFRPと言うこともある。)が
適しているとされている。
2. Description of the Related Art For example, an energy absorbing member that absorbs impact energy is used for a seat around an aircraft, a seat around an automobile, a bumper, and various structural members (JP-A-60-109630). 62-17
No. 438, etc.). In addition to the ability to absorb impact energy well, this energy absorbing member is generally lightweight,
Since high rigidity is required, a composite material of a resin and reinforcing fibers, so-called fiber reinforced plastic (hereinafter sometimes referred to as FRP), especially carbon fiber reinforced plastic (hereinafter also referred to as CFRP) There is) is said to be suitable.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の樹脂
と炭素繊維との複合材料からなるエネルギー吸収部材
は、エネルギー吸収能力に未だ不十分な面があり、十分
に実用に供されていないのが実情である。
However, the conventional energy absorbing member made of a composite material of resin and carbon fiber is still insufficient in practical use because of its insufficient energy absorbing ability. It's a reality.

【0004】本発明は、エネルギー吸収時に、とくに炭
素繊維に特殊な動作を行わせることにより、十分に高い
エネルギー吸収能力を発揮可能なエネルギー吸収部材を
提供することを目的とする。
It is an object of the present invention to provide an energy absorbing member capable of exhibiting a sufficiently high energy absorbing ability by causing the carbon fiber to perform a special operation during energy absorption.

【0005】[0005]

【課題を解決するための手段】この目的に沿う本発明の
請求項1に係るエネルギー吸収部材は、樹脂と炭素繊維
との複合材料からなり、前記樹脂のエネルギー解放率G
ICが100J/m2 以上であり、かつ、前記炭素繊維の
引張強度が450kgf/mm2 以上、表面の酸素
(O)と炭素(C)との原子数比である表面官能基量
(O/C)が0.08未満であることを特徴とするもの
からなる。
The energy absorbing member according to claim 1 of the present invention which meets this object is made of a composite material of resin and carbon fiber, and has an energy release rate G of the resin.
IC is 100 J / m 2 or more, the tensile strength of the carbon fiber is 450 kgf / mm 2 or more, and the surface functional group amount (O / O) is the atomic number ratio of oxygen (O) to carbon (C) on the surface. C) is less than 0.08.

【0006】また、本発明の請求項2に係るエネルギー
吸収部材は、樹脂と炭素繊維との複合材料からなり、前
記樹脂の破断伸度が30%以上であり、かつ、前記炭素
繊維の引張強度が450kgf/mm2 以上、表面の酸
素(O)と炭素(C)との原子数比である表面官能基量
(O/C)が0.08未満であることを特徴とするもの
からなる。
The energy absorbing member according to claim 2 of the present invention is made of a composite material of resin and carbon fiber, the breaking elongation of the resin is 30% or more, and the tensile strength of the carbon fiber is Is 450 kgf / mm 2 or more, and the surface functional group amount (O / C), which is the atomic number ratio of oxygen (O) to carbon (C) on the surface, is less than 0.08.

【0007】さらに、上記本発明の各エネルギー吸収部
材においては、前記炭素繊維の表面起伏度が1.0以
上、1.08未満であることが好ましい。
Further, in each of the energy absorbing members of the present invention, it is preferable that the surface roughness of the carbon fiber is 1.0 or more and less than 1.08.

【0008】上記各エネルギー吸収部材においては、補
強繊維が炭素繊維からなり、該炭素繊維の、表面の酸素
(O)と炭素(C)の原子数比である表面官能基量(O
/C)が0.08未満とされる。この表面官能基量(O
/C)は、炭素繊維表面における酸素(O)と炭素
(C)の原子数比であり、炭素繊維表面における活性化
されたOの割合を示すもので、炭素繊維表面の樹脂との
接着性の指標となるものである。すなわち、表面官能基
量(O/C)が高ければ炭素繊維表面の接着性が高く、
表面官能基量(O/C)が低ければ炭素繊維表面の接着
性が低い。本発明では、表面官能基量(O/C)を0.
08未満とすることにより、炭素繊維表面の樹脂との接
着性が低く抑えられる。
In each of the above energy absorbing members, the reinforcing fiber is made of carbon fiber, and the amount of surface functional group (O), which is the atomic number ratio of oxygen (O) and carbon (C) on the surface of the carbon fiber.
/ C) is less than 0.08. This surface functional group amount (O
/ C) is the atomic ratio of oxygen (O) to carbon (C) on the carbon fiber surface, and indicates the ratio of activated O on the carbon fiber surface, and the adhesiveness with the resin on the carbon fiber surface. Is an index of. That is, if the surface functional group amount (O / C) is high, the adhesiveness of the carbon fiber surface is high,
When the amount of surface functional groups (O / C) is low, the adhesiveness of the carbon fiber surface is low. In the present invention, the surface functional group amount (O / C) is set to 0.
When it is less than 08, the adhesiveness of the carbon fiber surface with the resin can be suppressed low.

【0009】エネルギー吸収部材においては、たとえば
トリガにより、エネルギー吸収時に部材端部から破壊が
生じるように工夫され、該端部破壊の過程で衝撃エネル
ギー等が吸収される。このようなエネルギー吸収におい
て、上記の如く炭素繊維表面の樹脂との接着性が低く抑
えられていると、部材端部破壊時に、破壊部分において
炭素繊維と樹脂とが剥離し、剥離した炭素繊維同士が複
雑に絡み合う。例えば図1に示すように、円筒状の複合
材料からなるエネルギー吸収部材41の端面42に、部
材肉厚方向中央部に衝撃荷重Pが加えられ、部材端部が
肉厚方向に開くように破壊されると、破壊により形成さ
れる空間内で、樹脂から剥離した炭素繊維43が、両側
に開いた破壊部分にまたがるように複雑に絡み合う。こ
のとき、剥離した炭素繊維43はまだ破断していない
か、破断したとしてもごく一部の繊維に留まるので、あ
るいは、破壊部分が炭素繊維43を切断しながら両側に
開いていくので、該剥離した炭素繊維43によって大き
な抵抗が生じる。とくに、炭素繊維43を、その引張方
向に切断しながら破壊部分が開いていく場合、極めて大
きな抵抗が生じる。この抵抗は、部材端部の破壊を抑え
る方向に作用するので、エネルギー吸収部材の端部破壊
荷重あるいは端部破壊エネルギーが大幅に増大されるこ
とになり、その分エネルギー吸収部材のエネルギー吸収
能力が高められる。
In the energy absorbing member, for example, a trigger is devised so that destruction occurs from the end portion of the member at the time of energy absorption, and impact energy or the like is absorbed in the process of destruction of the end portion. In such energy absorption, if the adhesiveness between the carbon fiber surface and the resin is suppressed as described above, the carbon fiber and the resin are peeled off at the broken portion when the end of the member is broken, and the peeled carbon fibers are separated from each other. Are intricately intertwined. For example, as shown in FIG. 1, an impact load P is applied to the end face 42 of the energy absorbing member 41 made of a cylindrical composite material at the central portion in the member thickness direction, and the member end is broken so as to open in the thickness direction. Then, in the space formed by the destruction, the carbon fibers 43 separated from the resin are intricately entangled so as to straddle the fractured portions opened on both sides. At this time, the peeled carbon fiber 43 is not yet broken, or even if it is broken, it remains in only a part of the fiber, or the broken portion opens on both sides while cutting the carbon fiber 43, so The carbon fiber 43 thus formed causes a great resistance. Particularly, when the broken portion opens while cutting the carbon fiber 43 in the pulling direction, an extremely large resistance occurs. Since this resistance acts to suppress the destruction of the end of the member, the end breaking load or end breaking energy of the energy absorbing member is greatly increased, and the energy absorbing capacity of the energy absorbing member is correspondingly increased. To be enhanced.

【0010】そして本発明のエネルギー吸収部材におい
ては、炭素繊維と樹脂との接着性について上記の特性が
確保されつつ、炭素繊維の引張強度が450kgf/m
2以上とされ、かつ、樹脂のエネルギー解放率GIC
100J/m2 以上とされる。
In the energy absorbing member of the present invention, the tensile strength of the carbon fiber is 450 kgf / m while maintaining the above-mentioned characteristics regarding the adhesiveness between the carbon fiber and the resin.
m 2 or more, and the energy release rate G IC of the resin is 100 J / m 2 or more.

【0011】炭素繊維の引張強度が450kgf/mm
2 以上とされることにより、図1に示したように炭素繊
維が両破壊端部間にブリッジ状にまたがる場合、該炭素
繊維は切断されにくく、切断にはより大きなエネルギー
が必要になるので、高レベルのエネルギー吸収能力が達
成される。
Carbon fiber has a tensile strength of 450 kgf / mm
By setting the number to be 2 or more, when the carbon fibers straddle the two fracture ends in a bridge shape as shown in FIG. 1, the carbon fibers are hard to be cut, and more energy is required for cutting, A high level of energy absorption capacity is achieved.

【0012】また、樹脂のエネルギー解放率GICが10
0J/m2 以上とされることにより、樹脂自身も破壊さ
れにくいものとされ、複合材料全体としてのエネルギー
吸収性能が高められる。このエネルギー解放率GICは、
後述の測定方法に示すように求められるもので、樹脂自
身を引き剥がすときのエネルギー解放率を示すものであ
る。エネルギー解放率GICが100J/m2 未満である
と、樹脂自身が比較的引き剥がされやすいものとなり、
高いエネルギー吸収能力を達成するのが困難になる。本
発明においては、この高いエネルギー解放率GICを有す
る樹脂と、前述の如く樹脂との接着性が低く抑えられ
た、引張強度の高い炭素繊維との複合材料とすることに
より、優れたエネルギー吸収能力を発揮でき、高い比吸
収エネルギー量を達成できる。
Further, the energy release rate G IC of the resin is 10
When it is set to 0 J / m 2 or more, the resin itself is not easily broken, and the energy absorption performance of the composite material as a whole is enhanced. This energy release rate G IC is
It is obtained as shown in the measuring method described later and shows the energy release rate when the resin itself is peeled off. When the energy release rate G IC is less than 100 J / m 2 , the resin itself is relatively easily peeled off,
It becomes difficult to achieve high energy absorption capacity. In the present invention, by using a composite material of a resin having this high energy release rate G IC and a carbon fiber having a high tensile strength in which the adhesiveness between the resin is suppressed as described above, excellent energy absorption is achieved. The ability can be demonstrated and a high amount of specific absorbed energy can be achieved.

【0012】また、もう一つの本発明に係るエネルギー
吸収部材においては、樹脂の破断伸度が30%以上、炭
素繊維の引張強度が450kgf/mm2 とされつつ、
表面官能基量(O/C)が0.08未満とされる。破断
伸度の高い樹脂と引張強度の高い炭素繊維との複合材料
とすることにより、該複合材料自身の強度、靱性が高め
られてエネルギー吸収能力が向上される。樹脂の破断伸
度が30%未満であると、高いエネルギー吸収能力を達
成するのが困難になる。本発明に係るエネルギー吸収部
材においては、この高い破断伸度を有する高靱性の樹脂
と、高強度でかつ樹脂との接着性を適切に低く抑えた炭
素繊維との複合材料とすることにより、優れたエネルギ
ー吸収能力を発揮でき、高い比吸収エネルギー量を達成
できる。そして、炭素繊維の表面官能基量(O/C)を
0.08未満とすることにより、炭素繊維と樹脂との接
着性が適切に低く抑えられ、図1に示したような部材端
部の破壊状態が得られやすくなり、前述したように極め
て大きな抵抗が得られ、エネルギー吸収部材のエネルギ
ー吸収能力が高められる。
In the energy absorbing member according to another aspect of the present invention, the breaking elongation of the resin is 30% or more and the tensile strength of the carbon fiber is 450 kgf / mm 2 .
The amount of surface functional groups (O / C) is less than 0.08. By using a composite material of a resin having a high elongation at break and a carbon fiber having a high tensile strength, the strength and toughness of the composite material itself are increased, and the energy absorption capacity is improved. If the breaking elongation of the resin is less than 30%, it becomes difficult to achieve a high energy absorption capacity. In the energy absorbing member according to the present invention, a high toughness resin having a high elongation at break and a composite material of carbon fiber having high strength and appropriately suppressing the adhesiveness with the resin are excellent, The energy absorption capability can be demonstrated, and a high specific absorbed energy amount can be achieved. Then, by setting the amount of surface functional groups (O / C) of the carbon fiber to less than 0.08, the adhesiveness between the carbon fiber and the resin can be appropriately suppressed, and the end portion of the member as shown in FIG. A breakage state is easily obtained, an extremely large resistance is obtained as described above, and the energy absorbing capacity of the energy absorbing member is enhanced.

【0013】上記の様な本発明に係るエネルギー吸収部
材においては、好ましくは、炭素繊維の表面起伏度が
1.0以上1.08未満とされる。炭素繊維の表面起伏
度が1.08以上であると、表面の起伏による、いわゆ
るアンカー効果が大きくなり、炭素繊維と樹脂との接着
性が高くなって、図1に示したような破壊を起こさせる
場合、炭素繊維が容易に樹脂から剥離しなくなり、破壊
部分間にまたがるような炭素繊維は形成されにくくな
る。その結果、前述の如き、繊維のブリッジによる抵抗
が期待できなくなり、エネルギー吸収能力の向上が期待
できなくなる。炭素繊維の表面起伏度を1.0以上1.
08未満とすることにより、炭素繊維の樹脂に対する接
着性を適切に低く抑えて、部材破壊時に生じる繊維のブ
リッジによる抵抗によって大きなエネルギー量を吸収で
きるようになる。
In the energy absorbing member according to the present invention as described above, the surface undulation degree of the carbon fiber is preferably 1.0 or more and less than 1.08. When the surface undulation degree of the carbon fiber is 1.08 or more, the so-called anchor effect due to the undulation of the surface becomes large, the adhesiveness between the carbon fiber and the resin becomes high, and the destruction as shown in FIG. 1 occurs. In that case, the carbon fibers are not easily separated from the resin, and it becomes difficult to form carbon fibers that extend between the fractured portions. As a result, as described above, the resistance due to the fiber bridge cannot be expected, and the improvement of the energy absorption capacity cannot be expected. The surface roughness of the carbon fiber is 1.0 or more.
By setting it to be less than 08, the adhesiveness of the carbon fiber to the resin can be appropriately suppressed, and a large amount of energy can be absorbed by the resistance due to the fiber bridge when the member is broken.

【0014】破断伸度が30%以上の樹脂としては、た
とえば、ナイロン6、ナイロン66、ナイロン11、ナ
イロン610、ナイロン612などのポリアミド、また
はこれらポリアミドの共重合ポリアミド、また、ポリエ
チレンテレフタレート、ポリブチレンテレフタレートな
どのポリエステル、またはこれらポリエステルの共重合
ポリエステル、さらに、ポリカーボネート、ポリアミド
イミド、ポリフェニレンスルファイド、ポリフェニレン
オキシド、ポリスルホン、ポリエーテルスルホン、ポリ
エーテルエーテルケトン、ポリエーテルイミド、ポリオ
レフィンなど、さらにまた、ポリエステルエラストマ
ー、ポリアミドエラストマーなどに代表される熱可塑性
エラストマー、等が挙げられる。
Examples of the resin having a breaking elongation of 30% or more include polyamides such as nylon 6, nylon 66, nylon 11, nylon 610 and nylon 612, copolyamides of these polyamides, polyethylene terephthalate and polybutylene. Polyesters such as terephthalate, or copolyesters of these polyesters, and further polycarbonates, polyamideimides, polyphenylene sulfides, polyphenylene oxides, polysulfones, polyether sulfones, polyether ether ketones, polyetherimides, polyolefins, etc., and polyester elastomers. , Thermoplastic elastomers typified by polyamide elastomers, and the like.

【0015】本発明のエネルギー吸収部材においては、
複合材料における炭素繊維の配列は、特殊な組み合わせ
配列を行う場合を除き、エネルギー吸収部材の圧縮方向
の軸に対して、0°〜±60°の範囲で行えばよい。あ
まり大きな角度の配列では、圧縮方向に作用する衝撃エ
ネルギーの吸収に対し、炭素繊維が有効に活用されなく
なる。また、炭素繊維の形態としては、とくに限定され
ず、通常のフィラメントの他、炭素繊維の織物も使用で
きる。
In the energy absorbing member of the present invention,
The arrangement of the carbon fibers in the composite material may be within the range of 0 ° to ± 60 ° with respect to the axis of the energy absorbing member in the compression direction, except when a special combination arrangement is performed. When the angle is too large, the carbon fibers are not effectively used for absorbing the impact energy acting in the compression direction. Further, the form of the carbon fiber is not particularly limited, and in addition to ordinary filaments, carbon fiber woven fabric can be used.

【0016】また、本発明の複合材料からなるエネルギ
ー吸収部材の形状もとくに限定されず、筒状、柱状、板
状等、各種形状を採用可能である。代表的な形状、ある
いは採用可能な形状を図2ないし図11に例示する。
The shape of the energy absorbing member made of the composite material of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a columnar shape and a plate shape can be adopted. Representative shapes or applicable shapes are illustrated in FIGS. 2 to 11.

【0017】エネルギー吸収部材の代表的な形状とし
て、まず、筒状形状を挙げることができる。筒状形状と
して最も代表的な形状は、図2に示すような円筒1であ
る。図における矢印方向が、衝撃エネルギーとしての圧
縮荷重作用方向である。また、図3に示すように、円筒
の頂部を円錐状あるいは球面状に形成した円筒2も適用
できる。さらに、図示は省略するが、角筒、円錐、角
錐、円錐台、角錐台、あるいは、横断面が楕円の筒、さ
らには、図4に示すように、フランジ部3を備えた円筒
(又は角筒)等の筒状形状4も採用できる。
As a typical shape of the energy absorbing member, first, a cylindrical shape can be mentioned. The most typical shape as a cylindrical shape is a cylinder 1 as shown in FIG. The direction of the arrow in the figure is the compressive load acting direction as impact energy. Further, as shown in FIG. 3, a cylinder 2 in which the top of the cylinder is formed into a conical shape or a spherical shape can also be applied. Further, although not shown, a prism, a cone, a pyramid, a truncated cone, a truncated pyramid, or a cylinder having an elliptical cross section, and further, as shown in FIG. A tubular shape 4 such as a tube) can also be adopted.

【0018】また、筒状形状に限らず、柱状形状でもよ
い。たとえば、円柱、角柱形状を挙げることができる。
The shape is not limited to the cylindrical shape, but may be a columnar shape. For example, a columnar shape or a prismatic shape can be mentioned.

【0019】さらに、板状形状の採用も可能である。た
とえば、波板形状の部材とすれば、座屈に対して強いの
で、エネルギー吸収部材として使用可能となる。また、
図5に示すように、リブ5を有する、たとえば横断面T
字形の形状6、図6に示すように、横断面コ字状の形状
7とすることもできる。図6に示す横断面コ字状の形状
7では、2点鎖線で示すように蓋部材8を設けることも
できる。さらに、図7に示すように、横断面十字状の形
状9とすることもできる。
Further, it is possible to adopt a plate shape. For example, a corrugated plate-shaped member can be used as an energy absorbing member because it is strong against buckling. Also,
As shown in FIG. 5, for example, a cross section T having ribs 5 is provided.
The shape 6 may be a V shape, or a shape 7 having a U-shaped cross section as shown in FIG. In the shape 7 having a U-shaped cross section shown in FIG. 6, the lid member 8 can be provided as shown by a chain double-dashed line. Further, as shown in FIG. 7, a cross-shaped cross section 9 may be used.

【0020】さらにまた、各種形状の部材を組み合わせ
た構造とすることも可能である。たとえば、図8、図9
に示すように、大きい円筒10、大きい円錐台11の中
に、小さい細長形状の円柱12、13を入れ、これらを
複合材料で構成することにより、より座屈しにくいエネ
ルギー吸収部材にすることができる。
Furthermore, it is also possible to adopt a structure in which members of various shapes are combined. For example, FIGS.
As shown in FIG. 3, by inserting small elongated cylinders 12 and 13 in a large cylinder 10 and a large truncated cone 11 and composing these with a composite material, an energy absorbing member that is less likely to buckle can be obtained. .

【0021】さらに、エネルギー吸収部材は、1個の部
材から構成されるものの他、複数の部材を重ねて、ある
いは組み合わせて構成してもよい。たとえば、図10、
図11に示すように、同一あるいは同様の形状の複合材
料からなる部材14、15a、15b、15cを縦に積
層してエネルギー吸収部材16、17を構成するように
してもよい。図11の構成にあっては、各部材を中、外
交互に積層してもよい。
Further, the energy absorbing member may be composed of one member, or may be composed of a plurality of members stacked or combined. For example, in FIG.
As shown in FIG. 11, the energy absorbing members 16 and 17 may be configured by vertically stacking members 14, 15a, 15b and 15c made of a composite material having the same or similar shapes. In the configuration of FIG. 11, each member may be alternately laminated inside and outside.

【0022】なお、上記のようなエネルギー吸収部材に
おいては、エネルギー吸収部材を端部から逐次破壊させ
るためのトリガ形状を形成しておくことが望ましく、こ
のトリガは、エネルギー吸収部材を押圧する押圧部材側
に設けてもよい。
In the energy absorbing member as described above, it is desirable to form a trigger shape for sequentially destroying the energy absorbing member from the end, and this trigger is a pressing member for pressing the energy absorbing member. It may be provided on the side.

【0023】〔特性の測定方法〕以下に、本発明の説明
に用いた特性の測定方法について説明する。 (1)樹脂の引張破断伸度の測定方法 ASTM−D−638に従い測定する。
[Characteristic Measuring Method] The characteristic measuring method used in the description of the present invention will be described below. (1) Method of measuring tensile elongation at break of resin Measured according to ASTM-D-638.

【0024】(2)繊維の引張強度 JIS−R7601に規定されている樹脂含浸ストラン
ド試験法に準じて測定した。試験に用いた樹脂処方およ
び硬化条件を次に示す。 樹脂処方:“ベークライト”ERL−4221 100部 3−フッ化ホウ素モノエチルアミン(BF3 ・MEA) 3部 アセトン 4部 硬化条件:130℃、30分
(2) Tensile strength of fiber Measured according to the resin-impregnated strand test method specified in JIS-R7601. The resin formulation and curing conditions used in the test are shown below. Resin Formulation: "Bakelite" ERL-4221 100 parts of 3 boron trifluoride monoethylamine (BF 3 · MEA) 3 parts acetone 4 parts Curing conditions: 130 ° C., 30 minutes

【0025】(3)表面起伏度 繊維方向に垂直に複合材料を切断し、切断面を金相研磨
により鏡面研磨する。ここで研磨面に垂直な単繊維の断
面形状を走差型電子顕微鏡(日本電子株式会社製JSM
−T300型)を用いて、加速電圧15kV、撮影倍率
10000倍での反射電子組成像をフイルムに撮影す
る。このようにして得られた反射電子組成像写真をさら
に焼付時に2倍に引き伸ばして、すなわち倍率は合計2
0000倍として表面起伏度解析用写真とする。ここで
該表面起伏度解析用写真から、単繊維断面の面積S(m
2 )および外周長さL(mm)を測定する。表面起伏
度は上記Lと、同一のSを有する仮想真円の外周長さの
比として、下式に従って求められる。 表面起伏度=L・(πS)-1/2/2 Lの測定は20000倍にて焼き付けされた写真の単繊
維断面像の外周上に伸縮性のない木綿糸を正確に貼付し
たのち、これを外し、その直線長さを実測する方法にて
行うことができる。また、Sの測定は20000倍にて
焼き付けされた写真上に、単位面積当たりの重量が既知
のトレース紙を置き、単繊維断面像の外周を正確にトレ
ースし、トレース線上を正確に切断したのち、切断され
た単繊維断面像の重量とトレース紙の単位面積当たりの
重量から換算により行うことができる。測定は10本の
単繊維について行い、その平均値をもってその表面起伏
度とする。なお、L、Sの測定にはそれを正確に測定で
きる方法であればその方法に制約はなく、上記の方法以
外に、イメージアナライザーを用いて測定することもで
きる。
(3) Surface Roughness The composite material is cut perpendicularly to the fiber direction, and the cut surface is mirror-polished by metal phase polishing. Here, the cross-sectional shape of the single fiber perpendicular to the polishing surface was measured by a scanning electron microscope (JSM manufactured by JSM Co., Ltd.).
-T300 type) is used to photograph a backscattered electron composition image at an accelerating voltage of 15 kV and a photographing magnification of 10,000 times on a film. The backscattered electron composition image photograph thus obtained was further stretched to 2 times at the time of printing, that is, the magnification was 2 in total.
It is taken as a photograph for surface undulation analysis with a magnification of 0000. Here, from the photograph for surface undulation analysis, the area S (m
m 2 ) and the outer peripheral length L (mm) are measured. The surface undulation degree is obtained according to the following formula as a ratio of the above L and the outer peripheral length of a virtual perfect circle having the same S. Surface relief = L · (πS) −1/2 / 2 L is measured at 20000 times. After accurately sticking a non-stretchable cotton thread on the outer periphery of the single fiber cross-sectional image in the photograph, Can be removed and the length of the straight line can be measured. Further, S was measured by placing a trace paper of known weight per unit area on a photograph printed at 20000 times, accurately tracing the outer periphery of the single fiber cross-sectional image, and accurately cutting the trace line. The weight can be converted from the weight of the cut single fiber cross-sectional image and the weight per unit area of the trace paper. The measurement is carried out on 10 monofilaments, and the average value is taken as the surface relief. There is no limitation on the method of measuring L and S as long as it can be accurately measured, and an image analyzer can be used in addition to the above method.

【0026】(4)表面官能基量(O/C) X線光電子分光法により、次の手順に従って求めた。先
ず、溶媒でサイジング剤などを除去した炭素繊維(束)
をカットして銅製の試料支持台上に拡げて並べた後、光
電子脱出角度を90°とし、X線源としてMgKα1,
2を用い、試料チャンバー中を1×10-8Torrに保
つ。測定時の帯電に伴うピークの補正としてC1Sの主ピ
ークの運動エネルギー値(K.E.)を969eVに合
わせる。C1Sピーク面積をK.E.として958〜97
2eVの範囲で直線のベースラインを引くことにより求
める。O1Sピーク面積をK.E.として714〜726
eVの範囲で直線のベースラインを引くことにより求め
る。ここで表面官能基量(O/C)とは、上記O1Sピー
ク面積とC1Sピーク面積の比から、装置固有の感度補正
値を用いて原子数比として算出したものである。なお本
発明者らは、島津製作所(株)製モデルESCA−75
0を用いてO1Sピーク面積とC1Sピーク面積の比を測定
し、その比を感度補正値2.85で割ることにより表面
官能基量(O/C)を求めた。
(4) Amount of surface functional group (O / C) It was determined by the following procedure by X-ray photoelectron spectroscopy. First, carbon fiber (bundle) from which sizing agents have been removed with a solvent
After cutting and arranging them on a copper sample support, the photoelectron escape angle was set to 90 °, and MgKα1, X-ray source was used.
2 is used and the sample chamber is kept at 1 × 10 −8 Torr. The kinetic energy value (KE) of the main peak of C 1S is set to 969 eV as a correction of the peak associated with charging during measurement. The C 1S peak area was calculated as K. E. As 958-97
It is obtained by drawing a linear baseline in the range of 2 eV. The O 1S peak area was measured by K.K. E. As 714-726
It is determined by drawing a straight baseline in the range of eV. Here, the amount of surface functional groups (O / C) is calculated as an atomic number ratio from the ratio of the O 1S peak area and the C 1S peak area using a sensitivity correction value specific to the apparatus. The inventors of the present invention used a model ESCA-75 manufactured by Shimadzu Corporation.
0 was used to measure the ratio of the O 1S peak area to the C 1S peak area, and the ratio was divided by the sensitivity correction value of 2.85 to obtain the surface functional group amount (O / C).

【0027】(5)樹脂のエネルギー解放率GIC コンパクト試験(CT試験)規格:ASTM−E−39
9に基づいて測定した。
(5) Energy release rate of resin G IC compact test (CT test) Standard: ASTM-E-39
It measured based on 9.

【0028】(6)比吸収エネルギー量 規格や標準化された手法はまだ無い。図12に示すよう
にエネルギー吸収部材21に押圧部材22を介して圧縮
荷重Pを負荷して部材21を破壊していくと、一般に図
13のような荷重−変位(押圧部材の変位)線図が得ら
れる。この荷重−変位線図において、変位x1 からx2
の間に吸収されたエネルギーは図の斜線部の面積として
求められる。その間に破壊されたエネルギー吸収部材の
重量を求めて(同一断面の部材であれば、断面積と(x
2 −x1 )と比重の積で求まる)、吸収エネルギー量を
重量で除した値を比吸収エネルギー量とする。x1 、x
2 の設定や押圧部材の変位の速度等は適当に設定するこ
とができる。
(6) There is no standard for specific absorbed energy amount or standardized method. As shown in FIG. 12, when a compressive load P is applied to the energy absorbing member 21 via the pressing member 22 to destroy the member 21, generally a load-displacement (displacement of the pressing member) diagram as shown in FIG. Is obtained. In this load-displacement diagram, displacements x 1 to x 2
The energy absorbed during is calculated as the area of the shaded area in the figure. The weight of the energy absorbing member destroyed during that period is calculated (if the members have the same cross section, the cross sectional area and (x
2 −x 1 ) and specific gravity)), and the value obtained by dividing the absorbed energy amount by the weight is taken as the specific absorbed energy amount. x 1 , x
The setting of 2 , the speed of displacement of the pressing member, and the like can be set appropriately.

【0029】[0029]

【発明の効果】以上説明したように、本発明のエネルギ
ー吸収部材によるときは、エネルギー吸収部材を樹脂と
炭素繊維との複合材料から構成するとともに、樹脂を高
エネルギー解放率GICまたは高破断伸度のものとし、か
つ、炭素繊維を高引張強度でかつ低い表面官能基量(O
/C)のものとしたので、エネルギー吸収時に樹脂から
剥離した炭素繊維の強度を効率よく活かすことができ、
高いエネルギー吸収性能が得られる。
As described above, according to the energy absorbing member of the present invention, the energy absorbing member is made of a composite material of resin and carbon fiber, and the resin has a high energy release rate G IC or a high breaking elongation. And the carbon fiber has high tensile strength and low surface functional group content (O
/ C), it is possible to effectively utilize the strength of the carbon fiber peeled from the resin during energy absorption,
High energy absorption performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のエネルギー吸収部材の端部破壊時の様
子を示す部分縦断面図である。
FIG. 1 is a partial vertical cross-sectional view showing a state when an end portion of an energy absorbing member of the present invention is broken.

【図2】本発明のエネルギー吸収部材の形状の一例を示
す斜視図である。
FIG. 2 is a perspective view showing an example of the shape of the energy absorbing member of the present invention.

【図3】本発明のエネルギー吸収部材の別の形状例を示
す斜視図である。
FIG. 3 is a perspective view showing another shape example of the energy absorbing member of the present invention.

【図4】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 4 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図5】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 5 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図6】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 6 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図7】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 7 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図8】本発明のエネルギー吸収部材の別の構造例を示
す斜視図である。
FIG. 8 is a perspective view showing another structural example of the energy absorbing member of the present invention.

【図9】本発明のエネルギー吸収部材のさらに別の構造
例を示す斜視図である。
FIG. 9 is a perspective view showing still another structural example of the energy absorbing member of the present invention.

【図10】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 10 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【図11】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 11 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【図12】比吸収エネルギー量の測定法を示す分解斜視
図である。
FIG. 12 is an exploded perspective view showing a method for measuring a specific absorbed energy amount.

【図13】比吸収エネルギー量の測定における荷重−変
位線図である。
FIG. 13 is a load-displacement diagram in the measurement of the amount of specific absorbed energy.

【符号の説明】[Explanation of symbols]

1、2 円筒形状のエネルギー吸収部材 3 フランジ部 4 フランジ部を備えた円筒形状のエネルギー吸収部材 5 リブ 6 横断面T字形のエネルギー吸収部材 7 横断面コ字形のエネルギー吸収部材 8 蓋部材 9 横断面十字状のエネルギー吸収部材 10 円筒形状のエネルギー吸収部材 11 円錐台形状のエネルギー吸収部材 12、13 細長形状の部材 14、15a、15b、15c エネルギー吸収部材を
構成する部材 16、17 組み合わせ構成のエネルギー吸収部材 21 エネルギー吸収部材 22 押圧部材 41 エネルギー吸収部材 42 端部 43 炭素繊維
1, 2 Cylindrical energy absorbing member 3 Flange portion 4 Cylindrical energy absorbing member having a flange portion 5 Rib 6 Energy absorbing member 7 having T-shaped cross section 7 Energy absorbing member 8 having U-shaped cross section 8 Lid member 9 Cross section Cross-shaped energy absorption member 10 Cylindrical energy absorption member 11 Frustum-shaped energy absorption members 12, 13 Elongated members 14, 15a, 15b, 15c Energy absorption member members 16, 17 Combination energy absorption Member 21 Energy absorbing member 22 Pressing member 41 Energy absorbing member 42 End portion 43 Carbon fiber

フロントページの続き (56)参考文献 特開 平2−305860(JP,A) 特開 平3−168219(JP,A) 特開 平4−146210(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16F 7/12 C08J 5/04 Continuation of the front page (56) References JP-A-2-305860 (JP, A) JP-A-3-168219 (JP, A) JP-A-4-146210 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) F16F 7/12 C08J 5/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 樹脂と炭素繊維との複合材料からなり、
前記樹脂のエネルギー解放率GICが100J/m2 以上
であり、かつ、前記炭素繊維の引張強度が450kgf
/mm2 以上、表面の酸素(O)と炭素(C)との原子
数比である表面官能基量(O/C)が0.08未満であ
ることを特徴とするエネルギー吸収部材。
1. A composite material of resin and carbon fiber,
The energy release rate G IC of the resin is 100 J / m 2 or more, and the tensile strength of the carbon fiber is 450 kgf.
/ Mm 2 or more, the amount of surface functional groups (O / C), which is the atomic number ratio of oxygen (O) and carbon (C) on the surface, is less than 0.08.
【請求項2】 樹脂と炭素繊維との複合材料からなり、
前記樹脂の破断伸度が30%以上であり、かつ、前記炭
素繊維の引張強度が450kgf/mm2 以上、表面の
酸素(O)と炭素(C)との原子数比である表面官能基
量(O/C)が0.08未満であることを特徴とするエ
ネルギー吸収部材。
2. A composite material of resin and carbon fiber,
The surface elongation of the resin is 30% or more, the tensile strength of the carbon fiber is 450 kgf / mm 2 or more, and the amount of surface functional groups is the atomic ratio of oxygen (O) to carbon (C) on the surface. (O / C) is less than 0.08.
【請求項3】 前記炭素繊維の表面起伏度が1.0以
上、1.08未満であることを特徴とする請求項1また
は2のエネルギー吸収部材。
3. The energy absorbing member according to claim 1, wherein the surface roughness of the carbon fiber is 1.0 or more and less than 1.08.
JP10718193A 1993-04-12 1993-04-12 Energy absorbing member Expired - Fee Related JP3360870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10718193A JP3360870B2 (en) 1993-04-12 1993-04-12 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10718193A JP3360870B2 (en) 1993-04-12 1993-04-12 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH06300069A JPH06300069A (en) 1994-10-25
JP3360870B2 true JP3360870B2 (en) 2003-01-07

Family

ID=14452527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10718193A Expired - Fee Related JP3360870B2 (en) 1993-04-12 1993-04-12 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP3360870B2 (en)

Also Published As

Publication number Publication date
JPH06300069A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
EP0322979A2 (en) Composite for the absorption of energy
Wyrick et al. Residual strength of a carbon/epoxy composite material subjected to repeated impact
DE69720650T4 (en) Carbon fiber, acrylic fiber and method of making same
Hamada et al. Crushing mechanism of carbon fibre/PEEK composite tubes
CA1240600A (en) Impact resistant composites with elastomeric fibers
EP0819723A1 (en) Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
JPS59196238A (en) Fiber reinforced composite body
EP0202098B1 (en) Fiber reinforded tubular component
DE69632846T2 (en) Prepregs and hydrocarbon fiber reinforced composite material
US6790518B2 (en) Ductile hybrid structural fabric
JP3360870B2 (en) Energy absorbing member
JP3456588B2 (en) Energy absorbing member
JP3360872B2 (en) Energy absorbing member
JP3362441B2 (en) Energy absorbing member
JP3360871B2 (en) Energy absorbing member
CA2259219A1 (en) Hybrid fiber-reinforced plastic
JP3456600B2 (en) Energy absorbing member
JP3362442B2 (en) Energy absorbing member
JP3362502B2 (en) Energy absorbing member
JP3362447B2 (en) Energy absorbing member
JP3837818B2 (en) FRP thick energy absorber
JP3362445B2 (en) Energy absorbing member
Adams et al. Static and impact behavior of graphite/epoxy composite laminates containing third-phase reinforcement materials
Kim et al. Relation between interfacial shear strength and compressive strength of carbon fiber/epoxy resin composite strands
JP2566705B2 (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees