JP3362445B2 - Energy absorbing member - Google Patents

Energy absorbing member

Info

Publication number
JP3362445B2
JP3362445B2 JP11418693A JP11418693A JP3362445B2 JP 3362445 B2 JP3362445 B2 JP 3362445B2 JP 11418693 A JP11418693 A JP 11418693A JP 11418693 A JP11418693 A JP 11418693A JP 3362445 B2 JP3362445 B2 JP 3362445B2
Authority
JP
Japan
Prior art keywords
energy absorbing
reinforcing fiber
absorbing member
layers
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11418693A
Other languages
Japanese (ja)
Other versions
JPH06307475A (en
Inventor
寛 越智
研二 光安
幸胤 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11418693A priority Critical patent/JP3362445B2/en
Publication of JPH06307475A publication Critical patent/JPH06307475A/en
Application granted granted Critical
Publication of JP3362445B2 publication Critical patent/JP3362445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー吸収部材に
関し、とくに、複数層の補強繊維層を有する、樹脂と補
強繊維との複合材料からなるエネルギー吸収部材の構造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member, and more particularly to the structure of an energy absorbing member made of a composite material of resin and reinforcing fibers having a plurality of reinforcing fiber layers.

【0002】[0002]

【従来の技術】たとえば、航空機の座席周り等や、自動
車の座席周り、バンパー周り、各種構造部材に、衝撃エ
ネルギーを吸収するエネルギー吸収部材が用いられる
(特開昭60−109630号公報、特開昭62−17
438号公報等)。このエネルギー吸収部材には、衝撃
エネルギーを良好に吸収できる性能の他、一般に軽量、
高剛性であることが要求されることから、樹脂と補強繊
維との複合材料、いわゆる繊維強化プラスチック(以
下、FRPと言うこともある。)、中でも炭素繊維強化
プラスチック(以下、CFRPと言うこともある。)が
適しているとされている。このようなエネルギー吸収部
材においては、エネルギー吸収部材のある部位、たとえ
ば部材端部を起点に、局部破壊を生じさせ、その局部破
壊を利用してエネルギーを吸収するエネルギー吸収メカ
ニズムが考えられる。
2. Description of the Related Art For example, an energy absorbing member that absorbs impact energy is used for a seat around an aircraft, a seat around an automobile, a bumper, and various structural members (JP-A-60-109630). 62-17
No. 438, etc.). In addition to the ability to absorb impact energy well, this energy absorbing member is generally lightweight,
Since high rigidity is required, a composite material of a resin and reinforcing fibers, so-called fiber reinforced plastic (hereinafter sometimes referred to as FRP), especially carbon fiber reinforced plastic (hereinafter also referred to as CFRP) There is) is said to be suitable. In such an energy absorbing member, an energy absorbing mechanism may be considered in which local destruction is caused from a certain portion of the energy absorbing member, for example, a member end portion, and the energy is absorbed by utilizing the local destruction.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の樹脂
と補強繊維との複合材料からなるエネルギー吸収部材
は、エネルギーを効率よく吸収させるには未だ不十分な
面があり、とくに部材端部等を破壊させてエネルギーを
吸収する場合、部材の強度を厚さ方向全体にわたってエ
ネルギー吸収に有効活用していない場合が多く、十分に
実用に供されていないのが実情である。
However, the conventional energy absorbing member made of a composite material of resin and reinforcing fiber has a surface which is still insufficient for efficiently absorbing energy. In the case of destroying and absorbing energy, the strength of the member is often not effectively utilized for energy absorption over the entire thickness direction, and the fact is that it has not been put to practical use sufficiently.

【0004】本発明は、部材の強度を、部材の厚さ方向
全体にわたってエネルギー吸収のために有効に利用でき
るエネルギー吸収部材の構造を提供し、効率よく、高い
エネルギー吸収できる、信頼性、実用性の高いエネルギ
ー吸収部材の実現を目的とする。
The present invention provides a structure of an energy absorbing member that can effectively utilize the strength of the member over the entire thickness direction of the member for absorbing energy, and can efficiently and highly absorb energy, reliability and practicality. The aim is to realize a high energy absorption member.

【0005】[0005]

【課題を解決するための手段】この目的に沿う本発明の
エネルギー吸収部材は、少なくとも3層の補強繊維層を
有する、樹脂と補強繊維との複合材料からなるエネルギ
ー吸収部材であって、外側に位置する補強繊維層の厚さ
を内側に位置する補強繊維層の厚さよりも薄くしたこと
を特徴とするものからなる。
The energy absorbing member of the present invention for this purpose is an energy absorbing member made of a composite material of resin and reinforcing fibers, having at least three reinforcing fiber layers, and having an outer surface. The reinforcing fiber layer located is thinner than the reinforcing fiber layer located inside.

【0006】本発明のエネルギー吸収部材は、補強繊維
に樹脂を含浸したプリプレグが複数層積層されて、少な
くとも3層の補強繊維層を有する構造に作製されてい
る。補強繊維層の積層構成としては、好ましくは3層以
上、より好ましくは4層以上とすることが望ましい。
The energy absorbing member of the present invention has a structure in which a plurality of prepregs in which reinforcing fibers are impregnated with a resin are laminated to have at least three reinforcing fiber layers. The laminated structure of the reinforcing fiber layer is preferably 3 layers or more, and more preferably 4 layers or more.

【0007】そして、エネルギー吸収部材の厚さ方向
に、外側に位置する補強繊維層の厚さを内側に位置する
補強繊維層の厚さよりも薄くしている。補強繊維層の積
層数が多い場合には、部材厚さ方向中心部、又は厚さ方
向中心両側の補強繊維層の厚さを最も大きくし、両側最
外層の補強繊維層の厚さを最も小さくして、中心部から
外側にいく程順次薄くなるように構成することが好まし
い。
In the thickness direction of the energy absorbing member, the thickness of the reinforcing fiber layer located outside is made thinner than the thickness of the reinforcing fiber layer located inside. When the number of laminated reinforcing fiber layers is large, the thickness of the reinforcing fiber layers at the center of the member in the thickness direction or both sides in the center of the thickness direction should be maximized, and the thickness of the outermost reinforcing fiber layers on both sides should be minimized. Then, it is preferable that the thickness gradually decreases from the central portion to the outer side.

【0008】たとえば図1に示すように、6層の補強繊
維層を有する、樹脂と補強繊維との複合材料からなる円
筒状のエネルギー吸収部材41が挙げられる。部材厚さ
方向内側の補強繊維層42a、42bの厚さは、外側の
補強繊維層44a、44bの厚さよりも大きく、中間の
補強繊維層43a、43bの厚さは、それらの中間の大
きさとなっている。すなわち、内側程厚く、外程薄い。
For example, as shown in FIG. 1, there is a cylindrical energy absorbing member 41 made of a composite material of resin and reinforcing fibers, which has six reinforcing fiber layers. The thickness of the reinforcing fiber layers 42a, 42b on the inner side in the member thickness direction is larger than the thickness of the outer reinforcing fiber layers 44a, 44b, and the thickness of the intermediate reinforcing fiber layers 43a, 43b is the intermediate size between them. Has become. That is, the inner side is thicker and the outer side is thinner.

【0009】このような構成を有する本発明のエネルギ
ー吸収部材においては、たとえば圧縮方向の衝撃エネル
ギーを吸収する際、図1の部材41を図2に拡大して示
すように、圧縮荷重Pに対し、部材41が破壊に至る際
には、部材41の端部において部材41が肉厚方向に関
して裂けるように曲がって開こうとする。この拡開両側
部分が曲げられる際には、部材41が補強繊維層の積層
構成を有することから、ある程度、積層境界部において
層間剥離を生じる。したがって、積層されている補強繊
維層42a、43a,44aおよび42b、43b、4
4bには、それぞれ、各層が単層状態で曲げられる場合
に近い曲げ応力が生じる。この曲げ応力は、各層におい
て、曲げられた層の外面側(曲率半径の大きい側)では
引張応力、内面側(曲率半径の小さい側)では圧縮応力
となる。
In the energy absorbing member of the present invention having such a structure, for example, when absorbing the impact energy in the compression direction, as shown in the enlarged view of the member 41 of FIG. When the member 41 is destroyed, the member 41 tries to open at the end of the member 41 so that the member 41 bends so as to tear in the thickness direction. When the expanded both sides are bent, the member 41 has a laminated structure of the reinforcing fiber layers, so that delamination occurs to some extent at the laminated boundary portion. Therefore, the laminated reinforcing fiber layers 42a, 43a, 44a and 42b, 43b, 4
Bending stress similar to that when each layer is bent in a single layer state is generated in each of 4b. This bending stress is a tensile stress on the outer surface side (side with a large radius of curvature) and a compressive stress on the inner surface side (side with a small radius of curvature) of the bent layer.

【0010】図2に示したような部材端部の曲げにおい
ては、内層42a、42b側程曲率半径が大きくなり、
外層44a、44b側程曲率半径が小さくなる。今仮
に、各層42a、43a、44aおよび42b、43
b、44bの厚さが同じだとすると、曲率半径の大きい
内層42a、42b自身の曲げ外面側(曲率半径が大き
くなる側)の引張応力、曲げ内面側(曲率半径が小さく
なる側)の圧縮応力は、それよりも曲率半径の小さい外
層側の層43a、44aおよび43b、44bのそれら
よりも小さくなる。したがって、このような状態で曲げ
を進めていくと、拡開した部材の破壊は、最外層44
a、44b側に発生し、その時点では、それよりも内側
の層43a、43bおよび最内層42a、42bには破
壊は生じない。このような破壊のメカニズムでエネルギ
ーを吸収させた場合、結局、層42a、42b、43
a、43b自身が有する強度が、エネルギー吸収に最大
限有効に活用されないことになる。
In bending the end portions of the member as shown in FIG. 2, the radius of curvature increases toward the inner layers 42a and 42b,
The radius of curvature becomes smaller toward the outer layers 44a and 44b. Now suppose each layer 42a, 43a, 44a and 42b, 43
Assuming that the thicknesses of b and 44b are the same, the tensile stress on the bending outer surface side (side where the radius of curvature increases) of the inner layers 42a and 42b having a large radius of curvature , Smaller than those of the outer layers 43a, 44a and 43b, 44b having a smaller radius of curvature. Therefore, when bending is advanced in such a state, the expanded member will be destroyed and the outermost layer 44 will not be destroyed.
It occurs on the side of a and 44b, and at that time, the layers 43a and 43b and the innermost layers 42a and 42b inside thereof are not broken. When the energy is absorbed by such a destruction mechanism, the layers 42a, 42b, 43 are eventually
The strength possessed by a and 43b themselves will not be utilized to the maximum extent in energy absorption.

【0011】本発明のエネルギー吸収部材においては、
内層42a,42bの厚さが大きくされているので、層
42a、42b自身の曲げ外面側と曲げ内面側との曲率
半径の差が大きくなり、層42a、42b自身の曲げ外
面側に発生する引張応力および曲げ内面側に発生する圧
縮応力が大きくなる。この応力発生状態を調整すれば、
つまり、最内層42a、42bの厚さを適切に設定すれ
ば、最外層44a、44bが曲げによって破壊に至ると
同時に、最内層42a、42bも破壊に至らしめること
が可能になる。中間層43a、43bについても同様
に、最外層44a、44b、あるいは最内層42a、4
2bと同時に破壊に至らしめることが可能になる。その
結果、全層を実質的に同時に破壊に至らしめることが可
能になる。
In the energy absorbing member of the present invention,
Since the thickness of the inner layers 42a and 42b is increased, the difference in the radius of curvature between the bending outer surface side of the layers 42a and 42b itself and the bending inner surface side becomes large, and the tensile force generated on the bending outer surface side of the layers 42a and 42b itself. The stress and the compressive stress generated on the inner side of the bending are increased. If this stress generation state is adjusted,
That is, if the thicknesses of the innermost layers 42a and 42b are appropriately set, the outermost layers 44a and 44b can be destroyed by bending, and at the same time, the innermost layers 42a and 42b can be destroyed. Similarly, for the intermediate layers 43a and 43b, the outermost layers 44a and 44b or the innermost layers 42a and 4b.
2b can be destroyed at the same time. As a result, all layers can be destroyed substantially simultaneously.

【0012】全層が実質的に同時に破壊に至るというこ
とは、各層それぞれが有する強度が、部材破壊時に最大
限に発揮されるということであり、各層が有する強度が
全てエネルギーの吸収に有効に利用されることになる。
The fact that all the layers are destroyed at substantially the same time means that the strength of each layer is maximized when the member is destroyed, and all the strength of each layer is effective in absorbing energy. Will be used.

【0013】また、全層の破壊が実質的に同時に発生
し、全層の強度が最大限に発揮されるので、エネルギー
吸収部材全体としての、吸収可能エネルギー量も、最大
限高められる。
Further, since the destruction of all layers occurs at substantially the same time and the strength of all layers is maximized, the amount of energy that can be absorbed by the energy absorbing member as a whole is maximized.

【0014】上記のような効率のよいエネルギー吸収を
さらに助長するために、上記部材厚さ方向中心部位の補
強繊維層両側の補強繊維層は、部材厚さ方向中心部位の
補強繊維層に対し対称に積層されることが好ましい。こ
のような対称積層構成とすることにより、部材が厚さ方
向中心から両側に裂けるように破壊する際、該両側部分
のもつ強度がともに最大限に効率よく発揮され、より高
いエネルギー吸収量が得られる。
In order to further promote efficient energy absorption as described above, the reinforcing fiber layers on both sides of the central portion in the member thickness direction are symmetrical with respect to the reinforcing fiber layers in the central portion in the member thickness direction. It is preferable to be laminated on. By adopting such a symmetrical laminated structure, when the member breaks so as to tear from the center in the thickness direction to both sides, the strength possessed by both sides is maximized efficiently and a higher energy absorption amount is obtained. To be

【0015】本発明のエネルギー吸収部材を構成する複
合材料における補強繊維の種類としては、特に限定され
ず、たとえば、炭素繊維、ガラス繊維、芳香族ポリアミ
ド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維など
から選ぶことができる。
The kind of the reinforcing fiber in the composite material constituting the energy absorbing member of the present invention is not particularly limited, and examples thereof include carbon fiber, glass fiber, aromatic polyamide fiber, alumina fiber, silicon carbide fiber, boron fiber and the like. You can choose from.

【0016】また、これら補強繊維の配列は、特殊な組
み合わせ配列を行う場合を除き、エネルギー吸収部材4
1のエネルギー吸収軸45(図1に図示)に対して、0
°±60°の範囲で行えばよい。あまり大きな角度の配
列では、圧縮方向に作用する衝撃エネルギーの吸収に対
し、補強繊維が有効に活用されなくなる。
The arrangement of these reinforcing fibers is different from that of the energy absorbing member 4 unless a special combination arrangement is performed.
0 with respect to the energy absorption axis 45 of 1 (shown in FIG. 1)
It may be performed in the range of ± 60 °. If the angle is too large, the reinforcing fibers are not effectively used for absorbing the impact energy acting in the compression direction.

【0017】さらに、各補強繊維層は単層であってもよ
いし、積層構成(たとえば±25°層等を有するもの、
±25°層および±15°層等を有するもの)をなすも
のであってもよい。また、補強繊維の形態としては、と
くに限定されず、通常のフィラメントの他、補強繊維の
織物も使用できる。
Further, each reinforcing fiber layer may be a single layer, or may have a laminated structure (for example, one having ± 25 ° layers,
A layer having ± 25 ° layers and ± 15 ° layers). Further, the form of the reinforcing fiber is not particularly limited, and a woven fabric of the reinforcing fiber can be used in addition to ordinary filaments.

【0018】本発明の複合材料のマトリクスとなる樹脂
としては、特に限定されず、たとえば、エポキシ樹脂、
不飽和ポリエステル樹脂、ポリビニルエステル樹脂、フ
ェノール樹脂、グアナミン樹脂、また、ビスマレイミド
・トリアジン樹脂等のポリイミド樹脂、フラン樹脂、ポ
リウレタン樹脂、ポリジアリルフタレート樹脂、さらに
メラニン樹脂やユリア樹脂等のアミノ樹脂等の熱硬化性
樹脂が挙げられる。また、ナイロン6、ナイロン66、
ナイロン11、ナイロン610、ナイロン612などの
ポリアミド、またはこれらポリアミドの共重合ポリアミ
ド、また、ポリエチレンテレフタレート、ポリブチレン
テレフタレートなどのポリエステル、またはこれらポリ
エステルの共重合ポリエステル、さらに、ポリカーボネ
ート、ポリアミドイミド、ポリフェニレンスルファイ
ド、ポリフェニレンオキシド、ポリスルホン、ポリエー
テルスルホン、ポリエーテルエーテルケトン、ポリエー
テルイミド、ポリオレフィンなど、さらにまた、ポリエ
ステルエラストマー、ポリアミドエラストマーなどに代
表される熱可塑性エラストマー、等が挙げられる。さら
には、上述の範囲を満たす樹脂として、アクリルゴム、
アクリロニトリルブタジエンゴム、ウレタンゴム、シリ
コーンゴム、スチレンブタジエンゴム、フッ素ゴム等の
ゴムを用いることもできる。さらには、上記の熱硬化性
樹脂、熱可塑性樹脂、ゴムから選ばれた複数をブレンド
した樹脂を用いることもできる。
The resin forming the matrix of the composite material of the present invention is not particularly limited, and examples thereof include epoxy resin and
Unsaturated polyester resin, polyvinyl ester resin, phenol resin, guanamine resin, polyimide resin such as bismaleimide / triazine resin, furan resin, polyurethane resin, polydiallyl phthalate resin, and amino resin such as melanin resin and urea resin. A thermosetting resin may be used. Also, nylon 6, nylon 66,
Polyamides such as nylon 11, nylon 610 and nylon 612, copolyamides of these polyamides, polyesters such as polyethylene terephthalate and polybutylene terephthalate, copolyesters of these polyesters, and further polycarbonates, polyamide imides and polyphenylene sulfides. , Polyphenylene oxide, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyolefin, and the like, and thermoplastic elastomers typified by polyester elastomer, polyamide elastomer and the like. Furthermore, as the resin satisfying the above range, acrylic rubber,
It is also possible to use rubber such as acrylonitrile butadiene rubber, urethane rubber, silicone rubber, styrene butadiene rubber, and fluororubber. Furthermore, it is also possible to use a resin obtained by blending a plurality of the above-mentioned thermosetting resins, thermoplastic resins, and rubber.

【0019】また、補強繊維が炭素繊維からなる場合に
は、補強繊維の表面の酸素(O)と炭素(C)の原子数
比である表面官能基量(O/C)が0.08以上である
ことが好ましい。表面官能基量(O/C)が0.08以
上であると、活性化されたOによって補強繊維表面の接
着性が高められ、樹脂と補強繊維との接着強度が高めら
れてより破壊しにくくなり、複合材料全体として極めて
高い剛性、エネルギー吸収能力を発揮できる。表面官能
基量(O/C)が0.08未満であると、樹脂と補強繊
維との接着性が不十分となり、エネルギー吸収時に樹脂
と補強繊維との界面で剥離、あるいは破壊が生じやすく
なり、その分エネルギー吸収能力が低下する。
When the reinforcing fiber is made of carbon fiber, the surface functional group amount (O / C), which is the atomic number ratio of oxygen (O) and carbon (C) on the surface of the reinforcing fiber, is 0.08 or more. Is preferred. When the amount of surface functional groups (O / C) is 0.08 or more, the activated O enhances the adhesiveness of the surface of the reinforcing fiber, and the adhesive strength between the resin and the reinforcing fiber is increased to make it more difficult to break. Therefore, the composite material as a whole can exhibit extremely high rigidity and energy absorption capability. If the amount of surface functional groups (O / C) is less than 0.08, the adhesiveness between the resin and the reinforcing fiber becomes insufficient, and peeling or breakage easily occurs at the interface between the resin and the reinforcing fiber during energy absorption. , The energy absorption capacity is reduced accordingly.

【0020】また、本発明の複合材料からなるエネルギ
ー吸収部材の形状は、とくに限定されず、筒状、柱状、
板状等、各種形状を採用可能である。代表的な形状、あ
るいは採用可能な形状を図3ないし図12に例示する。
The shape of the energy absorbing member made of the composite material of the present invention is not particularly limited, and may be cylindrical, columnar, or
Various shapes such as a plate shape can be adopted. Representative shapes or applicable shapes are illustrated in FIGS. 3 to 12.

【0021】エネルギー吸収部材の代表的な形状とし
て、まず、筒状形状を挙げることができる。筒状形状と
して最も代表的な形状は、図3に示すような円筒1であ
る。図における矢印方向が、衝撃エネルギーとしての圧
縮荷重作用方向である。また、図4に示すように、円筒
の頂部を円錐状あるいは球面状に形成した円筒2も適用
できる。さらに、図示は省略するが、角筒、円錐、角
錐、円錐台、角錐台、あるいは、横断面が楕円の筒、さ
らには、図5に示すように、フランジ部3を備えた円筒
(又は角筒)等の筒状形状4も採用できる。
As a typical shape of the energy absorbing member, first, a cylindrical shape can be mentioned. The most typical shape as a cylindrical shape is a cylinder 1 as shown in FIG. The direction of the arrow in the figure is the compressive load acting direction as impact energy. Further, as shown in FIG. 4, a cylinder 2 in which the top of the cylinder is formed in a conical shape or a spherical shape can also be applied. Further, although not shown, a prism, a cone, a pyramid, a truncated cone, a truncated pyramid, or a cylinder having an elliptical cross section, and further, as shown in FIG. A tubular shape 4 such as a tube) can also be adopted.

【0022】また、筒状形状に限らず、柱状形状でもよ
い。たとえば、円柱、角柱形状を挙げることができる。
The shape is not limited to the cylindrical shape, but may be a columnar shape. For example, a columnar shape or a prismatic shape can be mentioned.

【0023】さらに、板状形状の採用も可能である。た
とえば、波板形状の部材とすれば、座屈に対して強いの
で、エネルギー吸収部材として使用可能となる。また、
図6に示すように、リブ5を有する、たとえば横断面T
字形の形状6、図7に示すように、横断面コ字状の形状
7とすることもできる。図7に示す横断面コ字状の形状
7では、2点鎖線で示すように蓋部材8を設けることも
できる。さらに、図8に示すように、横断面十字状の形
状9とすることもできる。
Further, it is possible to adopt a plate shape. For example, a corrugated plate-shaped member can be used as an energy absorbing member because it is strong against buckling. Also,
As shown in FIG. 6, for example, a cross section T having a rib 5 is provided.
The shape 6 may be a V shape, or may be a shape 7 having a U-shaped cross section as shown in FIG. 7. In the shape 7 having a U-shaped cross section shown in FIG. 7, the lid member 8 can be provided as shown by a two-dot chain line. Further, as shown in FIG. 8, a cross-shaped cross section 9 may be used.

【0024】さらにまた、各種形状の部材を組み合わせ
た構造とすることも可能である。たとえば、図9、図1
0に示すように、大きい円筒10、大きい円錐台11の
中に、小さい細長形状の円柱12、13を入れ、これら
を複合材料で構成することにより、より座屈しにくいエ
ネルギー吸収部材にすることができる。
Furthermore, it is also possible to adopt a structure in which members of various shapes are combined. For example, FIG. 9 and FIG.
As shown in FIG. 0, small elongated cylinders 12 and 13 are put in a large cylinder 10 and a large truncated cone 11 and are made of a composite material, so that an energy absorbing member that is less likely to buckle can be obtained. it can.

【0025】さらに、エネルギー吸収部材は、1個の部
材から構成されるものの他、複数の部材を重ねて、ある
いは組み合わせて構成してもよい。たとえば、図11、
図12に示すように、同一あるいは同様の形状の複合材
料からなる部材14、15a、15b、15cを縦に積
層してエネルギー吸収部材16、17を構成するように
してもよい。図12の構成にあっては、各部材を中、外
交互に積層してもよい。
Further, the energy absorbing member may be composed of one member, or may be composed of a plurality of members stacked or combined. For example, in FIG.
As shown in FIG. 12, the energy absorbing members 16 and 17 may be configured by vertically stacking members 14, 15a, 15b and 15c made of a composite material having the same or similar shapes. In the configuration of FIG. 12, each member may be alternately laminated inside and outside.

【0026】なお、上記のようなエネルギー吸収部材に
おいては、エネルギー吸収部材を端部から逐次破壊させ
るためのトリガ形状を形成しておくことが望ましく、こ
のトリガは、エネルギー吸収部材を押圧する押圧部材側
に設けてもよい。
In the energy absorbing member as described above, it is desirable to form a trigger shape for sequentially destroying the energy absorbing member from the end, and this trigger is a pressing member for pressing the energy absorbing member. It may be provided on the side.

【0027】〔特性の測定方法および効果の評価方法〕
以下に、本発明の説明に用いた特性の測定方法について
説明する。 (1)繊維の引張強度、引張弾性率 JIS−R7601に規定されている樹脂含浸ストラン
ド試験法に準じて測定した。試験に用いた樹脂処方およ
び硬化条件を次に示す。 樹脂処方:“ベークライト”ERL−4221 100部 3−フッ化ホウ素モノエチルアミン(BF3 ・MEA) 3部 アセトン 4部 硬化条件:130℃、30分
[Method of measuring characteristics and method of evaluating effects]
The method of measuring the characteristics used in the description of the present invention will be described below. (1) Tensile Strength and Tensile Modulus of Fiber Measured according to the resin-impregnated strand test method specified in JIS-R7601. The resin formulation and curing conditions used in the test are shown below. Resin Formulation: "Bakelite" ERL-4221 100 parts of 3 boron trifluoride monoethylamine (BF 3 · MEA) 3 parts acetone 4 parts Curing conditions: 130 ° C., 30 minutes

【0028】(2)表面官能基量(O/C) X線光電子分光法により、次の手順に従って求めた。先
ず、溶媒でサイジング剤などを除去した炭素繊維(束)
をカットして銅製の試料支持台上に拡げて並べた後、光
電子脱出角度を90°とし、X線源としてMgKα1,
2を用い、試料チャンバー中を1×10-8Torrに保
つ。測定時の帯電に伴うピークの補正としてC1Sの主ピ
ークの運動エネルギー値(K.E.)を969eVに合
わせる。C1Sピーク面積をK.E.として958〜97
2eVの範囲で直線のベースラインを引くことにより求
める。O1Sピーク面積をK.E.として714〜726
eVの範囲で直線のベースラインを引くことにより求め
る。ここで表面官能基量(O/C)とは、上記O1Sピー
ク面積とC1Sピーク面積の比から、装置固有の感度補正
値を用いて原子数比として算出したものである。なお本
発明者らは、島津製作所(株)製モデルESCA−75
0を用いてO1Sピーク面積とC1Sピーク面積の比を測定
し、その比を感度補正値2.85で割ることにより表面
官能基量(O/C)を求めた。
(2) Surface functional group amount (O / C) It was determined by the following procedure by X-ray photoelectron spectroscopy. First, carbon fiber (bundle) from which sizing agents have been removed with a solvent
After cutting and arranging them on a copper sample support, the photoelectron escape angle was set to 90 °, and MgKα1, X-ray source was used.
2 is used and the sample chamber is kept at 1 × 10 −8 Torr. The kinetic energy value (KE) of the main peak of C 1S is set to 969 eV as a correction of the peak associated with charging during measurement. The C 1S peak area was calculated as K. E. As 958-97
It is obtained by drawing a linear baseline in the range of 2 eV. The O 1S peak area was measured by K.K. E. As 714-726
It is determined by drawing a straight baseline in the range of eV. Here, the amount of surface functional groups (O / C) is calculated as an atomic number ratio from the ratio of the O 1S peak area and the C 1S peak area using a sensitivity correction value specific to the apparatus. The inventors of the present invention used a model ESCA-75 manufactured by Shimadzu Corporation.
0 was used to measure the ratio of the O 1S peak area to the C 1S peak area, and the ratio was divided by the sensitivity correction value of 2.85 to obtain the surface functional group amount (O / C).

【0029】[0029]

【発明の効果】以上説明したように、本発明のエネルギ
ー吸収部材によるときは、エネルギー吸収部材を少なく
とも3層の補強繊維層を有する構成とするとともに、厚
さ方向外側に、より薄い補強繊維層を、内側に、より厚
い補強繊維層を配し、部材が破壊する際には内外層が実
質的に同時に破壊するようにしたので、部材が有する強
度を、部材の厚さ方向全体にわたってエネルギー吸収の
ために有効に活用することができ、エネルギー吸収能力
を向上できるとともに、より薄肉化、軽量化も可能にな
り、各種分野に好適に使用できる実用性の高いエネルギ
ー吸収部材を実現できる。
As described above, according to the energy absorbing member of the present invention, the energy absorbing member has at least three reinforcing fiber layers, and the reinforcing fiber layer is thinner on the outer side in the thickness direction. By arranging a thicker reinforcing fiber layer on the inside so that when the member ruptures, the inner and outer layers rupture at substantially the same time, so that the strength of the member is absorbed over the entire thickness direction of the member. Therefore, the energy absorption ability can be improved, the thickness and weight can be reduced, and a highly practical energy absorption member that can be suitably used in various fields can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るエネルギー吸収部材の部分縦断面
図である。
FIG. 1 is a partial vertical sectional view of an energy absorbing member according to the present invention.

【図2】図1の部材の拡大部分縦断面図である。FIG. 2 is an enlarged partial vertical sectional view of the member of FIG.

【図3】本発明のエネルギー吸収部材の形状の一例を示
す斜視図である。
FIG. 3 is a perspective view showing an example of the shape of the energy absorbing member of the present invention.

【図4】本発明のエネルギー吸収部材の別の形状例を示
す斜視図である。
FIG. 4 is a perspective view showing another example of the shape of the energy absorbing member of the present invention.

【図5】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 5 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図6】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 6 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図7】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 7 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図8】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 8 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図9】本発明のエネルギー吸収部材の別の構造例を示
す斜視図である。
FIG. 9 is a perspective view showing another structural example of the energy absorbing member of the present invention.

【図10】本発明のエネルギー吸収部材のさらに別の構
造例を示す斜視図である。
FIG. 10 is a perspective view showing still another structural example of the energy absorbing member of the present invention.

【図11】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 11 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【図12】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 12 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【符号の説明】[Explanation of symbols]

1、2 円筒形状のエネルギー吸収部材 3 フランジ部 4 フランジ部を備えた円筒形状のエネルギー吸収部材 5 リブ 6 横断面T字形のエネルギー吸収部材 7 横断面コ字形のエネルギー吸収部材 8 蓋部材 9 横断面十字状のエネルギー吸収部材 10 円筒形状のエネルギー吸収部材 11 円錐台形状のエネルギー吸収部材 12、13 細長形状の部材 14、15a、15b、15c エネルギー吸収部材を
構成する部材 16、17 組み合わせ構成のエネルギー吸収部材 41 エネルギー吸収部材 42a、42b 最内層の補強繊維層 43a、43b 中間層の補強繊維層 44a、44b 最外層の補強繊維層 45 エネルギー吸収軸
1, 2 Cylindrical energy absorbing member 3 Flange portion 4 Cylindrical energy absorbing member having a flange portion 5 Rib 6 Energy absorbing member 7 having T-shaped cross section 7 Energy absorbing member 8 having U-shaped cross section 8 Lid member 9 Cross section Cross-shaped energy absorption member 10 Cylindrical energy absorption member 11 Frustum-shaped energy absorption members 12, 13 Elongated members 14, 15a, 15b, 15c Energy absorption member members 16, 17 Combination energy absorption Member 41 Energy absorbing members 42a, 42b Innermost layer reinforcing fiber layers 43a, 43b Intermediate layer reinforcing fiber layers 44a, 44b Outermost layer reinforcing fiber layer 45 Energy absorption axis

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16F 7/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F16F 7/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも3層の補強繊維層を有する、
樹脂と補強繊維との複合材料からなるエネルギー吸収部
材であって、外側に位置する補強繊維層の厚さを内側に
位置する補強繊維層の厚さよりも薄くしたことを特徴と
するエネルギー吸収部材。
1. Having at least three reinforcing fiber layers,
An energy absorbing member made of a composite material of resin and reinforcing fibers, characterized in that a thickness of a reinforcing fiber layer located outside is smaller than a thickness of a reinforcing fiber layer located inside.
【請求項2】 部材の厚さ方向中心部における補強繊維
層が最も厚く、部材の厚さ方向外側にいく程、順次補強
繊維層が薄くなっている、請求項1のエネルギー吸収部
材。
2. The energy absorbing member according to claim 1, wherein the reinforcing fiber layer is thickest in the central portion in the thickness direction of the member, and the reinforcing fiber layer is successively thinner toward the outer side in the thickness direction of the member.
【請求項3】 部材の厚さ方向中心部位の補強繊維層の
両側に位置する補強繊維層が、厚さ方向中心部位の補強
繊維層に対して対称をなしている、請求項1又は2のエ
ネルギー吸収部材。
3. The reinforcing fiber layer located on both sides of the reinforcing fiber layer at the central portion in the thickness direction of the member is symmetrical with respect to the reinforcing fiber layer at the central portion in the thickness direction. Energy absorbing member.
【請求項4】 前記補強繊維が、エネルギー吸収軸方向
に対して0°±60°の範囲内の方向に配列されてい
る、請求項1、2又は3のエネルギー吸収部材。
4. The energy absorbing member according to claim 1, 2 or 3, wherein the reinforcing fibers are arranged in a direction within a range of 0 ° ± 60 ° with respect to the energy absorbing axis direction.
JP11418693A 1993-04-19 1993-04-19 Energy absorbing member Expired - Fee Related JP3362445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11418693A JP3362445B2 (en) 1993-04-19 1993-04-19 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11418693A JP3362445B2 (en) 1993-04-19 1993-04-19 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH06307475A JPH06307475A (en) 1994-11-01
JP3362445B2 true JP3362445B2 (en) 2003-01-07

Family

ID=14631353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11418693A Expired - Fee Related JP3362445B2 (en) 1993-04-19 1993-04-19 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP3362445B2 (en)

Also Published As

Publication number Publication date
JPH06307475A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
US4732803A (en) Light weight armor
EP0322979A2 (en) Composite for the absorption of energy
US6187411B1 (en) Stitch-reinforced sandwich panel and method of making same
US5614305A (en) Impact and perforation resistant composite structures
US5108810A (en) Composite element
KR19980701932A (en) Pressure vessel and process for producing the same
US20050175813A1 (en) Aluminum-fiber laminate
US20140346811A1 (en) Carbon fiber prepreg-wrapped beam structures
US6790518B2 (en) Ductile hybrid structural fabric
US20070029321A1 (en) Technology for blast containers
JP3360871B2 (en) Energy absorbing member
JP3362442B2 (en) Energy absorbing member
JP3362445B2 (en) Energy absorbing member
US5514448A (en) Laminated molding
JP3360872B2 (en) Energy absorbing member
JP3362447B2 (en) Energy absorbing member
JP3456589B2 (en) Energy absorbing member
JP3456588B2 (en) Energy absorbing member
JP3362441B2 (en) Energy absorbing member
JPH10235763A (en) Thick frp energy-absorber
JP2001146846A (en) Concrete-reinforcing structure by tensed multilayer reinforcing fiber sheet
JP3544994B2 (en) Fiber reinforced composite material and energy absorbing member
JPH06346935A (en) Energy absorption member
JP3360870B2 (en) Energy absorbing member
JPH068971Y2 (en) Helmet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees